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Abstract. With the rapid development of smart grids, significant research has
been devoted to the methodologies for short-term load forecasting (STLF) due to
its significance in forecasting demand on electric power. In this paper an enhanced
LSTMmodel is proposed to upgrade the state-of-the-art LSTMnetworkby exploit-
ing the long periodic information of load, which is missed by the standard LSTM
model due to its constraint on input length. In order to distill information from long
load sequence and keep the input sequence short enough for LSTM, the long load
sequence is reshaped into two-dimension matrix whose dimension accords to the
periodicity of load. Accordingly, two LSTMnetworks are paralleled: one takes the
rows as input to extract the temporal pattern of load in short time, while the other
one takes the columns as input to distill the periodicity information. A multi-layer
perception combines the two outputs for more accurate load forecasting. This
model can exploit more information from much longer load sequence with only
linear growth in complexity, and the experiment results verify its considerable
improvement in accuracy over the standard LSTM model.

Keywords: Long short-term memory · Short term load forecasting · Recurrent
neural network

1 Introduction

Load forecasting plays an important role in many departments of electric power system
since it is the basis of planning generation, maintain and energy selling. Ranaweera
et al. [1] has quantitatively analyzed how prediction error impacts the operation of
electric power system. Douglas et al. [2] performed the assessment for system operating
risk with known distribution variance of forecasting result. The analyzing of these two
articles indicates electric power systems necessarily keep asking for more accurate load
forecasting. With the establishment of smart grids, intelligent scheduling has become a
new requirement.As thebasis of electricity power scheduling, intelligent load forecasting
faces new challenges of considering diversified influenced factors and being adaptive
to fluctuation. Within all kinds of load forecasting, short term load forecasting (STLF)
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forecasts the maximum or average load from one day to one week ahead. It helps the
coordination between electric power system departments, the planning of generation and
unit commitment scheduling. Accurate STLF is significant to electric grid for saving
limited energy and asset. According to the accurate forecast information, it is possible
to reasonably regulate the power generation capacity in order to avoid wasting because
the power is hard to save. On the contrary, an inaccurate STLF information can lead to
excess supply, or underestimation of load, resulting in costlier supplementary service.
Therefore, STLF has become an important project in the field of power system and even
a small percentage improve is willing to be saw.

2 Literature Study

Many approaches have been developed for STLF, which can be roughly categorized into
statisticalmethods andmachine learningmethods. Statisticalmethods include regression
methods and gray models. On the basis of known historical data series, a mathematical
model is established to describe the relationship between load value and time in time
series method. Regression methods are effective for stationary series by building equa-
tions to fit the relationship between independent and dependent variables. While for
non-stationary series like load series, regression model cannot fit the fluctuation well.
And the prediction is not robustwith the time periodwhich is highly influenced by factors
like weather or holiday [3]. In the work of Cho et al. [4] the ARIMA model and transfer
function model are applied to the short-term load forecasting by considering weather-
load relationship. By comparing the effectiveness with traditional regressionmethod and
single ARIMA method, ARIMA model with transfer function achieves better accuracy.
Gray models consider the electric power system as a gray system. It has small amount of
computation and good prediction effect in system with uncertain factors. But it is only
effective in exponential trend load [5].

Electrical load features typical randomness induced by many external factors such
as temperature and special events, which facilitates the deployment of machine learning
methods such as neural network and support vector machine. Due to its strong capability
of well-fitting nonlinear function, machine learning-based STLF methods account for
a high proportion of research. Machine learning-based methods can be classified into
shallow network and deep neural network. In a neural network, hidden units at shallower
location extract some simple and local information [6], while comes to the deeper layers,
they can extract more complicated and global features. So with the simple structure,
shallow neural network is not able to extract the complicated pattern in load series while
deep neural network can fit them more accuracy.

