
Using Data Distribution Service for IEEE
11073-10207 Medical Device

Communication

Merle Baake1, Josef Ingenerf2 , and Björn Andersen2(B)

1 Cardioscan GmbH, Hamburg, Germany
merle.baake@cardioscan.de

2 Institute of Medical Informatics, Universität zu Lübeck, Lübeck, Germany
{ingenerf,andersen}@imi.uni-luebeck.de

Abstract. The concept of an Integrated Clinical Environment can be
implemented by a fully connected operation room containing devices from
different manufacturers. An exchange architecture and protocol for this
kind of environment is defined by the IEEE 11073 Service-oriented Device
Connectivity family of standards. Therein, a Domain Information and Ser-
vice Model is bound to the Medical Devices Communication Profile for
Web Services, which is the specification for the information exchange tech-
nology. It is employed as the communication layer in the software library
SDCLib/J that implements an Integrated Clinical Environment. In order
to demonstrate that the functionality of SDCLib/J is independent of the
underlying transport technology, its communication layer was replaced
with an implementation of the Data Distribution Service. Therefore, its
publish-subscribe pattern needed to be redesigned and transformed so
that it matches the library’s request-response principle.

Keywords: IEEE 11073 SDC · SOMDA · DDS · ICE ·
Publish-subscribe · Request-response

1 Introduction

Interconnecting point-of-care medical devices from various manufacturers has
been shown to enable technological and economic benefits [8]. Apart from
data exchange, remote control is of great importance when connecting medi-
cal devices [12]. By monitoring parameters like heart rate or blood pressure and
using remote control, functions depending on their current values can be con-
trolled, e.g. pausing the injection of a drug when the patient’s vital signs drop
out of a previously defined safe range.

Unfortunately, in most cases, a device can only be connected efficiently to
another device if it is from the same vendor [5]. In case devices from mixed manu-
facturers are introduced, additional interfaces are required. Therefore, users have
a high dependency on the availability of devices from the same manufacturer.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

G. M. P. O’Hare et al. (Eds.): MobiHealth 2019, LNICST 320, pp. 127–139, 2020.

https://doi.org/10.1007/978-3-030-49289-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49289-2_10&domain=pdf
http://orcid.org/0000-0002-3274-8422
http://orcid.org/0000-0003-4547-7438
https://doi.org/10.1007/978-3-030-49289-2_10


128 M. Baake et al.

The Integrated Clinical Environment (ICE) describes a clinical workplace
such as an operation room, where devices can communicate even if they are
from different manufacturers [9]. However, the concept needs to be implemented
with specific software technologies. In the IEEE 11073 Service-oriented Device
Connectivity (SDC) series, a communication protocol is described that aims
to fulfil the requirements of an ICE and can be implemented as a software
library [12]. Such a library acts as a communication layer under the application
layer and provides components for the data exchange in distributed systems of
medical devices.

SDC uses the Medical Devices Communication Profile for Web Ser-
vices (MDPWS) as its underlying transport technology. It is thus implemented
as the communication layer in the SDC implementation SDCLib/J. Other ICE
implementations, like OpenICE, use the communication protocol Data Distribu-
tion Service (DDS) and demonstrated it to be generally appropriate in a medical
context [1].

As the design of the SDCLib/J reflects the loose coupling of the IEEE 11073
SDC standards, the transport technology is exchangeable. The interconnection
of medical devices based on the IEEE 11073 data model is therefore not bound
to MDPWS. In this work, SDCLib’s communication layer is extended so that
devices can communicate over DDS, broadening the variety of devices being able
to exchange information through the library. To integrate the new communica-
tion protocol, DDS’ publish-subscribe pattern needed to be mapped to SDCLib’s
request-response principle.

2 IEEE 11073 SDC

The IEEE 11073 series of standards aims for the interoperability of medical
devices and information systems [3]. Three recent additions to it are known as
the SDC sub-series [6]:

20701 Service-Oriented Medical Device Exchange Architecture and Protocol
Binding (SDC)

10207 Domain Information and Service Model for Service-Oriented Point-of-
Care Medical Device Communication (BICEPS)

20702 Medical Devices Communication Profile for Web Services (MDPWS)

2.1 20701: Architecture and Protocol

SDC specifies the technical interface for interconnected medical devices at a
clinical workplace, e.g. an operation room, as described in the ICE concept [11].
The specification adheres to the Service Oriented Medical Device Architecture
(SOMDA) pattern, which assumes that medical devices represent their capa-
bilities in the network as services. The focus lies on reducing the complexity
and costs that come with the integration of devices into distributed enterprise
systems. Dealing with medical data, the exchange is highly safety-critical and
underlies strict requirements.



