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Abstract. A secure two-party computation protocol for the problem of
the distance between two private points is important and can be used
as the building block for some secure multi-party computation (SMC)
problems in the field of geometry. Li’s solution to this problem is ineffi-
cient based on OT 1

m oblivious transfer protocol and some drawbacks still
remain while applied to compute the relationship between a private circle
and a private point. Two protocols are also proposed based on the Pail-
lier cryptosystem by Luo et al. and more efficient than Li’s solution, but
there also remain some drawbacks. In this paper, we propose an idea to
improve the efficiency of secure protocol by using its homomorphic sub-
traction based on the Paillier cryptosystem. Then we apply it to solve
the secure two-party computation problem for the distance between two
private points. Using our solution, the SMC protocol to the relationship
between a private point and a private circle area is more efficient and
private than Li’s solution. In addition, we also find that our solution is
also more efficient than the BGN-based solution and much better while
the plaintext can be in some large range.
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1 Introduction

SMC protocol can be employed for collaboratively computing a function by
parties based on multiple private input information, but these private inputs
will not be revealed. SMC is a very important research area in cryptographic
research problems, and its solutions have been widely used in secure statistical
analysis [11], privacy-preserving clustering [16], data mining [1,18], bidding and
auction [7,26], cooperative scientific computation [10,28], set intersection [9,
12,27] and secure computational geometry [2,6,19,29,30]. Yao’s Millionaires’
problem is the first SMC problem that was introduced by Yao [20,31].

The secure calculation of the distance between two private points is a fun-
damental problem that needs to be solved in the field of geometry and an SMC
protocol to it can be used as a building block for some SMC geometry prob-
lems [17,20]. Secure multi-party computational geometry problem is a special
area of SMC, and we should put forward to some special solutions to these
problems that are more effective than general theoretical solutions.

The rest of this paper is organized as follows:
We outline the related work in Sect. 2. In Sect. 3, we introduce and demon-

strate a method of homomorphic subtraction of the Paillier cryptosystem. We
apply our method to solve the secure two-party computation problem for the
distance between two private points in Sect. 4. In Sect. 5, an SMC protocol to
the relationship between a private circle area and a private point is proposed by
using our protocol in Sect. 4. In Sect. 6, we show efficiency analysis and experi-
ment results between our solution and Li’s solution. And we also compare and
analyse the computation costs of the solutions based on the Paillier cryptosystem
and the BGN cryptosystem. The last section concludes this paper and discusses
the future work.

2 Related Work

Some computational geometry problems have been studied [2,17]. However, most
of their solutions are based on OT 1

m oblivious transfer protocol. These solutions
need so many oblivious transfer that they are not very efficient. Li et al. [17]
researched the secure two-party computation problem for the distance between
two private points based on OT 1

m protocol, but their solution is highly inefficient.
While Protocol 2 proposed in [17] is applied to compute the relationship between
a private point and a private circle, there are still some drawbacks. Homomorphic
Cryptosystem is used more and more in SMC fields, especially Millionaire proto-
col. The Paillier cryptosystem supports additively homomorphic encryption and
has been widely used in some solutions to secure multi-party computation. Luo
et al. [22] present a protocol for solving the problem of secure computation for
the distance between two private points based on the Paillier cryptosystem. And
it is more efficient than Li’s solution and has been used to solve the problem of
general geometric intersection problem [25]. Luo et al. [22] also present a point-
inclusion protocol based on the protocol for the problem of secure computation
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of the distance between two private points, but some drawbacks also remain.
The BGN homomorphic scheme can allow one multiplication and multiple addi-
tive operations over the encrypted data and can be used to solve some SMC
problems, but its performance is still slow over composite-order group [3,8].
Bilogrevic et al. [5] addressed the privacy-preserving problem in Location-
Sharing-Based Service based on the BGN and both the Paillier and ElGamal
cryptosystem respectively, and they claimed that the Paillier-based solution
would have a better performance than BGN-based one. In 2010, Freeman [13]
proposed a conversion solution to improve performance of BGN cryptosystem.
In the BGN cryptosystem, the plaintext must be restricted to be in some small
range(integers less than some bound L, say L = 108) and its decryption can be
quickly computed in O(

