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Abstract. Apache Hadoop is an open source software framework that supports
data-intensive distributed applications and is distributed under the Apache 2.0
licensing agreement, where consumers will no longer deal with complex config-
uration of software and hardware but only pay for cloud services on demand. So
how to make the performance of the cloud platform become more important in
a consumer-centric environment. There exists imbalance between in some distri-
bution of slow tasks, which results in straggling tasks will have a great influence
on the Hadoop framework. By monitoring those tasks in real-time progress and
copying the potential Stragglers to a different node, the speculative execution
(SE) realizes to improve the probability of finishing those backup tasks before
the original ones. The Speculative execution (SE) applies this principle and thus
proposed a solution to handle the Straggling tasks. At present, the performance
of the Hadoop system is unsatisfying because of the erroneous judgement and
inappropriate selection for the backup nodes in the current SE policy. This paper
proposes an SE optimized strategy which can be used in prediction of near data.
In this strategy, the first step is gathering the real-time task execution information
and the remaining runtime required for the task is predicted by a local prediction
method. Then it chooses a proper backup node according to the near data and
actual demand in the second step. On the other side, this model also includes a
cost-effective model in order to make the performance of SE to the peak. The
results show that using this strategy in Hadoop effectively improves the accuracy
of alternative tasks and effects better in heterogeneous Hadoop environments in
various situations, which is beneficial to consumers and cloud platform.
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1 Introduction

As the internet has successfully occupied many aspects of people’s lives, the amount
of data stored in the consumer’s private cloud will grow exponentially in the next few
years, many consumers need to pay for the cloud service on demand [1]. Whilst cloud
computing platforms have evolved such as Apache Storm [2], Spark [3], and Hadoop
[4].

Hadoop is widely used in distributed data storage, computing and search functions
areas because of the Apache top project and the prevalent cloud computing frameworks
[5]. Many strategies have been designed to improve the effectiveness and efficiency
of Hadoop clusters and facilitate big data storage and analytics [6], but the inefficient
resource allocation in Hadoop job scheduling still bring many difficulties.

Allocation and Coordination of tasks among TaskTrackers has therefore become
critical and challenging in a JobTracker due to lack of runtime information of Task-
Trackers and difficulty in predicting the completion duration of each tasks [7]. The
most effective mechanism to improve Hadoop’s fault tolerance is Speculative Execution
(SE), which identifies and corrects the inefficient allocation of JobTracker. [8]. Previous
research efforts have been conducted to optimize the SE strategy, Although the purpose
of these strategies is to identify the remaining time of the task through slow tasks, such
self-estimation is often inappropriate due to inaccuracy. [9].

In this paper, we pay attention to real-time task execution and collect the relevant
information during a task’s run time.A localweighted predictionmethod calledLWR-SE
is employed to estimate the running time required for the task. In parallel, the max cost-
consumptionmodel and themore appropriate selection strategy of back up task execution
nodes are combined. In this way, both cloud platform providers and consumers can take
advantage of it. And Sect. 2 lists current user-centric cloud environment research and
Hadoop-based fault-tolerant optimization strategies. Section 3 presents the “LWR-SE”
we designed, and the reliability of the method was verified by experimental methods in
Sect. 4. In Sect. 5, we summarize this article’s work and list some key work to be done
in the future.

2 Related Work

2.1 Service in User-Centric Cloud

The combination of the consumer electronics industry and cloud computing has led
to a growing number of researchers focusing on user-centric cloud services. A new
architecture called IDM based on privacy and reputation extensions was put forward to
enhance the security of consumers’ identity [10].Anewarchitecture “SuSSo” is designed
to dealwith the limitation of service continuitywhen across different consumer electronic
devices combinedwith the cloud computing [11]. Abolfazli et al. gave an overall analysis
and compared the different solutions on the mobile cloud computing in the fields of
consumer electronics [12]. Fu et al. proposed a new useful multi-keword ranked search
strategy towards the encrypted cloud data, which supports synonym queries at the same
time [13]. Grzonkowski et al. raised a more secure authentication method for home
networks in user-centric cloud environment [14]. Due to the complexity and difference
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of big data, they propose a cloud computation offloadingmethod, named COM, dynamic
schedules of data/control-constrained computing tasks are confirmed [15]. A new and
systematic smart home management system, which was deployed in the cloud and acted
as the community broker, is presented to provide more electronic information service
[16].