BICEPS over DDS 129

2.2 10207: Information and Service Model

Furthermore, IEEE 11073 defines the Basic Integrated Clinical Environment Pro-
tocol Specification (BICEPS). In the Medical Device Information Base (MDIB),
the core of the data model, metrics describe the capabilities of a medical device,
like vital parameters, settings, states, and contextual information [3].

The following service operations are defined in BICEPS to exchange infor-
mation in a medical context [3,16]:

GET reading access (request-response pattern),
SET writing access to change values → remote control,
EVENT REPORT reading access (publish-subscribe pattern),
ACTIVATE execute a predefined job on a remote device → remote con-

trol.

To access the metrics, GET and SET methods allow for reading and possibly
writing access as per the request-response pattern: Values can be actively fetched
or modified by a client with read/write access. EVENT REPORTS are based
on reading access as well, but employ the publish-subscribe paradigm – notifi-
cations can be sent periodically or when a change of value occurs. The use of an
ACTIVATE operation triggers an action and thereby allows for external control
of a medical device.

2.3 20702: Communication Technology

The communication protocol MDPWS is needed to technically realise the
SOMDA [8]. It is implemented as a set of web services, which support interop-
erability across a network using the Web Service Definition Language (WSDL)
and SOAP messages. MDPWS fulfils the special requirements of communica-
tion between medical point-of-care devices, enabling i.a. remote control and data
streaming.

2.4 SDCLib: Communication Library

The Java library SDCLib/J implements IEEE 11073 SDC, thereby putting the
ICE concept into effect [18]. Figure 1 shows the setup of devices implementing the
library. The application itself serves as the entry and exit point for medical device
data into and out of the network. The library establishes the consumer and the
provider and processes the exchanged information used by the application. The
SDC protocol specification works as a binding between the data model BICEPS
and the transport layer MDPWS, which passes on the data and handles the
technical details on the information exchange.

Due to the separation of service model and implementation, it does not mat-
ter which communication protocol is used to exchange the data as long as the
data structure of the BICEPS layer is preserved in the lower layers.



130 M. Baake et al.

Fig. 1. Based on MDPWS and BICEPS, the library enables the exchange of informa-
tion between multiple devices. The application using the library serves as the entry
and exit point of the data into and out of the network.

3 Data Distribution Service

3.1 A Data-Centric Protocol

The main focus of Data Distribution Service (DDS) lies on the data-centrality
and timely availability of information [15]. In a global data space, a unit of
information – a Topic – is transmitted between publishers and subscribers [7].
DDS is designed following the publish-subscribe principle. Instead of the client
specifically asking for new information, as in the request-response pattern, clients
subscribe to specific types of information and receive the respective data as soon
as the server sends it. With a single subscription, nodes can subscribe to many
similar data streams to receive data.

Figure 2 shows the interaction between the basic components needed for
the communication process. The scenario assumes that all entities are part of
the same data space (domain). Each of the two Topics is associated with a
DataReader/ DataWriter pair, which is used by the application(s) to exchange
information on the specific Topic. The DataWriter for Topic A writes samples,
which can only be read by the respective DataReader. The DataReader associ-
ated with Topic B has no access to the samples of Topic A and vice versa.

User-specific types for the Topics can be defined comprehensively. Rather
than sending general messages, the communication layer understands the types
syntactically, creating a type-safe environment.



BICEPS over DDS 131

Fig. 2. DataReaders and DataWriters can only communicate through their associated
Topic. Although they exist in the same domain and know of each other’s existence,
DataReader B will not receive any samples written by DataWriter A.

3.2 Exchanging Data Within a Domain

Communication takes place in the Domain, which represents a global data space
and enables multiple applications to communicate within this data space [7].
It is important to note that the data is not physically located on a central
domain storage; it is rather kept decentrally in the caches of its DataWriters
and DataReaders.

Creating a DomainParticipant with a specific ‘domainId’ is the ticket for the
application to enter the domain. Based on the DomainParticipant, all other enti-
ties which enable communication are created by the software implementation of
DDS. Multiple applications can exchange data when initiating their DomainPar-
ticipants with the same ‘domainId’.