Haqueau et al. [7] proposed a hybrid approach based on wavelet transform and
fuzzy ARTMAP network and has good prediction effect in wind farm power prediction.
Ghelardonil et al. [8] broke the load time series into two parts with empirical mode
decomposition, respectively describing the trend and the local oscillations of the energy
consumption values, and then feed them into support vector machine to train. Exper-
iments results show the method has high prediction accuracy in load prediction. Han
et al. [9] utilized the state prediction model and algorithm of weighted least squares,
the main approach is to take the voltage characteristic as the basic quantity to describe
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the state characteristics of the system, and adopt the state estimation method to carry
out load prediction, which is advantageous for dynamic load prediction. Zhang et al.
[10] used extreme learning machine with ensemble structure to forecast the total load of
Australian energy market. The ensemble structure helps decrease the uncertainty of pre-
diction. Kong et al. [11] applied the long short-term memory (LSTM) recurrent neural
network based framework into residential households’ smart meter data. They compare
the difference between the residential load forecasting and substation load and the result
shows the LSTM networks achieves the best forecasting performance in residential data
among other benchmark algorithm.

As a typical deep neural network for time series, LSTMhas strong ability of abstract-
ing features and learning the inner complex patterns of load series, and presents state-of-
the-art performance. However, it cannot avoid gradient vanishing and exploding prob-
lems so that it has the constraints on the input length. Meanwhile, the computation
complexity increases non-linearly as the input length increases, and the forecasting
accuracy will not increase with the increase of input length, if not worse. In order to
upgrade LSTM by overcoming the input length constraint to distill more significant
features of load, in this paper an enhanced LSTM is proposed. By reshaping the long
load sequences into two-dimensional matrix whose row size accords to weekly period
while column size accords to monthly period, two LSTM networks are paralleled to
take rows and columns as input and feed an MLP for better information merging. The
model realizes better prediction performance with only linear complexity increase, and
experiment result verifies its enhancement over standard LSTM model.

3 Enhanced LSTMModel

3.1 Discovery of Rules in Data

In this section we firstly statistically analyze the feature of load to lay a foundation for
the design of the proposed model, and then briefly introduce standard LSTM model to
mention its pros and cons. At last, an enhanced LSTMmodel is detailed to state its main
idea to upgrade LSTM network and its structure.

Periodicity. Temporal correlation is the first considerable factor for time series. By
analyzing load profiles, it is clear that load is periodic in weeks, months and years. By
utilizing the periodicity in the forecasting, the prediction effect can be improved. Figure 1
shows the periodicity inweek in the load series (see Fig. 1). Each curve describes the total
used load in Toronto in three weeks of May in 2015. It can be shown in the figure that the
trends of the three weeks are similar. In other words, load series is periodic on weekly
scale. Monthly periodicity is shown in Fig. 2. Three figures respectively corresponding
to curves in summer, winter and transitional seasons (spring and autumn) (see Fig. 2).
Each curve shows the load through a month. It is clear that load of each season has
similar trend. The yearly periodicity in shown in Fig. 3, which shows the load used in
12 months in 2014, 2015 and 2016 in Hangzhou. It is clear that the trend of three curves
have highly similarity (see Fig. 3).
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Fig. 1. Curves of load in a week, including three weeks of May 2015 of Toronto

Fig. 2. Curves of a month in (a) Summer (b)Winter (c) Transitional season

Fig. 3. Curves of total used load in 12 months for 2014, 2015 and 2016 in Hangzhou

Weather. Weather is another well-known key factor to be considered for STLF, espe-
cially the temperature factor. Paravan et al. [12] has performed an experiment showed
that temperature is high positively correlated to load in summer and negatively correlate
in winter. What means when temperature arises in summer, people need to use electrical
product like air conditioner to cool themselves, so load arises as well. While in winter
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if the temperature decreases, electric blanket are used to get warm if the temperature
decreases, as load arises. Figure 4 are curves of the maximum temperature and load
in 2012 of Toronto in Canada (see Fig. 4). It is clear to show the negative correlation
in winter and positive in summer. In spring and autumn, temperature and load are less
correlated, so they are regarded as transitional seasons.