2.2 Fault Tolerance in Hadoop

On the other hand, the temporal fault-tolerance aims to automatically detect and restore
fault run-time tasks so that it can shorten the execution time, and improve the computing
performance and reliability of a cloud system, which involves strategies on MapReduce
job and task scheduling, enhancement of speculation execution (SE) strategies, etc. [17].

The original speculative execution was implemented as Hadoop-Naïve in Hadoop
[18]. Its primary idea was to recognize a task as a “Straggler” if its progress is below
the average level, which can cause misjudged tasks and wasted cluster resources. It goes
even worse in a heterogeneous environment. With regard to the average rate used in the
LATE to calculate the remaining time of running tasks, which may lead to inaccurate or
even incorrect prediction. In 2015, Wu’s team improved the accuracy of the prediction
by calculating the remaining time of system load situation calculation task [19].

MCP proposal can maximize the startup backup task, which solves the problem
that the previous SE strategy is not old, by dividing Map tasks into map and combiner
stages, and Reduce tasks into copy, sort and reduce phases [20]. In 2014, an SE opti-
mization algorithm called Ex-MCP was proposed to compare node values with MCP
[21]. On top of that, there are some optimization methods put forward. A execution was
proposed based on sort nodes out according to the hardware performance of the nodes
[22]. Wang et al. proposed a PSE optimization strategy that can ignore the differences
between different processors to improve the efficiency of speculative execution [23]. In
[24] An effective speculative execution strategy (SECDT) is proposed. The completion
time required for the task is calculated by decision tree [25]. Besides, an ATAS strategy
can improve the Hadoop’s expansive ability by increasing the estimate accuracy on the
execution time of backing-up tasks [26]. Adaptive allocation scheduling can also be used
for NILM algorithms based on power allocation [27]. Due to the imbalance of cloud plat-
form performance, Edge Computing Nodes (ECNS) has been proposed as an alternative
solution for cloud computing in recent years. The team of Xu uses non-dominated sort-
ing genetic algorithm II (NSGA-II) to achieve multiple Target optimization, shortening
the unloading time of computing tasks and reducing the energy consumption [28].

In general, the current SE strategy still has great difficulties in quickly backing up
and accurately identifying1 potential Straggler tasks in appropriate nodes, and how to
balance the overall benefits while maintaining the processing of local universities is also
very large challenge.

3 Model and Algorithm

In this section, we introduce a speculative execution method named “LWR-SE”. The
flow chart of the method is indicated in Fig. 1, with more details discussed in the rest
parts of this section.
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3.1 The Recognition of Straggler Candidates

Data Collection of Running Tasks. First, confirm Stragglers by collecting detailed
information such as the progress and execution timeof real-time tasks.To collect features,
the raw data is collected from the HDFS (progress, Timestamp) to facilitate prediction.
Then convert the progress pair to (progress, execution time) in order to simplify the
algorithm. The algorithm for data collection is shown as follows (Table 1).

Table 1. Algorithm for data collection

Algorithm 1: Data Collection
Input: Job Status (JS), MapTask Report (MR), The 

running task attempt (RT), The id of task attempt (IT), A 
context object for task (TC), The progress of a running 
task (P), Execution time (ET)

Steps:
Get the JS from JobClient
Traverse the JS:
Get the MRs from JobId
For each MR in the MRs

Get the RTs from MR
Get the collection containing the IT
Get P from TC
If P has changed

Write the P and ET to the file named with IT
End If

EndFor
End Data Collection

Figure 1 and Fig. 2 show examples of detailed execution information when running
the Wordcount and Sort datasets in the Hadoop cluster. The collected data is shown in
the figures.

Fig. 1. The execution data collected by running Wordcount
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Fig. 2. The execution data collected by running Sort

A Locally Weighted Learning Model. After the running task execution information
is collected and Sort datasets, similar tendency can be seen in the figures above. In order
to define such non-traditional linear relationship in between, a non-parametric learning
algorithm using local weighted regression is designed to establish a linear model on the
non-linear datasets. The input dataset D= {(pi,ti)|i= 1,2,…,n}, and the predicted output
as below:

t
∧ = hθ (p) =

n∑

i = 0

θi pi = θT p (1)

The number of training set samples is set to n, representing the progress of different
tasks. p represents the progress which is an input n + 1 dimension. t indicates the
execution time of the task. θ is the regression parameter and it should satisfy that the
square error Minimize between predicted and true values, which is proposed in Eqs. (2)
and (3).