3.3 Quality of Service Parameters

The setting of Quality of Service (QoS) parameters determines how the compo-
nents of the application behave before, during, and after sending and receiving
data [4]. With these parameters, memory preallocation for the samples, the size
of the caches, and details of the transport process can be defined comprehen-
sively. The main goal is to maximise the likelihood of readers and writers to
match while controlling the entities’ behaviour. By default, the QoS parameters
are set to fit general use cases.

As visualised in Fig. 3, a DataReader and a DataWriter are in the same
Domain and bound to the same Topic. Because their QoS parameters are com-
pliant, they are able to communicate (A). In case of a discrepancy between their
defined QoS parameters, the two entities are declared as incompatible by DDS
and can not exchange any information (B).



132 M. Baake et al.

If the QoS parameters of a DataReader request e.g. a higher rate of receiving
data than the DataWriter offers through its own QoS parameters, the commu-
nication layer does not enable communication between the two.

Fig. 3. DataWriter and DataReader must be in the same Domain, bound to the
same Topic and have agreeing QoS parameters. If the DataWriter can not fulfil the
DataReader’s requested QoS parameters, or vice versa, the pair is declared as incom-
patible.

4 Concept

To recreate the functionality of SDCLib/J with DDS, the communication layer is
replaced by the new protocol. For that, the request-response pattern is recreated
with the use of DDS’ Topics.

The initial implementation of SDCLib/J based on MDPWS is designed so
that all information is mapped to messages containing XML before being sent
trough the network. After receiving the data, it is transformed to its original
form so it can be processed by the upper layers.

With DDS, information types are handled individually. For every GET and
SET operation, as well as the EVENT REPORTS, individual Topics need to



BICEPS over DDS 133

be created containing the necessary data. Along with the created Topics, the
consumer side needs to implement DataWriters for the requests and DataRead-
ers for the responses and the reports. Respectively, the provider’s side imple-
ments DataReaders for the requests as well as DataWriters for the responses
and the reports. Figure 4 exemplifies this based on the entities that are needed
to exchange information on the MDIB.

Fig. 4. In the new setup, the library exchanges data through DDS. The consumer
requests the MDIB of the provider by sending a sample of a GetMdib Topic, which is
received by the provider and answered with a sample of the GetMdibResponse Topic.

ICE emphasises the need for reliable one-to-one communication. Three steps
guarantee that the client finds the intended server and exchanges the information
needed:

1. When a device enters the domain in order to communicate with other devices,
a new DomainParticipant is initiated for the role of the client and another
one for the server. All participants are based on the same domainId so that
communication takes place in the same data space. Automatic discovery is
enabled so that the client is notified when new DomainParticipants enter
the domain and can extract information, e.g. the server’s endpoint reference.
Thereby, the client can directly address the server to request information or
to initiate remote control.

2. The endpoint reference of the server is added to the request sample. On the
server side, a filter is used to only read requests that hold the server’s endpoint
reference.

3. The DataReader for the response waits for samples of the response Topic.
Only the sample containing the identifier of the previously sent request is
processed.



134 M. Baake et al.

5 Implementation

In SDCLib/J, the concept of the information exchange is basically the same for
every use case: the consumer sends a GET or SET request, which is received
by the provider. The provider creates the response and sends it back. Upon
receiving a subscribe request, EVENT REPORTS are triggered that are sent
directly to the subscriber.

SDCLib/J is designed so that the transport layer is connected to the upper
layers via a binding interface. Through the extension described in this work, the
library user can now switch between MDPWS and DDS to use the respective
implementation of the interface.

To enable the communication process, for each consumer and each provider
one DomainParticipant is created and initiated with the same ’domainId’. The
Topics, DataReaders, and DataWriters are initiated based on the DomainPar-
ticipants on both sides.

The DataReaders that read requests on the server side continuously wait for
data without interrupting the application. Implemented Listeners allow them to
wait for requests in the background, allowing all other processes to run while
being ready to take and process new requests at all times.

The information that is requested by the consumer is implicitly asked for and
used by the application. Therefore, the DataReaders for the responses start to
wait for data right after the request is sent, causing the current thread to stop
temporarily until the requested information is available to them.

Furthermore, Listeners are also implemented on the DataReader’s side to
listen for EVENT REPORTS.

6 Evaluation

The implementation process was closely tied to tests, which were initially
designed to test the basic functionalities of the library based on MDPWS. Now,
the binding interface implemented with DDS is passed as the transportation
layer. It was thereby guaranteed that the new transportation layer enables the
same functionalities as MDPWS.

