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Abstract. Cloud computing is cited by various industries for its power-
ful computing power to solve complex calculations in the industry. The
massive data of meteorological department has typical big data char-
acteristics. Therefore, cloud computing has been gradually applied to
deal with a large number of meteorological -services. Cloud comput-
ing increases the computational speed of meteorological services, but
data transmission between nodes also generates additional data trans-
mission time. At the same time, based on cloud computing technology,
a large number of computing tasks are cooperatively processed by mul-
tiple nodes, so improving the resource utilization of each node is also
an important evaluation indicator. In addition, with the increase of data
confidentiality, there are some data conflicts between some data, so the
conflicting data should be avoided being placed on the same node. To
cope with this challenge, the meteorological application is modeled and a
collaborative placement method for tasks and data based on Differential
Evolution algorithm (CPDE) is proposed. The Non-dominated Sorting
Differential Evolution (NSDE) algorithm is used to jointly optimize the
average data access time, the average resource utilization of nodes and
the data conflict degree. Finally, a large number of experimental eval-
uations and comparative analyses verify the efficiency of our proposed
CPDE method.
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1 Introduction

1.1 Background

With the advancement of meteorological data acquisition technology and the
improvement of meteorological service requirements [1-3], the number and types
of meteorological data continue to grow, and it has gradually become a typical
industry big data [4,5]. At the same time, the computational complexity of mete-
orological applications is increasing [5], so the meteorological department offloads
a large number of meteorological applications and data to cluster for execution
and storage [6,7]. However, in order to improve the average response time of all
meteorological applications, meteorological department analyzes the character-
istics of massive meteorological data and rationally distributes meteorological
big data to each storage node [8,9]. In addition, based on the overall placement
of meteorological big data, meteorological department continues to study how
to properly place all tasks and data to each node in cluster [8], thereby reducing
the average data access time for all tasks in the application [10,11].

However, as the number of meteorological applications and data offloaded to
cluster increases rapidly [12], the resource utilization of nodes in cluster is also
being paid more and more attention [13], and it has become an important indica~
tor to measure the performance of placement method [14,15]. In addition, with
the improvement of the confidentiality of meteorological data, the placement of
conflicting data has also received more and more attention. While improving
the resource utilization of nodes, it is also necessary to avoid placing those con-
flicting data in the same storage node to ensure the security of meteorological
data [16-18]. Therefore, the collaborative placement of tasks and data for each
meteorological application has become a challenge. In response to this challenge,
this paper proposes an optimization method for collaborative placement of tasks
and data in the meteorological applications.

1.2 Paper Contributions
In this paper, the main contributions are as follows:

— We model the meteorological application in the meteorological fat-tree net-
work as a workflow, and all operations in the meteorological application are
modeled as a series of tasks in workflow.

— The coordinated placement problem of meteorological tasks and data is mod-
eled as a multi-objective optimization problem.

— We propose a optimization method for the coordinated placement of mete-
orological tasks and data based on NSDE algorithm to optimize the object
functions of model.

2 Analysis of Meteorological Scenarios

2.1 Meteorological Fat-Tree Network

Meteorological networks usually use the tree structure, but the bandwidth is
layer-by-layer convergence in the traditional network, and the network conges-
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tion is likely to occur. Therefore, based on the traditional tree network structure,
the Fat-tree topology network structure has been proposed and has been widely
adopted by the meteorological department. The Fat-tree network structure is
divided into three layers from top to bottom: core layer, aggregation layer and
edge layer, the aggregation layer switches and the edge layer switches form a
pod. The bandwidth of Fat-tree topology network is not convergent, and there
are multiple parallel paths between any two nodes, so that it can provide high
throughput transmission service and high fault tolerance for the meteorological
data center.

In actual meteorological applications, a public meteorological cloud data cen-
ter is constructed based on the virtualization technology and the Fat-tree net-
work topology. The switches in each department constitute a Pod, or all the
switches of several adjacent departments constitute the same Pod, and each Pod
connects to the servers of the department to which it belongs. According to the
rules of Fat-tree, if the meteorological cloud data center contains NP?°¢ Pods, the
number of edge switches and aggregation switches in each pod is NP°¢/2  the
number of servers that can be connected in each pod is (N?°¢/2)2, and the num-
ber of core switches is also (NP°?/2)2. Figure 1 shows a meteorological Fat-tree
network topology with four Pods. In practical applications, the network size of
meteorological department is usually much larger than this.