E = hθ

(
pi

)
− t i (2)

min
θ

=
m∑

i = 0

ωi E
2 =

m∑

i = 0

ωi

[
hθ

(
pi

)
− t i

]2
(3)

Where E represents the error, (pi, ti) is the ith training samples, ωi is the weight in the
ith local forecasting area, which depends on the local prediction point. To simplify the
description, we can transform it into a matrix representation as shown in Eq. (4).

min
θ

= (Xθ − Y )T W (Xθ − Y ) (4)

Where X is a matrix, with m rows training dataset p0, p1…, pm and n being set to 2. W
is a matrix as the Eq. (5) shows.

W =

⎛

⎜
⎜
⎜
⎜
⎝

ω1 · · · · · · 0
... ω2 · · · ...
...

...
. . .

...

0 · · · · · · ωn

⎞

⎟
⎟
⎟
⎟
⎠

(5)
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In addition, θ is also ensure that LWR has the minimum loss function at the predicted
q, and the loss function of the LWR algorithm is shown as follows:

J (θ) =

n∑

i = 1
ωi

[
hθ

(
pi

) − t i
]2

2
= (Xθ − Y )T W (Xθ − Y )

2
(6)

Then the regression parameter θ can be calculated using the least square method with
a prediction point corresponding to a parameter θ. The final calculated θ is substituted
into the Eq. (1) and then the execution time of the corresponding progress is predicted,
as shown in Eq. (7) and (8).

∂ J (θ)

∂θ
= XTW Xθ − XTWY = 0 (7)

θ =
(
XTW X

)−1
XTWY (8)

The target of LWR is to find θ that minimizes for present prediction, during which
the most important process is to compute the weight function, which can be obtained in
two steps:

Step 1: Distance Calculation. The local region is firstly determined using Euler distance
when predicting the value of the local point, as described in Eq. (9).

d =
√
√
√
√

n∑

i = 1

(
p(q) − p(i)

)2 (9)

Step 2: Weight Calculation. The calculation of the weight function depends on the
distance d. The greater the distance from the predicted point, the smaller the weight will
be assigned. Use the Gaussian kernel function in (10), γ can controls the rate at which
the weight decreases with distance. Set to 0.08 in this paper.

ω(d) = exp

(

− d2

2γ 2

)

= exp

⎛

⎜
⎜
⎝−

n∑

i = 1

(
p(q) − p(i)

)2

2γ 2

⎞

⎟
⎟
⎠ (10)

According to the consumption and benefits of launching or non-launching a backup
task in the cluster, we can compute the profits of launching or non- launching the backup
task to the cluster, the profits of launching speculative execution or not can be obtained
as the following Equations.

prof i tbackup = α × (
trem − tbackup

) − 2 × β × tbackup (11)

prof i tnot_backup = −β × tbackup (12)
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α andβ represent theweight of benefit and the cluster cost.When satisfying the following
formula, the identified Straggler backup task will be launched so that it can reach the
maximum efficiency.

prof i tbackup > prof i tnot_backup ⇔ trem
tbackup

>
α + 2β

α + β
(13)

Here we let ζ replace β/α, then the above Equation can be simplified as follows.

prof i tbackup > prof i tnot_backup ⇔ trem
tbackup

>
1 + 2ζ

1 + ζ
(14)

ζ = load_ f actor = numpending_tasks

mum f ree_slots
(15)

Where tbackup is the running time of a backup task, ς is the load factor of the cluster,
which is the ratio of the number of pending tasks to the number of the free containers in
the cluster.

4 Results and Evaluation

In this section, we first test the performance of our model based on linear predictions and
actual values. After that, the LWR-SE strategy is evaluated compared to Hadoop-None,
LATE, and MCP in a heterogeneous cloud environment in three different scenarios.

4.1 Experimental Environment Preparation

We use 64-bit Ubuntu Server to be our operating system and our experimental platform
is Hadoop-2.6.0. There are eight virtual nodes in the Hadoop cluster and each server
is consist of four Intel® Xeon® CPU, 288 GB memory in total and up to 10 TB hard
drive. In Table 3, it shows some detail information about each node. In the framework of
Hadoop, it is common to use the datasets such asWordcount and Sort as the experimental
workloads. They are available on the Purdue MapReduce Benchmarks Suite (Table 2).