6.1 Qualitative Distributed Analysis

As SDCLib’s purpose is to enable communication in distributed systems, the
implementation was tested on virtual machines representing medical devices.
A consumer and a provider with basic information are initialised on one vir-
tual machine each. Communication is possible due to the machines entering the
same Domain. Therefore, the consumer’s DataWriter for the request Topics can
exchange data with the respective DataReader on the provider side.

Several tests assure that information is exchanged correctly. This includes
basic information being requested and sent, parameters being set remotely, and
alerts being triggered correctly.



BICEPS over DDS 135

Indeed, the machines were able to exchange the information accordingly. The
GET and SET methods could be executed as intended and EVENT REPORTS
were triggered correctly. To enable two or more devices to exchange informa-
tion, the setting of the QoS parameters was crucial. With the default parame-
ters, information could only be exchanged between instances running on a single
machine. Therefore, specific adjustments were necessary as described in Sect. 6.2
to enable communication between multiple devices.

6.2 QoS Parameters for Distributed Systems

Running the application on multiple machines for the purpose of evaluation
required adjusting the QoS parameters as the defaults were not feasible. To
assure that all requests and the related replies are received, reliable communica-
tion was enabled. If a DataReader does not receive a sample, it is repaired and re-
sent, making sure it will receive the sample eventually. To further increase safety
in the process, acknowledgements are sent automatically after a DataReader has
read a sample and returned it to the cache. The number of instances of each
sample is limited so that very old instances that are most likely obsolete are
deleted and do not occupy memory.

It may occur that a client requests an MDIB of a device that is not on the
network (yet). Still, it should be possible for the device to receive the request.
The durability parameter is set so that late joiners receive all sent requests.

With limited memory, it proved to be better to reduce the number of samples
that are stored after they were sent or received. Only a specific number of samples
can be resent if they were not received by the intended DataReader, either
because it did not join the network yet or because the sample got lost.

To make sure all participants/applications can be found on the network,
discovery through UDPv4 is enabled. That assures the discovery of applications
on different machines.

7 Results

By replacing SDCLib/J’s built-in communication protocol MDPWS with the
alternative DDS, it has been proven that communication between medical
devices based on this library is not limited to one transport technology. This
meets the requirement for data exchange between medical devices having to be
independent of the underlying communication protocol as described in the ICE
concept.

8 Discussion

8.1 Challenges

Whereas MDPWS is able to implement both the request-response pattern (GET
and SET operations) and the publish-subscribe principle (EVENT REPORTS ),



136 M. Baake et al.

DDS is specifically designed to support only the latter. Therefore, it was chal-
lenging to map the other services to DDS and to support the request-response
pattern as DDS does not intend the client to start the communication process
by addressing the server directly. Rather, the provider starts the communication
process, sending out data to all participants. This had to be considered when
integrating the new protocol.

Therefore, our implementation does not think of the consumer/client as
one DataReader, which receives information, and the provider/server as a
DataWriter, which publishes data. Both sides uphold multiple DataWriters and
DataReaders. Different from DDS’ initial approach, where a DataWriter starts
the information exchange by broadcasting data whenever it is available (except
for EVENT REPORTS ), the DataWriters are triggered by certain events, usu-
ally by receiving a request.

8.2 Advantages of Using DDS

The main focus of this work lies on the substitution of the communication layer,
enabling information exchange in a distributed system with a different protocol
than MDPWS while keeping the functionality and the data model of SDCLib/J.

Similiar to Mastouri and Hasnaoui in [13], it shall be further investigated to
which extent the number of created entities (publisher, subscribers, etc.) influ-
ences the performance of the implementation. The suitability of the library shall
also be evaluated and compared to other implementations, as done by Kaspar-
ick et al. in [10]. To decide whether MDPWS or DDS are more appropriate to
exchange data with SDCLib/J, the performance and reliability of both communi-
cation protocols need to be examined and compared. Implementations of further
communication protocols are currently under evaluation and are expected to be
available for comparison in the near future as well.

As evaluated by Serrano-Torres et al. in [17], variances in the performance
of different implementations of DDS occur as well and need to be considered.

8.3 Security

Although it is not within the scope of this work, it should be noted that there are
data security issues when using this implementation of DDS. The basic concept of
DDS, the publish-subscribe principle, is designed in a way that every DataReader
of a certain Topic receives all samples from every respective DataWriter.

In terms of medical data, patient information may only be sent to certain
participants. The way DDS is integrated into SDCLib/J at this point, all samples
are sent to every participant. The discovery process only guarantees that the
client uses the server’s device reference when writing requests. The listeners on
the server side filter all samples that are intended for the respective device. Still,
the request can technically be read by any DataWriter (of the specific Topic) of
all DomainParticipants in the Domain. Furthermore, new DataWriters may be
created bound to any Topic, causing false alarms or unwanted operations.