Fig. 4. Maximum temperature versus load in Toronto in 2012

3.2 Long-Short Term Model

Long short-term memory (LSTM), a variant of recurrent neural network (RNN), which
is a deep network performing pretty good in sequence learning since it introduces gates
to sift previous information flowing in the recurrent unit. As its name, LSTM can model
data accurately with both long and short-term dependencies, and relieve the gradient
vanishing and exploding problem by introducing three gates. Same as RNN, LSTM has
a chain of repeating modules to process each time step’s data with same flow (see Fig. 5).
But LSTM adds an internal cell to process the memory of past information. Within the
cell, past information is controlled by three gates: input gate, forget gate and output gate.
The cell permits the network not remembering all past information, instead, the network
remembers, stores and transfers only the most related information to the current value
and forget the less related information. Therefore, remembering information for long
periods of time is practically LSTM’s default behavior, not something they struggle to
learn.

Fig. 5. The repeating module in an LSTM network [13]
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3.3 The Enhanced LSTM Model

With the gates, LSTM can remember the most useful temporal information and build a
relationship with current circumstance. Because of its good capacity to model sequence
with long dependency, LSTM has been applied and achieved state-of-the-art results in
many fields of sequence learning, such as speech recognition, machine translation and
language generation However, it has not been sufficient maturely applied on time series
with long relevance such as STLFwhich features typical large periodicity. Moreover, the
training cost increases non-linearly with the length of input sequence, and the accuracy
sometimes decreases when input sequence continue to increase. It is the reason only
several days’ data are used to predict the following days’ load in the existing works [14].
However, from the rule in Sect. 3.1 it is known that load has high weekly and monthly
similarity, which means we can upgrade the LSTM if we can use the data months ago
instead of just few days. The proposed model utilizes much longer data to improve
the prediction performance with a little payload of training complexity. The method
performs better by bringing temporal dependency of load profile into full play.

The proposed model consists of two LSTM networks in parallel and a MLP, which
is illustrated in Fig. 6 (see Fig. 6). The first one LSTM network of the proposed model
takes advantage of daily periodicity of load series which has been shown in Sect. 3.1.
Except for the proximity of the curves’ trend, temperature values are always closed
within several adjacent days, which is well understood. It means that the sequence of
load values has high dependencywithin a few days. Accordingly, the first LSTMnetwork
(also termed row LSTM network which takes the rows of the reshaped data matrix as
the input) takes the last seven days’ load as input and external factors as well such as
special event index, month index, and weather factor including maximum, minimum
and average temperatures.

Besides the temporal dependency information distilled by the row LSTM network,
the weekly and monthly periodicity information is exploited by the second LSTM net-
work (namely, the column LSTM network taking the columns of the reshaped load
matrix as the input sequences). In Sect. 3.1, it is proved that there is also dependency in
the scale of week and month as well. For example, the load profile of one week in May
is similar to the profiles of another week. What is more, the load profile of one particular
day is similar to the profiles of another day with the same type of weekday in different
weeks. Which means, to forecast a load value inMonday, the other LSTM network takes
the data of past weeks’ Monday as input, which amount to contain the temporal depen-
dency information through two months. Therefore, the relative information useful for
prediction can be extracted from the input without taking the whole months’ data in the
network. Except for the load value, other four influencing external factors are included
as same as the first network. By utilizing the periodicity of load series, the temporal
dependency can be extended from a week to two months with a little payload of training
complexity.
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Fig. 6. Structure of the enhanced LSTM model

4 Experiments

4.1 Introduction of the Dataset

The experiments are performed on load and temperature dataset of Hangzhou city in East
China. There are eight kinds of factors for each day, including the load in kilowatt-hour
(KWH), maximum andminimum temperatures in centigrade, precipitation, holiday, day
of week, month and date. Data are collected every day from 1st January 2014 to 3rd
March 2017, with a total of 1185 data.

4.2 Data Pre-processing

Pre-processing transformations are applied in followingorder: (i) recognition and remov-
ing of abnormal data, (ii) trend removing, (iii) one-hot encoding (iv) standardization.
Each operation is successively reversed to evaluate the forecast produced by the model.