√
L) time by using Pollard’s kangaroo algorithm, other-

wise the discrete logarithm can be very slowly computed, as is a serious disad-
vantage in some cases. Huang et al. introduced two SMC protocols to compute
the distance between two parties’ private vectors, while the first protocol must
have a semi-honest third party and the second one was based on randomization
technique rather than encryption [15]. Then Huang et al. continued to propose a
secure computation protocol for the distance between two private vectors based
on privacy homomorphism and scalar product [14], but the performance is not
efficient enough for 2-dimensional vector. In 2018, Peng et al. put forward to a
quantum protocol to calculate the distance between two private points based on
QKD-based effective quantum private query [24]. However, this solution needs
O (n) space complexity and O (N log (N)) communication complexity, and the
fact performance has not been evaluated.

In this paper, we utilize a novel idea based on the Paillier cryptosystem
and it can deal with negative value and be used to efficiently solve some secure
two-party computational problems in the field of geometry.

3 Method of Homomorphic Subtraction of the Paillier
Cryptosystem

The Paillier cryptosystem is a probabilistic asymmetric algorithm for public key
cryptography [23]. The Paillier cryptosystem is a homomorphic cryptosystem
that only supports additive homomorphisms. Even given only the public key
and the ciphertext of m1 and m2, we can still calculate E(m1 +m2) = E(m1) ·
E(m2) [21].

Theorem 1. Let ((n, g), (λ, μ), E,D,Zn) be a Paillier encryption scheme [20],
f = m1 ·m2 +m3 ·m4 + ...+m2i+1 ·m2i+2+...+m2k+1 ·m2k+2, where |mj | ∈ Zn,
0 ≤ i ≤ k, f ∈ Zn, we define that m′

j=n + mj if mj < 0 otherwise m′
j=mj and

f ′=m′
1 · m′

2+m′
3 · m′

4+...+m′
2i+1 · m′

2i+2+...+m′
2k+1 · m′

2k+2, then D(E(f)) =
D(E(f ′ )).
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Proof. Obviously,

f ′ = m′
1 · m′

2+m′
3 · m′

4+...+m′
2i+1 · m′

2i+2+...+m′
2k+1 · m′

2k+2,
f = m1 · m2+m3 · m4+...+m2i+1 · m2i+2+...+m2k+1 · m2k+2,

so f ≡ f ′ mod n , f ′ =f + k · n.
By binomial theorem,

(1 + n)x =
x∑

0

(
x
k

)
· nk = 1 + n · x +

(
x
2

)
· n2 + higher power of n,

This indicates that:
(1 + n)x ≡ 1+n · x mod n2.

Generally, let g = n + 1, therefore,

gk·n mod n2 = (1 + n)k·n mod n2 = (1 + k · n · n) mod n2 = 1.

E(f ′) = gf
′ · rn1 mod n2

= gf+k·n · rn1 mod n2

= gfgk·n · rn1 mod n2

= gf · rn1 mod n2

E(f) = gf · rn2 mod n2

Thus,
D(E(f)) = D(E(f ′)).

4 Building Block

An SMC problem for the distance between two private points will be introduced
and its protocol will be able to be used as a building block of some other SMC
problems in the field of computational geometry. And Protocol 1 will also help
to solve other problems in the field of computational geometry.

|PQ|2 = T + DA(t)
= T + U + 2x2 · W + 2y2 · V

= x2
1 + y2

1 + x2
2 + y2

2 + 2x2(n − x1) + 2y2(n − y1)

= (x1 − x2)2 + (y1 − y2)2

(1)

Thus, Protocol 1 is correct.
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Privacy. In Protocol 1, Alice knows x1, y1 and |PQ|, but she cannot infer
Q(x2, y2) from these information. Similarly, Bob only knows |PQ| and cannot
infer P (x1, y1).

But we notice that Protocol 1 is correct if (x1 − x2)2 + (y1 − y2)2 ∈ Zn.
Let one of the public encryption key parameters of a Paillier cryptosystem be
n, Protocol 1 should be correct if 0 ≤ x1, y1, x2, y2 <

√
n
2 to any two points

P (x1, y1) and Q(x2, y2).

Protocol 1: Distance between two private points

Inputs: Alice’s private point P (x1, y1) and Bob’s private point Q(x2, y2).

Output: The distance |PQ| between P (x1, y1) and Q(x2, y2).