BICEPS over DDS 137

Adjusting the QoS parameters to send authentication details as the partic-
ipant’s metadata or creating a stricter matching process is not sufficient in a
real-world medical context. Depending on which DDS implementation is used,
plugins can be added to increase the security level. These include RTI Connext
DDS Secure, based on RTI Connext DDS, which offers comprehensive mecha-
nisms to improve security in critical environments, such as autonomous vehicles,
medical and defence industries [14].

8.4 QoS Parameters

A big advantage of DDS lies in the QoS parameters [2]. They allow the developer
to determine how much memory is preallocated, making the most of the avail-
able resources, and how exactly data is transferred. In a medical context, the
parameters that control reliability are especially useful, making sure no impor-
tant data is lost. It is guaranteed that all data is received as intended. Lost or
broken samples are being repaired and resent. Running the application on mul-
tiple devices with limited memory, adjusting the resource limits is inevitable.
Developers can not only specify the structure of the types by creating Topics,
but the QoS parameters also allow for them to determine how the data moves
around in the distributed system [4].

When using SDCLib/J with DDS in a practical environment, optimal QoS
parameters should be determined beforehand. They must be sufficiently restric-
tive, especially in a distributed system of medical devices. With the knowledge
of available memory capacity, the QoS parameters for memory allocation can be
adjusted to process sufficiently large amounts of data.

9 Conclusion

The variety of medical devices from different manufacturers in an operation
room demands libraries that allow communication between different medical
devices independent of the underlying communication protocol [1]. This princi-
ple is specified as part of the ICE concept, which describes a fully connected
clinical environment. Within the scope of this work, the communication proto-
col of the library SDCLib/J is exchanged, proving independence in the choice
of communication protocol. It has been shown that the library SDCLib/J is
not limited to exchanging data over MDPWS. Replacing MDPWS with DDS
as its communication layer shows that the upper layers are agnostic to which
communication protocol is used below.

To integrate DDS into the library, the publish-subscribe pattern of the proto-
col needed to be mapped to the request-response pattern of SDCLib/J. Though
being profoundly different, it was possible to recreate this communication pat-
tern with DDS to integrate it into SDCLib/J as its transportation layer. Thereby,
the functionalities of the library and the data model remained unaffected.

The data-centric principle of DDS provides certain advantages for the library.
With DDS, user-specific data types can be modelled comprehensively, allowing



138 M. Baake et al.

for a type-safe communication process. Furthermore, the QoS parameters are
of great advantage, especially for enabling and optimising communication in
distributed systems. This is especially important when using DDS in a real-
world medical scenario, which imposes stringent safety requirements.

In the future, other communication protocols could be integrated as well,
broadening the variety of devices being able to communicate using SDCLib’s
comprehensive data model.

References

1. Kavya, K.A., Annapurna, V.K.: Integration of medical devices into MIOT using
OPENICE. Int. J. Eng. Sci. Comput. 6, 7323–7324 (2016)

2. Basem, A.M., Ali, H.: Data Distribution Service (DDS) based implementation of
Smart grid devices using ANSI C12. 19 standard. Procedia Comput. Sci. 110,
394–401 (2017). https://doi.org/10.1016/j.procs.2017.06.082

3. Andersen, B., et al.: Interoperabilität von Geräten und Systemen in OP und Klinik.
Technical report, Frankfurt, Germany (2015)

4. Arney, D., Plourde, J., Goldman, J.M.: OpenICE medical device interoperability
platform overview and requirement analysis. Biomed. Eng. Biomed. Tech. 63(1),
39–47 (2018). https://doi.org/10.1515/bmt-2017-0040

5. Beger, F., Janß, A., Kasparick, M., Besting, A.: Der Operationssaal OP 40 - Für
mehr Sicherheit und Effizienz durch offene Vernetzung in Operationssälen und
Kliniken der Zukunft. meditronic-journal - Fachzeitschrift für Medizin-Technik, 4,
20–24 (2017)

6. Besting, A., Stegemann, D., Bürger, S., Kasparick, M., Strathen, B., Portheine,
F.: Concepts for developing interoperable software frameworks implementing the
new IEEE 11073 SDC standard family, vol. 1, pp. 258–263. CAOS, 13 June 2017