Lightning Meteorological Tnformation
Protection Center Center
Center

Fig. 1. A meteorological Fat-tree network with 4 pods.

2.2 Meteorological Scene and Workflow Description

In the current meteorological big data cloud processing mode, in order to improve
the service efficiency of massive meteorological historical data and reduce the
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average data access time. The meteorological department analyzes the charac-
teristics of historical data that have been the most important data source for
various meteorological applications, and reasonably stores the historical data in
certain fixed storage nodes. In addition, user input data that can be dynamically
placed during application execution is also an important data source for each
application. Therefore, based on the placed meteorological historical data, the
coordinated placement of tasks and input data in the meteorological applications
is completed, so that the average data access time and the data conflict degree
are minimized, the average resource utilization of all used nodes is maximized.

Based on workflow technology, each meteorological application can be mod-
eled as a meteorological workflow, and operations in meteorological application
can be modeled as a set of tasks in workflow. Figure2 shows the workflow of
weather forecast production.

Fig. 2. The workflow of weather forecast production.

As the starting task, task to represents Data Collection operation, including;:
automatic station data, radar data, satellite nephogram and so on. Task ¢; and
task to represent Historical Weather Summary operation and Historical Weather
Analysis operation, that summarize the historical weather phenomena and ana-
lyze the causes of historical weather formation in the past 48 h, respectively. Task
t3 and task t4 represent Real-time Weather Summary operation and Real-time
Weather Analysis operation, that summarize the current weather phenomena
and analyze the causes of current weather formation, respectively. Task t5 rep-
resents Forecast Mode Calculation operation, the future weather is calculated
in real time based on FEuropean Centre for Medium-Range Weather Forecasts
(ECMWF) and Global Forecasting System (GFS). Task tg and task t; repre-
sent Weather Situation Analysis operation and Meteorological Elements Analysis
operation, that analyze the future weather situation and the future meteorolog-
ical elements based on the calculation results of forecast model, respectively.
Task tg represents Generation of Forecast Model Conclusions operation, based
on the analysis for weather situation and meteorological elements, the final con-
clusion of forecast model is formed. As the termination task, task tg represents
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Generation of Weather Forecast Conclusion operation, based on the analysis
of historical weather and real-time weather, combined with the conclusion of
forecast model, the final weather forecast conclusion is formed.

3 Problem Modeling and Formulation

3.1 Problem Modeling

In this section, we mainly model the coordinated placement problem of tasks
and data, and formulate this model.

Assume that a meteorological workflow consists of M tasks, which can be
defined as T'S = {to, t1, t2, ..., tapr—1}. The data source of meteorological work-
flow mainly includes P input data and @ historical data, so the input data set
and the historical data set can be defined as D"? = {dy"?, d{"?, dy'*, ..., dpP}
and D" = {dlis  dhis dhis) .. dgifl}. Therefore, the relationship between
tasks and data can be expressed as v = {v0, V1, 72, -, YM—1}, Where v, =
{dire, .., d'F,dM=, ..., dM} represents the data set required for the m-th task
tm. If there are K pairs of conflicting data, the conflicting relationship between
these conflicting data can be expressed as 8 = {06y, 51, B2, -y Bk, - Br—1},
where B, = {dy,dy}, (dy,d, € {D™P, D"*}) represents the k-th pair of conflict-
ing data.

3.2 Data Access Time Model

In the meteorological Fat-tree network, it is assumed that the task ¢,, and its
required data are stored in the compute node u; and the storage node u;, respec-
tively, and the data amount is d,,. The positional relationship between u; and
u; can be defined as §; ;, then:

— If u; and w; are the same node, then §; ; = 0;

— If u; and u; belong to the same switch, then §; ; = 1;

— If u; and u; belong to the different switches of the same pod, then 9; ; = 2;
— If u; and wu; belong to the different pods, then ¢; ; = 3;

Therefore, according to the positional relationship §; ; between u; and uj,
the access time T4 of the task t,, for the data can be expressed as:

0; 8,;=0
AC _ 2*dn/B567 51'0‘:1
Tm B 2 % (dn/Bse + dn/Bea) 5 51’,]’ =2 (1)

where By, Beo, and B, represent the bandwidth between the server and the
edge layer switch, the bandwidth between the edge layer switch and the aggrega-
tion layer switch, and the bandwidth between the aggregation layer switch and
the core switch, respectively.
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Therefore, the data access time of task ¢, for its required data set -y, can

be calculated as:
Tnl;otal _ Z TmAC (2)
dn€Ym

Then, the average data access time for M tasks can be calculated as:

