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Abstract. Traditional cloud-centric architectures for Internet-of-Things
applications are being replaced by distributed approaches. The Edge and
Fog computing paradigms crystallize the concept of moving computation
towards the edge of the network, closer to where the data originates.
This has important benefits in terms of energy efficiency, network load
optimization and latency control. The combination of these paradigms
with embedded artificial intelligence in edge devices, or Edge AI, enables
further improvements. In turn, the development of blockchain technology
and distributed architectures for peer-to-peer communication and trade
allows for higher levels of security. This can have a significant impact
on data-sensitive and mission-critical applications in the IoT. In this
paper, we discuss the potential of an Edge AI capable system architecture
for the Blockchain of Things. We show how this architecture can be
utilized in health monitoring applications. Furthermore, by analyzing
raw data directly at the edge layer, we inherently avoid the possibility
of breaches of sensitive information, as raw data is never stored nor
transferred outside of the local network.

Keywords: Blockchain · Edge computing · AI · Edge AI · E-health ·
U-health · IoT · Internet of Things · ECG monitoring · ECG feature
extraction · Ubiquitous health · Ethereum

1 Introduction

With an increasing ubiquity of connected devices penetrating smart homes,
smart cities, smart factories or smart farms, the Internet of Things (IoT) is
generating vast amounts of data [1,2]. However, many challenges related to IoT
data ownership, security, privacy, and information sharing still remain [3–6].
The increasing integration of third-party services into IoT applications further
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increases the risk of security vulnerabilities and cyber attacks [7]. Even with the-
state-of-the-art encryption methods, the IoT presents a non-negligible threat to
users’ privacy and personal data security [8]. While the IoT was born with the
boom in cloud computing, in recent years distributed computing approaches
are extending its potential [9–16]. The edge and fog computing paradigms aim
at migrating computational load towards the edge of the network. Data is pro-
cessed at the local network level or radio access point station and only important
information is transmitted over the network. For example, raw ECG data can
be processed at a smart gateway for extracting important ECG features such as
heart rate, P and T waves. Depending on the applications, raw data or processed
data is stored at distributed edge storage. Edge approaches allow for reduced
latency and more efficient use of both network and computational resources, but
they also raise additional security considerations and requirements [17].

Blockchain technology has seen increasing penetration in multiple technolog-
ical areas in the last decade [18], since its first introduction as part of the Bitcoin
stack [19]. A blockchain platform can be seen a public and distributed digital
data ledger that allows nodes to record proof of integrity and is unalterable a
posteriori. Blockchain enables a decentralized manner of sharing data, and an
immutable record of transactions, among other benefits. Compared to a central-
ized infrastructure, such as most cloud-based IoT Systems, blockchain technology
has the advantage of allowing end-users or devices to exchange information, data
and their assets directly without any intermediate third parties involved in the
process while securing data integrity [20]. With these advantages, blockchain
can be a suitable candidate to deal with some existing security challenges in
many applications [21]. For instance, blockchain can be leveraged as a trading
platform between data producers (i.e., the end-devices in an IoT system or the
edge gateway where sensor node data is being analyzed and processed), and data
consumers or (i.e., third-party applications or end-user applications) [22].

The integration of blockchain technology into the IoT has drawn growing
attention of the research community in recent years. Significant efforts have
been devoted to propose secured approaches which utilize blockchain technology
to secure M2M transactions in the IoT [23]. An important part of the works
to date is focused on either secure access policies, such as the direct connection
between end-users and smart home appliances [24], or secure machine-to-machine
communication [25]. Although these approaches can indeed provide high levels
of security to IoT platforms [26], their integration within edge-assisted remote
and real-time monitoring applications is not deeply investigated in those works.

In this paper, we present an architecture for the Blockchain of Things that
integrates artificial intelligence at the edge (Edge AI) algorithms for efficient
and secure information management and privacy protection in healthcare appli-
cations. The presented system architecture extends our previous work [27], and
it is illustrated in Fig. 1. We also discuss further the potential of this appli-
cation in various fields. The proposed architecture secures IoT data integrity
with a distributed platform based on the Ethereum blockchain and utilizes Edge
AI for computational offloading at the fog and edge layer. Integrating fog and
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Fig. 1. Proposed system architecture

edge computing creates new opportunities for enhanced peer-to-peer security
and authorized access [28,29].