Data Cleaning and Missing Values Processing. The practical dataset often contains
abnormal values or may be missing. The presence of these data brings significant dis-
turbance to normal data, hence affects the prediction accuracy. If the anomaly data is
too large, it even misleads the prediction results. Therefore, the adverse effects caused
by abnormal data must be eliminated. For the missing data, we fill the vacancy with the
average of data before and after the lost data. As to abnormal data, in Hangzhou dataset,
data from 1st January 2016 to 1st March 2017 is shown in (see Fig. 7). It can be seen
that there are three obvious valleys in the load profile. The valleys near 1st February in
2016 and 2017 are regular since they are at the Spring Festival of China and people will
stay at home and same valleys can be seen every year in the dataset as well. While there
is an abnormal valley at 1st September 2016 and it is not a major holiday in China. By
collecting news at the day, we found that G20 Financial Summit was hold in Hangzhou
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from 4th September to 5th September and most enterprises gave holidays for a few
days before and after it. Since there is no similar rule with the data in these days in the
dataset, no data can be used to fit the trend of it, what means it is unique and independent
incident. As a result, there are nearly two weeks’ data against the regular rule that need
to be removed from the dataset. After the processing, the new dataset consists of 1171
measurements.

Fig. 7. Data from 1st Jan 2016 to 1st Mar 2017

Processing for the Trend Factor of Load. From the partial load profile of Hangzhou
in (see Fig. 8 (a)) it can be figured out that the value of load keeps increasing through
years, which is regarded as a trend item of the load dataset. Since there will be a scaling
process later, the scaling effect to the proceeding years’ data would be stronger than that
to the later ones if the trend factor remains. This can bring change to the natural rule of
the load and then reduce the forecasting accuracy. Therefore, the trend is filtered out by
applying a daily differentiating. The load profile after differentiated can be seen in Fig. 8
(b). It tells the trend factor is removed from the load that can improve the forecasting
accuracy of models in neural networks.

Fig. 8. (a) The original load profile. (b) The load profile after differentiated
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One-Hot Encoding. Some affecting factors are category variables, which are one-hot
encoded for easy processing of LSTM model. One-hot encoding codes n- class value
into n-tuple binary vector.

4.3 Experiments Set-up

The experiment is implemented in Keras library with Tensorflow as backend. After pre-
processed stated in the Sect. 4.2, the dataset includes eighteen features, as shown in
Table 1. For each weekday, the input series is in the form as Table 2 shows. The input
for the horizontal LSTM is the data in past seven days and for the longitudinal LSTM is
the past seven weeks on the same weekday. The dataset is divided into train set and test
set in proportion of 80% and 20%. The input for train set is reshaped in (127, 7, 18) and
for test set is (32, 7, 18).

Table 1. Features after pre-processing

m1 m2 m3 m4 m5–m17 m18

Max
temperature

Min temperature Rain Holiday Month Power

Table 2. The form of inputs

Horizontal
LSTM

{m1(t − 7),m2(t − 7), . . . ,m1(t − 6),m2(t − 6), . . . ,m17(t − 1),m18(t − 1)}

Longitudinal
LSTM

{m1(t − 49),m2(t − 49), . . . ,m1(t − 42),m2(t − 42), . . . ,m17(t − 1),m18(t − 1)}

In the model, both LSTM networks use two layers’ structure, and the two networks
are merged by Merge layer in Keras. After merging, MLP composed of two-layered
fully connected layer is added to the network to adjust the weights slightly and then
output a predicted value. To decide the best configuration for the model, different values
of hyper parameters are evaluated. For each combination, the performance of the model
is evaluated on test set, with the forecasting error defined as mean absolute percentage
error (MAPE), which is defined by

MAPE = 1

N
+

∑N

n=1

⌈
yn
∧ − yn

⌉

yn
∗ 100% (1)

where yn and ŷn are the real and the forecast load value at the nth day and N is the
length of the load sequence. Several hyper-parameters need to be specified and the
value of each hyper-parameter is uniformly sampled from a given interval. The process
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of hyper-parameters is as followed: Adam is used as gradient descent strategy, whose
hyper-parameters are kept to the default value in Keras. The default step size ε = 0.001,
the rate of exponential decay in first-order and second-order moment estimation ρ1 =
0.9 and ρ2 = 0.999, δ = 10−6. The setting of other hyper-parameters is shown in Table 3
according to repeating experiments. The simulation is performed for data with seven
different weekdays (Monday, …, Sunday). To evaluate the performance of the system,
the prediction is also realized in other benchmark algorithms, including single LSTM
and ARIMA.