7. Corsaro, A., Schmidt, D.C.: The data distribution service-The communication mid-
dleware fabric for scalable and extensible systems-of-systems. Syst. Syst. 2, 19
(2012). https://doi.org/10.5772/30322

8. Gregorczyk, D., Fischer, S., Busshaus, T., Schlichting, S., Pöhlsen, S.: An approach
to integrate distributed systems of medical devices in high acuity environments. In:
5th Workshop on Medical Cyber-Physical Systems 2014. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2014)

9. Hatcliff, J., King, A., Lee, I., Macdonald, A., Fernando, A., Robkin, M., Vasserman,
E., Weininger, S., Goldman, J.M.: Rationale and architecture principles for medical
application platforms. In: 2012 IEEE/ACM Third International Conference on
Cyber-Physical Systems, 17 April 2012, pp. 3–12. IEEE (2012). https://doi.org/
10.1109/ICCPS.2012.9

10. Kasparick, M., Beichler, B., Konieczek, B., Besting, A., Rethfeldt, M., Gola-
towski, F., Timmermann, D.: Measuring latencies of IEEE 11073 compliant service-
oriented medical device stacks. In: IECON 2017-43rd Annual Conference of the
IEEE Industrial Electronics Society, October 2017, pp. 8640–8647. IEEE (2017).
https://doi.org/10.1109/IECON.2017.8217518

11. Kasparick, M., Schlichting, S., Golatowski, F., Timmermann, D.: Medical DPWS:
new IEEE 11073 standard for safe and interoperable medical device communica-
tion. In: 2015 IEEE Conference on Standards for Communications and Networking
(CSCN), 28 October 2015, pp. 212–217. IEEE (2015). https://doi.org/10.1109/
CSCN.2015.7390446

https://doi.org/10.1016/j.procs.2017.06.082
https://doi.org/10.1515/bmt-2017-0040
https://doi.org/10.5772/30322
https://doi.org/10.1109/ICCPS.2012.9
https://doi.org/10.1109/ICCPS.2012.9
https://doi.org/10.1109/IECON.2017.8217518
https://doi.org/10.1109/CSCN.2015.7390446
https://doi.org/10.1109/CSCN.2015.7390446


BICEPS over DDS 139

12. Kasparick, M., Schmitz, M., Golatowski, F., Timmermann, D.: Dynamic remote
control through service orchestration of point-of-care and surgical devices based on
IEEE 11073 SDC. In: 2016 IEEE Healthcare Innovation Point-Of-Care Technolo-
gies Conference (HI-POCT), 9 November 2016, pp. 121–125. IEEE (2016). https://
doi.org/10.1109/IC.2016.7797712

13. Mastouri, M.A., Hasnaoui, S.: Performance of a publish/subscribe middleware for
the real-time distributed control systems. Comput. Sci. Netw. Secur. 7(1), 313–319
(2007)

14. Real-Time Innovations, I.: RTI Connext DDS Secure. https://www.rti.com/
products/secure (2018). Accessed 09 July 2018

15. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

16. Schlichting, S., Pöhlsen, S.: An Architecture for distributed systems of medical
devices in high acuity environments - a technical whitepaper (2014)

17. Serrano-Torres, R., Garćıa-Valls, M., Basanta-Val, P.: Performance evaluation of
virtualized DDS Middleware. In: Simposio de tiempo real, Madrid, pp. 18–19 (2014)

18. SurgiTAIX: SDCLib Bitbucket Repository. https://bitbucket.org/surgitaix/sdclib.
Accessed 09 July 2018

https://doi.org/10.1109/IC.2016.7797712
https://doi.org/10.1109/IC.2016.7797712
https://www.rti.com/products/secure
https://www.rti.com/products/secure
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18
https://bitbucket.org/surgitaix/sdclib

	Using Data Distribution Service for IEEE 11073-10207 Medical Device Communication
	1 Introduction
	2 IEEE 11073 SDC
	2.1 20701: Architecture and Protocol
	2.2 10207: Information and Service Model
	2.3 20702: Communication Technology
	2.4 SDCLib: Communication Library

	3 Data Distribution Service
	3.1 A Data-Centric Protocol
	3.2 Exchanging Data Within a Domain
	3.3 Quality of Service Parameters

	4 Concept
	5 Implementation
	6 Evaluation
	6.1 Qualitative Distributed Analysis
	6.2 QoS Parameters for Distributed Systems

	7 Results
	8 Discussion
	8.1 Challenges
	8.2 Advantages of Using DDS
	8.3 Security
	8.4 QoS Parameters

	9 Conclusion
	References