The rest of this paper is organized as follows. Section 2 overviews previous
works in the use of blockchain technology in the IoT, the Edge AI paradigm
and the use of blockchain for healthcare applications. Section 3 then introduces
the system architecture, and outlines the benefits of integrating Edge AI with
blockchain for different applications in the IoT. Section 4 presents the experi-
mental data and results. Finally, Sect. 5 concludes the work and lays out future
work directions.

2 Related Work

In the healthcare IoT domain, it is often recommended that patients should
have the ability to access their own health data. Nonetheless, the data should
be consistent, protected and unaltered over time by any third parties or patients
themselves [30,31]. Therefore, it is necessary to have a high level of security



270 T. Nguyen Gia et al.

methods which ensure that data transmitted over a network is secure and avail-
able to authorized parties, in addition to having an integrity check that ensures
immutability of the data. Many efforts have been devoted to propose blockchain-
based methods to improve security, transaction speed, and avoid fraud control
in healthcare.

In [32], the authors introduced and discussed different access policies to pro-
tect the privacy of private patient’s data. In addition, the authors implemented
deep learning algorithms to extract useful information from private raw data.
Although the proposed method and its algorithms focus on healthcare applica-
tions, they can be applied in different scenarios including cases in larger per-
spectives.

In [33], the authors presented a blockchain-based approach for sharing patient
data within a network. In addition, the authors introduced a consensus algo-
rithm for enabling data interoperability. Different measurements of security on
blockchain were carried out and the authors claimed that the blockchain-based
method is a promising solution for avoiding or overcoming problems in sharing
private health data.

In [34], the authors introduced a blockchain-based method for proffering
a proof of predefined endpoints in clinical trials. They claimed that applying
blockchain methods can provide a high level of reliability while keeping costs
low.

In [35], the authors introduced a framework which has a modified traditional
blockchain method for suiting to IoT applications. The proposed method is suit-
able for resource-constrained devices while it maintains a high level of privacy
and security. The framework ensures that transactions over a blockchain network
are more anonymous and secure.

In [36], Simic et al. showed that it is feasible to apply blockchain into health-
care IoT systems to protect data transmitted over a network. The authors have
examined several possibilities of utilizing smart contracts for healthcare IoT
systems. They claimed that a combination of blockchain and IoT can benefit
different distributed applications.

In [37], Pham et al. presented a remote health monitoring system utiliz-
ing blockchain. In this system, bio-signal sensor nodes collect and filter patient
data. The useful information extracted from the collected data is written into
blockchain. In case of abnormalities, the extracted information is written imme-
diately to blockchain and a push notification is triggered to inform medical
doctors.

3 Protecting Data Privacy with the Ethereum Blockchain

As compared to the original blockchain platform developed for the bitcoin by
Satoshi Nakamoto [19], the Ethereum platform provides the Ethereum Virtual
Machine (EVM) which is fully autonomous in terms of its system execution by
using smart contracts. Smart contracts are scripts with predefined terms and
conditions for system transactions. This peer-to-peer (P2P) distributed ledger
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relies on its miner nodes. Miner nodes act as validator nodes for every new
transaction block, which are created within certain time intervals. In general, a
single transaction block is a combination of a header block and a data block. The
data block stores the hash of the processed and analyzed data, while the header
contains the hash of previous and current blocks, metadata, timestamp and a
short characterization of the data. If another user or a third party service wants
to access or exchange data, the header data characterization description can be
utilized to see the details of the data block before the transaction is carried out.
The data itself is stored encrypted in a cloud storage solution or in the device
itself if the capacity is enough.

The proposed system architecture is illustrated in Fig. 1 and it consists of
three layers. First, the data generation layer, which consists of sensors and actu-
ators without any computational layer. These sensors and actuators depend on
mining nodes which will collect data from these devices. Sensor and actuators
merely communicate with one miner node which can be used as a gateway to
transfer their data to other gateways or cloud servers. Bluetooth low energy
(BLE) or Wi-Fi is often used this layer. BLE uses less energy whilst Wi-Fi can
transmit a larger data packet size and offer higher bandwidth. Second, the net-
work layer, where P2P networking is used in this private ethereum network for
communication and data transfer. The distributed ledger topologies are defined
on this layer. Different topologies like side chains, shard chains, off-chains can be
used to handle scarce computing-devices issues and scalability. Smart contracts
or scripts run to handle all the processes in a network. Finally, the third layer
is the application layer. Smart applications of the IoT consists of a wide range
of use-cases like smart homes, smart industries, digital medical and many more.
To access these systems, end-users, third parties or control centers need to join
the network first and then request data via the ethereum network.