The protocol:

1. Setup:
Alice generates a key pair for a Paillier cryptosystem and sends the public
key to Bob. The corresponding encryption and decryption is denoted as EA(·)
and DA(·).

2. Alice:
(a) computes T = x2

1 + y2
1 , W = n − x1 and V = n − y1.

(b) computes EA(W ), EA(V ) and sends them to Bob.
3. Bob:

(a) computes U = x2
2 + y2

2 .
(b) computes t = EA(U) · EA(W )2x2 · EA(V )2y2 and sends it to Alice.

4. Alice:
(a) computes |PQ| = (T + DA (t))

1
2 .

(b) tells the distance |PQ| to Bob.

The SMC problem of distance between two private points have been stud-
ied [17]. The solution as a building block has been employed in some solutions
to solve secure computational problems in the field of geometry. The existing
secure two-party computation solution to the problem is based on OT 1

m obliv-
ious transfer protocol where m is a security parameter such that 1

m should be
small enough. This solution needs 4 times OT 1

m oblivious transfer, so it is highly
inefficient. In general, modular multiplication(or exponentiation) operations are
the most time-consuming computation, so modular multiplications will be only
counted as the cost. In Protocol 1, our solution only takes 3 times public key
encryptions and 1 time decryption which needs about 7 log(n) times modular
multiplications and Li’s solution needs about 4 · (2m + 3) log(q) times modular
multiplications, where q is a large modulo prime. So our solution is more efficient.
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5 Relationship Between a Private Circle Area
and a Private Point

Li et al. have also studied and solved some other SMC problems in the field
of geometry based on the relationship between two private points [22]. We can
also apply our Protocol 1 as a new building block to these secure computational
geometric problems and these new solutions should be more efficient. In order to
illustrate the practical applications of Theorem 1, we also will introduce a more
efficient and private solution to secure multi-party computation problem of the
relationship between a circle area and a private point.

The solution proposed by Li et al. can determine the relationship between a
private circle area and a private point is based on whether the distance between
the private point and the center of the private circle is greater than the radius of
the circle [17,22]. For example, Bob decides to bomb a circle area whose center
is Q(x2, y2) and radius is r in another country, Alice has an interesting point of
P (x1, y1). Using Protocol 2 in [17], if Alice knows |PQ| > r and Bob can bomb
the circle area, but if |PQ| ≤ r, Alice can tell her interesting point and Bob
cannot bomb the point. If the point P (x1, y1) is not within the circle area, no
information should be known by Alice and Bob. Li et al. claims that Protocol 2
in [17] is private, but we find two drawbacks. We describe them as follows.

1. After Protocol 2 in [17] is completed, though Alice cannot know Q(x2, y2)
and r, but she can know that the center point Q(x2, y2) of the circle is on
the circumference of a circle whose center is P (x1, y1) and radius is |PQ|.
Figure 1 shows the knowledge known by Alice.

Alice ( )P

Bob ( )Q

O

Y

X

(a) P (x1, y1) is outside the
circle

Alice ( )P

Bob ( )Q

O

Y

X

(b) P (x1, y1) is in the circle

Fig. 1. The knowledge known by Alice after executing Protocol 2 in Li’s solution.
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2. Suppose that Alice has more than one point of interest, for example two
points, P0(x0, y0) and P1(x1, y1). Alice can compute the possible center point
Q(x2, y2) of the circle area according to the following formulas:

{ |P0Q|=√
(x0 − x2)2 + (y0 − y2)2

|P1Q|=√
(x1 − x2)2 + (y1 − y2)2

(2)

In Ref. [22], Luo et al. also proposed a point-inclusion protocol (Protocol 2)
based on their protocol to the secure two-party computation problem of distance
between two private points, but some drawbacks still remain. In Protocol 2 [22],

u′ = (x0 − a)2 + (y0 − b)2 + v′

u′′ = v − v′ − r2

u = u′ + u′′

u
?↔v ⇔ (x0 − a)2 + (y0 − b)2 ?↔r2

Suppose that, ⎧
⎪⎪⎨

⎪⎪⎩

(x0 − a)2 + (y0 − b)2=n − 5
v′ = 8
r2 = 1
v = 20

u′ = (x0 − a)2 + (y0 − b)2 + v′

= n − 5 + 8
= n + 3
≡ 3 mod n

u = u′ + u′′

= 3 + v − v′ − r2

= 3 + 20 − 8 − 1
= 14
u < v

But, because of the large prime n, (n−5) > 1, i.e., (x0 − a)2+(y0 − b)2 > r2,
as is inconsistent with u < v.