Table 2. The detailed information of each node

NodeID Memory (GB) Core
processors

Node 1 10 8

Node 2 8 4

Node 3 8 1

Node 4 8 8

Node 5 4 8

Node 6 4 4

Node 7 18 4

Node 8 12 8



118 M. Sun et al.

4.2 Performance Evaluation of the LWR Model

Data Prediction of LWR. The prediction results using the LWR model in the Word-
count and the Sort datasets are depicted in Fig. 3 and Fig. 4 respectively, where the red
line represents prediction error rates. It can be depicted that the predictive accuracy of
the LWR model much outperforms the linear regression, especially while the progress
reaches 80% and over. RMSE is used to evaluate the accuracy of the prediction, and the
calculation Equation is as follows.

RMSE =

√
√
√
√
√

n∑

i=1
(p − pi )2

n
(18)

Fig. 3. Comparison of LWR and Linear Regression during running a Wordcount task

Fig. 4. Comparison of LWR and Linear Regression during running a Sort task

Where p is actual value and pi represents the prediction value. Table 3 and Table 4
show the RMSE results of fifteen datasets/tasks, which are randomly selected from
the Wordcount and Sort tasks. The average prediction RMSE of Wordcount and Sort
are 1.56 and 1.75. This happens due to some unusual large values, which are mainly
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caused by resource contention and the non-data locality in the copy phrase during the
Reduce process. If the outliers are ignored, we can find that average prediction RMSE
of Wordcount and Sort drops to 0.91 and 0.86.

Table 3. RMSE of LWR for wordcount workloads

Task 1 Task 2 Task 3 Task 4 Task 5

RMSE(s) 0.89 1.01 0.94 0.48 0.67

Task 6 Task 7 Task 8 Task 9 Task 10

RMSE(s) 0.77 0.85 0.61 0.84 1.15

Task 11 Task 12 Task 13 Task 14 Task 15

RMSE(s) 10.55 1.09 1.74 1.1 0.65

Table 4. RMSE of LWR for sort workloads

Task 1 Task 2 Task 3 Task 4 Task 5

RMSE(s) 0.98 0.97 1.31 1.03 1.13

Task 6 Task 7 Task 8 Task 9 Task 10

RMSE(s) 0.16 0.63 0.91 14.2 0.05

Task 11 Task 12 Task 13 Task 14 Task 15

RMSE(s) 0.7 0.96 0.85 1.14 1.34

4.3 Evaluate the Performance of the LWR-SE Strategy in Heterogeneous
Situations

Three different kinds of cluster workload scenarios are configured to evaluate the per-
formance of the LWR-SE, they are Normal Load Scenario, Busy Load Scenario, and
Busy Load with Data Skew Scenario. In addition, the final results are shown as the best,
worse and average outcomes of each strategy.

Performance of the LWR-SE Strategy in a Busy Load Scenario. Abusy load sce-
nario provides the cluster with limited resources to supply additional replication. It
therefore is more necessary to ensure the accuracy of speculative execution, since low
accuracy can cause the cluster resources to be irrationally occupied and consequently
slow down the performance of the whole cluster. The busy load scenario was config-
ured by running other computing-intensive and/or IO-intensive tasks simultaneously.
Wordcount and Sort jobs were set up to submit every 150 s (Fig. 5).
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Fig. 5. Performance of strategies in Wordcount jobs in the busy load scenario

As can be seen in Fig. 6, the LWR-SE also fits well when running Sort jobs in
the busy load scenario. in terms of the JET, on average cases, LWR-SE completed 9.7%
earlier thanMCP, 24.9% earlier than LATE and 30.6% earlier than Hadoop-None.When
considering CT, the cluster throughput of LWR-SE increased by 9.3% compared with
MCP and 36.1% over LATE.

Fig. 6. Performance of strategies in the sorting job in the busy load scenario

5 Conclusion

In this paper, we propose a strategy named LWR-SE based on the relationship between
tasks and job execution schedule, which can obtain higher local prediction accuracy and
can guarantee the cloud system. Maximize benefits. The experimental results show that
it is superior to MCP, LATE and Hadoop-None.
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