3.1 Application Areas

In this section, we give an overview of potential applications for the proposed
architecture. We outline the benefits and trade-offs of integrating our proposed
platform in different IoT domains. We cover the areas of smart homes, smart
cities, industrial applications, connected vehicles with vehicle-to-vehicle (V2V)
and vehicle-to-everything (V2X) communication, and ubiquitous health.

A common problem of IoT devices in all application areas is their security
vulnerabilities in terms of (1) third-party access and control, (2) unauthorized
use of data, and (3) leakage of raw data. While previous works have studied
the problem of protecting access to these devices by integrating blockchain tech-
nology extensively, we will focus on the benefits of the proposed for ensuring
that data from sensor nodes is only accessed by authorized third parties, and
that raw data is never made available to these parties through processing at
the local network level and before inclusion in the blockchain. Furthermore, the
blockchain provides an immutable record of all data requests from third parties.
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Smart Home IoT Providers
In the smart home domain, an increasing number of industrial players are intro-
ducing a variety of commodities, from voice assistants to smart fridges. How-
ever, these are not exempt from security vulnerabilities [38], and many of them
suppose a serious threat to privacy in users’ homes. Previous works have been
focusing on using blockchain for securing access and control of smart home appli-
ances. This can significantly reduce the risk of having a spy inside our homes [39].
However, while communication between third-party services is secured, the use
of data gathered by these devices is still being controlled by third-parties.

A smart gateway, which can replace a traditional home Wi-Fi router, serves as
a bridge between sensor nodes and cloud storage or third-party applications, and
at the same time the smart gateway can be utilized to deploy deep learning anal-
ysis and other AI processing which cannot run directly on resource-constrained
devices. Moreover, because the processed data is only stored locally or encrypted
in cloud storage, all data access requests are stored in the blockchain and there-
fore access to data is not managed by an external party but by smart gateways
directly.

Cybersecurity in Open Smart Cities
The concept of Smart City mostly relies on IoT. A city is considered to be
smart when it uses large amounts of IoT sensor data to efficiently improve the
management of its assets and resources [40]. Another key aspect of smart cities
is openness. By making public all or part of the IoT data that is gathered, city
administrators can engage citizens, local business and large enterprises equally to
develop new products and services based on the data. This benefits both the city
management team and the involved parties, with a positive effect on the city’s
economy. In this case, however, it is essential to have a proper methodology for
both sharing data with third parties and ensuring that public datasets are not
misused.

With the implementation of the proposed architecture, administrators can
have full control and monitor the access of third parties of this data. Moreover,
transaction fees and data prices in the ethereum blockchain within the proposed
solution can be used to naturally control the amount of data that each external
user is accessing. In summary, our proposed solution not only provides a secure
and safe way of distributing IoT data gathered around the city to external users
or developers, but it also provides a base for edge computing and local network
analysis and processing. By managing to which level the data is processed in edge
gateways, which information is processed in the gateways, and which information
or raw data is available to external applications.

Modular Smart Factories in Industry 4.0
The fourth industrial revolution, or Industry 4.0, has promised to develop more
agile, modular and smart manufacturing environments where traditional pro-
duction lines are replaced by automated and intelligent lines in which individual
products can be customized on the fly [41]. The process towards Industry 4.0
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requires the integration of the IoT in industrial environments and the installa-
tion of IoT sensor suites and actuators. This will allow managers to gather vast
amounts of data and be able to adjust the manufacturing process dynamically
to improve its efficiency.

Although autonomous machines and robots are heavily used in smart fac-
tories, they cannot replace humans completely. In some parts of a production
chain, tight cooperation between machines and humans is unavoidable. There-
fore, it is required that smart factories must guarantee a high safety level for
humans working with autonomous machines. A method for enhancing situational
awareness via intercommunication between everything can be applied in smart
factories to address the target. In detail, a machine such as co-robot communi-
cates and obtains useful information from other machines or even humans. For
instance, a machine in a room can get a position and gesture of engineering
who is walking in an adjacent room and is likely to come close to it. Based on
both the received information and the data collected by the machine itself, it
is able to forecast potential safety-critical situations and react in real-time to
avoid accidents. In such a system, latency and security are essential because a
piece of incorrect information provided by the third party or delayed information
can cause a serious consequence. Therefore, smart factories need an advanced
secured architecture which can guarantee a trusted intercommunication between
machines and human with low latency.