4.4 Results

After using different combination of hyper parameters to train the model, the best model
for each type of weekday is obtained. The best configuration for the ensemble LSTM
model and the comparison ofmean absolute percentage error (MAPE) between ensemble
LSTM and single LSTM of forecasting the load after seven days is shown in the Table 3.

Table 3. Configuration for ensemble LSTM and the accuracy comparison between ensemble and
single model

Configuration MAPE

Day Hidden
units

Epoch L1 L2 Dropout Dense
neuron

Merged
LSTM

Single
LSTM

Mon. 20 48 0 0.01 0.1 20 2.605% 3.426%

Tue. 20 52 0 0.0018 0.2 20 2.631% 3.312%

Wed. 10 49 0 0.01 0.2 20 2.352% 3.287%

Thu. 20 42 0.01 0.01 0.2 20 2.434% 3.335%

Fri. 20 68 0 0 0.1 20 2.509% 3.435%

Sat. 20 110 0 0.001 0.2 10 2.314% 3.185%

Sun. 20 43 0.01 0.01 0.2 10 2.625% 3.298%

From the results we can observe that the enhanced LSTMmodel achieves an MAPE
performance of 2.495% for all weekdays and outperforms standard LSTMmodel whose
MAPE is 3.325%. Except for the average accuracy, it can also be seen from the last two
columns that the accuracy for weekday are all improved. The predicted and real load
are shown in Fig. 9. It is clear that the enhanced LSTM’s profiles are much closer to the
real data, especially in the case of sharp fluctuation of the real load.

Classic ARIMA model is also evaluated, and it achieves MAPE of 3.386%, which
is a little worse than standard LSTM model. The real and predicted loads are shown
in Fig. 10 for the last 85 days of the test set (see Fig. 10). It can be seen that ARIMA
behaves badly when a sharp fluctuation comes up, verifying ARIMA not suitable for
time series with high randomness.
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Fig. 9. Comparison between real value and predicted value in ensemble and single LSTM for
(a) Mondays (b) Tuesdays (c) Wednesdays (d) Thursdays (e) Fridays (f) Saturdays (g) Sundays
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Fig. 10. Comparison between real value and predicted value in AIMA for the last 85 samples

5 Conclusion

Based on the characteristic analysis of load and the shortcoming of mainstream STLF
models, an enhanced LSTMmodel is developed. Classic LSTM holds excellent learning
capability to model the temporal inner pattern of short time sequences so that it presents
the state-of-the-art performance, but it cannot avoid gradient disappear problem and
thus has limit on the length of the input sequence. Since electrical load features typi-
cal weekly and monthly periodicity, the fully utility of the large time-span periodicity
will upgrade the STLF performance. In this sense, the proposed model is designed by
integrates two LSTM networks and an MLP. The first LSTM network takes the rows of
load matrix, which is constructed by reshaping a long load sequence with row size being
weekly periodicity, to exploit the similarity of the load in adjacent days, while the other
LSTM network takes the columns of the load matrix as input to exploit the weekly and
monthly periodicity of the load. The MLP merges the distilled information from two
LSTM networks. The proposed model extends the temporal dependency from one week
to two months but increases the training complexity in a linear mode. The proposed
model is evaluated and compared with ARIMA and standard LSTM network. The simu-
lation results verify its advantage over the reference models, i.e., MAPE performance is
decreased from 3.736% of ARIMA and 3.325% of standard LSTM to 2.495% for seven
days forecasting.

Acknowledgment. The work of Q. Zhou and Q. Lv is partly supported by project with Grant No.
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