We introduce a new protocol based on our Protocol 1 to the secure multi-
party computation of the relationship between a private point and a circle area.
Our protocol can get rid of the above-mentioned drawbacks.

Similarly, we notice that Protocol 2 is correct if (x1−x2)2+(y1−y2)2+R ∈ Zn.
Protocol 2 must be correct if 0 ≤ x1, y1, x2, y2 <

√
n
4 and 0 ≤ r <

√
n
2 and

0 ≤ R < n
2 .
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Privacy.

1. Compared with Protocol 2 in Ref. [17], after Protocol 2 is completed, Alice
cannot know that the center point Q(x2, y2) of the circle is on the circum-
ference of a circle whose center is P (x1, y1) and radius is |PQ| due to the
random number R.

2. Even if Alice has more than one point of interest, for example two points,
P0(x0, y0) and P1(x1, y1), Alice cannot compute the possible center point
Q(x2, y2) of the circle area according to the following formulas due to the
random numbers R0 and R1:

{
u0=(x0 − x2)2 + (y0 − y2)2 + R0

u1=(x1 − x2)2 + (y1 − y2)2 + R1
(3)

So Protocol 2 is more private than Protocol 2 in Ref [17].

Protocol 2: Relationship between a private circle area and a private point
Inputs: A private point P (x1, y1) and a circle area whose center is Q(x2, y2)
and radius is r.

Output: Whether or not P (x1, y1) is outside the circle area.

The protocol:

1. Setup:
Alice generates a key pair for a Paillier cryptosystem and sends the public
key to Bob. The corresponding encryption and decryption is denoted as EA(·)
and DA(·).

2. Alice:
(a) computes T = x2

1 + y2
1 , W = n − x1 and V = n − y1.

(b) computes EA(W ), EA(V ) and sends them to Bob.
3. Bob:

(a) computes U = x2
2 + y2

2 and generates a random number R.
(b) computes t = EA(U + R) · EA(W )2x2 · EA(V )2y2 and sends it to Alice.
(c) computes v = r2 + R.

4. Alice computes u=T + DA(t) and Alice and Bob can decide which of u and
v is larger by using Yao’s Millionaire protocol. If u > v, then P (x1, y1) is
outside the circle area; and if u ≤ v, then P (x1, y1) is in the circle area, or on
the circumference.

6 Efficiency Analysis and Experiment Results

In this paper, we introduce a secure two-party computation protocol to distance
between two private points based on the Paillier cryptosystem supporting sub-
traction. Li’s solution is based on OT 1

m Oblivious Transfer protocol, where m is
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a security parameter such that 1
m is small enough. Their solution needs 4 times

OT 1
m oblivious transfer. As we mentioned before, modular exponentiation opera-

tion is the most time-consuming computation. OT 1
m Oblivious Transfer protocol

takes 2m + 3 times modular exponentiations, and one Paillier cryptosystem
encryption takes modular exponentiation only once and one decryption also
takes modular exponentiation only once [21]. Based on the above discussion, we
summarize the results of time-consuming in Table 1 and communication cost in
Table 2. Results show that the computational cost of our solution is the same as
Luo’s, and the communication traffic is less than Luo’s. And both of Luo’s and
our solutions are more efficient than Li’s solution.

Table 1. Comparison of computational time-consuming results.

Protocol Alice Bob Total

Li’s solution [17] 12 8m 8m + 12

Luo’s solution [22] 2 3 5

Ours (Protocol 1) 2 3 5

Note: computation cost is measured in the number
of modular exponentiations.

Table 2. Comparison of communication cost results.

Protocol Communication traffic Rounds

Li’s solution [17] 8m + 4 9a

Luo’s solution [22] 4 3

Ours (Protocol 1) 3 3a

Note: communication cost is measured in the number of large
numbers and the number of communication rounds.
aThe last round in Li’s solution and our solution is not in Luo’s
solution, so it is not counted while comparing.