Internet of Vehicles, V2V, and V2X
Nowadays, the number of connected vehicles is increasing significantly due to
their benefits such as improving energy efficiency, reducing travelling time, or
avoiding car accidents. The concept of connected vehicles often refers to a number
of communication protocols used to connect the driver with other objects. For
instance, communication in connected vehicles can be categorized into a vehicle
to infrastructure (V2I), vehicle to vehicle (V2V), vehicle to Cloud (V2C), vehicle
to pedestrian (V2P) and, in general, vehicle to everything (V2X) communication.
In these scenarios, security is essential because incorrect or modified data intro-
duced in the system by untrusted third parties can cause serious consequences
such as a car accident or even death. Conventional security methods which need a
central control system may not be completely suitable for some of the connected
vehicles because those methods can cause an increase in communication latency.
In such vehicle systems, real-time data and reaction are required. The proposed
solution is a potential candidate for such real-time connected vehicle systems
as it can provide high levels of security while the latency does not increase.
With the proposed architecture, data related to other vehicles on a street can
be exchanged directly with a connected vehicle through edge gateways in the
near infrastructure. Moreover, the Edge AI opens multiple possibilities for com-
putational offloading [42,43]. The benefits of our proposed architecture are in
the control of the use of private vehicle data by third parties. In the V2X sce-
nario, these can be other vehicles (V2V) or infrastructure around the road (V2I)
(Fig. 2).
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Fig. 2. Sensor node

Ubiquitous Health
Privacy and private health data must be carefully protected because leaked infor-
mation can cause serious consequences. For instance, the leakage information
such as health status can be used for hijacking purposes or spreading false rumors
which causes money and mental damages. It is required that remote and real-
time health monitoring systems must ensure a high level of security. Nonetheless,
there are still many challenges of security issues in these systems. Blockchain can
play an important role in improving a security level in these systems [27]. By
combining blockchain with artificial intelligence at the edge of the network, a
system can provide end-to-end protection to users’ privacy. First, sensitive raw
data is processed at the local network level, and therefore the risk of raw data
being leaked is eliminated. With the blockchain utilized to manage an access to
processed data and features, end-users can have full control over their data while
allowing third-party applications to have access only the information that has
been processed already.

4 Experiment and Results

In order to test the feasibility of the proposed architecture, and the possibilities
for deployment and real-time execution, we have targeted a use case of ECG
feature extraction and arrhythmia detection with convolutional neural networks
(CNN). We have used a complete remote health monitoring IoT-based system
utilizing blockchain and edge/fog computing. However, in this paper, we just
focuses on edge gateways which have been used for deploying the advanced
algorithms such as ECG feature extraction and arrhythmia detection with CNN.
Other parts of the system have been discussed in detail in our previous papers
[12,44,45].

4.1 Sensor Node

In this paper, ECG is collected by our multi-channel ECG sensor node which
will be described in detail in another work. The sensor node is able to collect
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Table 1. Loading time of the different Arrythmia classification requirements

Execution time

Loading numerical libraries 960 ms

Loading tensorflow and keras 1478 ms

Loading trained model 6683 ms

ECG feature extraction 150 ms

Arrythmia classification 849 ms

Table 2. Blockchain transaction average execution times

Average execution time

Ethereum transaction request 17 ms

New data block creation 10 s

16-channel ECG signals with high resolutions (i.e., each channel can collect from
125 samples/s to 1000 samples/s). Then, depending on the requirements of each
application, the data can be pre-processed and kept intact before being sent to a
smart Edge gateway via BLE or Wi-Fi. In this paper, raw ECG data is collected
from the sensor node with a sampling rate of 250 samples/s per channel and sent
to a smart Edge gateway via Wi-Fi. The collected data is not processed at the
sensor node because it is difficult or even not feasible to run heavy computation
methods (e.g., ECG feature extraction based on wavelet transform) at the sensor
node [46–48]. Instead the data will be processed at the Edge gateway which is
capable of running heavy computations while fulfilling latency requirements [49].
The data rate of 250 samples/s can fulfill the requirements of common ECG data
quality standards [50]. In general, BLE is preferred over Wi-Fi because BLE
consumes much less energy than Wi-Fi for a similar transmissions. However,
BLE cannot be chosen for this case because BLE cannot support this large data
rate (i.e., about 3 Mbps for up to 12 channels in each sensor node) [51].

4.2 Gateway

The edge gateways used in our system are Raspberry Pi 3B+ single-board com-
puter (1.4 GHz quad-core processor, 1 GB SRAM, BLE, Wi-Fi). The operating
system running at the gateway is Ubuntu. The gateway is able to store different
data and information such as parameters used for algorithms and temporary
health data. The parameters are often kept intact and they are only modified by
a system administrator. The gateway can reserve 20 GB for storing temporary
health data. Raw data is not stored but only the extracted features. If the stor-
age is near its full capacity, then part of the data is encrypted and transferred
to cloud-based storage solutions. All the services (e.g., ECG feature extraction)
run on the gateway. In our experiments, the Pi runs ECG feature extraction
adapted from [52], while a deep learning based arrhythmia classification model
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Fig. 3. Results of the data analysis at the edge gateway.

adapted from [53] is deployed in the as well. The Pi was used in order to prove
the viability and effectiveness of the proposed architecture. If more computa-
tional resources are required, then this can be replaced by any other hardware
capable of running Ubuntu.

4.3 Performance

To initialize the system, a private ethereum network is created, generating
authority and transaction accounts. The first step is to configure a new gen-
esis file to build the first block of the custom ethereum network. Smart con-
tracts were written in solidity and tested by using Remix IDE. We have ana-
lyzed the execution times of the feature extraction, arrhythmia detection and
blockchain requests in order to assess the possibilities of real-time operation.
The execution times of the different processes are shown in Tables 1 and 2. The
feature extraction and arrhythmia classification processes deployed in this use
case are single-threaded and therefore executed within a single core. As the
Raspberry Pi 3B+ has 4 cores, it is possible to concurrently execute the anal-
ysis of two sensor nodes in parallel together with other background processes.
The analysis of ECG data is made in batches of 10 s, where an average ECG
cycle template is extracted and the heart rate and other features are calculated.
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An example of the raw and processed data is shown in Fig. 3. Then, the template
is utilized for arrhythmia classification.

The loading times required for loading numerical libraries, the deep learning
libraries Tensorflow and Keras, and the trained model are shown in Table 1.
Taking these into account, we deploy the model in the edge gateway in a way
that the required libraries and the deep learning model are only loaded every
time the gateway is rebooted. Transaction requests time in the ethereum network
was 17 ms as average while using public Wi-Fi. Miner nodes take 10 s as average
to create a new data block.

In summary, since the analysis is carried out every 10 s, a single Raspberry
Pi 3B+ board is able to handle multiple sensor nodes connected via Wi-Fi or
Bluetooth. We can safely assume that around 8 sensor nodes can be handled
in real-time without reaching the maximum level of performance and therefore
allowing for uncertainties in the measurements.

After data processing, the extracted features are encrypted with AES-256
[54,55] and stored in a third party storage solution. A custom distributed storage
solution can be employed instead if tighter control of the data storage is required.
Then, metadata including device ID and type of data are stored in the blockchain
through the execution of a series of smart contracts.

5 Conclusion and Future Work

We have utilized a blockchain-based architecture for managing data security and
integrity in IoT applications, and improved it by integrating Edge AI techniques
to enhance the applications’ security and protect users’ privacy further. This is
of particular interest for mission-critical and data-sensitive applications such as
health monitoring applications in the IoT. We have implemented our proposed
approach using ECG sensor nodes and a Raspberry Pi Model 3B+ as an edge
gateway. The gateway ran a full ethereum node and processed ECG data in real-
time with feature extraction and arrhythmia detection algorithms deployed. We
show that real-time computation with arrhythmia classification is possible with
multiple nodes, and the analysis part utilizes more computation resources than
a typical ethereum deployment.

In future work, we will further integrate how the AI algorithms are executed
together with the smart contracts in an ethereum network. In addition, we will
extend the current system to a larger number of applications in the domain of
ubiquitous health monitoring and others.
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