To better compare the actual computational cost of our solution based on
the Paillier homomorphic cryptosystem supporting subtraction and Li’s solution
based on OT 1

m Oblivious Transfer protocol, we implement our Protocol 1 and
Li’s solution [17] based on Charm-Crypto framework in Python 2.7. We builded
the Charm-Crypto framework based on GMP 6.0.0 without the side-channel
silent mpz powm sec function. All experiments were performed on a computer
running the Ubuntu subsystem on a Windows 10 system with a 3.50 GHz Intel
i5-4690 processor and 8 GB of RAM. The results are summarized in Table 3 and
Fig. 2.
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Table 3. Experiment results of Li’s solution.

Security parameter m Processing time (ms)

21 9

25 98

28 760

210 3037

211 6053

212 12113

213 24233

214 48609

215 97096

Fig. 2. Processing time vs. security parameter m.

From Table 3 and Fig. 2, we can see that as security parameter m increases
linearly the cost of Li’s solution is increased linearly. If Bob chooses to guess,
his chance of guessing the correct x1 is 1

m2 . So the chance that Bob guesses the
correct point P (x1, y1) is 1

m4 , which should be small enough. Li’s solution should
be secure while the probability of a random guess is 1

280 , and the processing time
is about 52 min. Except for the key setup and the decrypting time, the processing
time of our Protocol 1 is only 4 ms and the total processing time is about 8 ms
while the key length of n is 1024 bits (80-bit AES security level) and encryption
operation can be simplified to (nm+1) ·rn mod n2. In summary, our Protocol 1
is more effective and practical based on the Paillier cryptosystem than Li’s one
based on OT 1

m Oblivious Transfer protocol.
In addition, we also compare the fact computation cost of our solution based

on the Paillier cryptosystem and the solution based on the BGN cryptosystem.
The BGN cryptosystem is also implemented using Python 2.7 based on Charm-
Crypto. The reasonable solution can also be easily constructed based on the BGN
cryptosystem by multiplication in ciphertext space and omitted in this paper.
The discrete logarithm is computed by using Pollard’s kangaroo algorithm. In
Table 4, the BGN cryptosystem is tested based on composite-order group (Type



Method and Application of Homomorphic Subtraction 579

a1 pairing, Base field size is 1024 bits) and primer-order group (Type f pairing,
Base field size is 160 bits) at 80-bit security level, respectively [4,8].

Table 4. Processing time (ms) of two solutions based on BGN (L = 108) and Paillier
at 80-bit security level.

Protocol phase BGN (composite-order) BGN (prime-order) Paillier

Setup 56.6 152.5 2.7

Protocol execution 130.4 140.1 4

Result decryption 430.5 7442 1.3

Overall, Table 4 shows that our solution is also more efficient based on the
Paillier cryptosystem than the solutions base on the BGN cryptosystem over
composite-order and prime-order group at 80-bit security level. In addition, the
plaintext of the BGN-based solution must be restricted to be in some small range
L, and its decryption can be quickly computed in O(

√
L) time. It is a serious

disadvantage if the plaintext needs to be in some large range. The plaintext of our
solution can be in some large range L (for example L = 21024 and 0 ≤ x, y < 2511

at 80-bit security level in Protocol 2. However, the plaintext of the BGN-based
solution must be restricted to be in some small range L, for example L = 108

and 0 ≤ x, y < 5000. So our solution based on Paillier cryptosystem is better
while the plaintext can be in some large range.

7 Conclusion and Future Work

We have introduced a method and application of homomorphic subtraction in
the Paillier cryptosystem. It is a novel idea and very useful in the fields of
secure multi-party computational geometry. We have used it to solve the secure
two-party computation problem for the distance between two private points,
which can also be used as a building block of some other secure multi-party
computational problems in the field of geometry. Our solution is more efficient
and private than Li’s solution. Morevoer, our protocol is also more efficient than
the solution based on the BGN scheme. The plaintext of our solution can be in
some large range, but the BGN scheme must be restricted to be in some small
range. So our solution based on Paillier cryptosystem is better while the plaintext
can be in some large range. We also have addressed some drawbacks in Li’s
and Luo’s solution. There are some interesting secure multi-party computational
problems in the field of geometry that can be studied based on our idea. For
example, we will study the secure multi-party computational problem for the
relationship between a private point and a private polygon area and propose
some efficient solutions to them. Moreover, we also think that our method can
be used in some other security fields.
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