M-1
Tig =Y Too" /M (3)
m=0

3.3 Resource Utilization Model

Assume that the number of compute nodes and storage nodes are N and
Nsto, respectively. And the resource of each compute node and storage node
are VM$L  and VML ¢, respectively. The amount of resources required

for each task and each data are expressed as TVM = {tomg", tom§°, ...,
toml, ... tvm$S |} and DVM = {dvmgt, dvmsw,...,dvmff",...,dvm}tiQ_l},

respectively. tvm“’l and dvm<°! represent the amount of resources required for

the m-th task and the n-th data, respectively.

Therefore, the placement of M tasks on the compute nodes can be represented
as the two-dimensional array CT[N°°, M], and the placement of P + @ data on
the storage nodes can be represented as the two-dimensional array SD[N*%t, P+
Q), then:

1;t,, is placed on the i — th compute node

CTli, m] = { 0; Otherwise (4)

.+ | 1;dy is placed on the j — th storage node
SDlj,n] = { 0; Otherwise (5)

Then, the resource utilization of the i-th compute node and the j-th storage
node can be expressed as U and U]»St"7 respectively.

M-1

Ut =) tomiSh« CTi,m] [V MGy (6)
m=0
P+Q-1

U= Y domyl® « SD[j,nl/V M}« (7)
n=0

If the number of compute nodes and storage nodes that have been used is
Nyse® and Ny..*t, respectively. The average resource utilization of the cur-
rently used compute nodes and storage nodes can be expressed as U< and
Uste, respectively.

Ncol

gl = 3 U Nk (5)
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Nsto
Usto = U™ /N2 (9)
j=0
Finally, the average resource utilization of compute nodes and storage nodes
is calculated as:

o Ncol Nsto
U= Ncol + Nsto * UCOZ + Ncol + N sto x Uste (10)

3.4 Data Conflict Model

Because the closer the conflicting data is placed on network, the greater the
possibility of privacy breaches. Therefore, in order to ensure data privacy, con-
flicting data should be prevented from being placed on the same node or the
same pod.

Assume that there are N5V pairs of conflicting data placed on the same
node. There are N°% pairs of conflicting data placed on the different nodes of
the same edge layer switch. There are N°F pairs of conflicting data placed under
different edge layer switches of the same pod. We set the corresponding weights
wy, wy and wsy for these three placement of conflicting data.

Then, the data conflict degree for all conflicting data can be expressed as:

C = wy* NN 4wy « N5 4+ wy « NP (11)

where wg + w1 + wy = 1, the closer the conflicting data are placed, the larger
the corresponding weight. Therefore, in this experiment, the three weights are
set to 0.55, 0.3, and 0.15, respectively.

3.5 Objective Functions

In this paper, the coordinated placement of meteorological workflow and data
with privacy conflict protection has been modeled as a multi-objective optimiza-
tion problem. Average data access time, average resource utilization, and data
conflict degree are used as the three objective functions of this optimization
problem. Therefore, this optimization model can be expressed as:

Min(TAC T, Max(C) (12)

avg

In addition, this optimization problem also needs to meet certain constraints,
that is, the used resources of each node cannot exceed the maximum resource
amount of node, so the constraint can be expressed as:

stVUF < 1L,VUS <110 < i < N0 < j < N*° (13)

In addition, he symbols used in this work are summarized uniformly in the
following table (Table 1).
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Table 1. Symbols and meanings.

Symbols | Meanings

¥ Relationship between tasks and data

16} Conflicting relationship between data

J Positional relationship between nodes

Tg;"t“l Data access time of the task t,,

Tlﬁg Average data access time for M tasks

e Resource utilization of the i-th compute node
Ujsw Resource utilization of the j-th storage node
U Average resource utilization of all nodes

C Data conflict degree for all conflicting data

4 Problem Optimization

In Sect. 3, the coordinated placement of meteorological workflow and data has
been modeled as a multi-objective optimization problem. In this section, based
on NSDE algorithm, this multi-objective problem is optimized. Firstly, we encode
the multi-objective optimization problem and generate the initial parental pop-
ulation. Secondly, based on the parental population, the mutation operation,
crossover operation, and selection operation are continuously performed. In the
selection phase, we adopt fast non-dominated sorting and crowding distance
calculation to select individuals whose objective functions are relatively good
to retain to the next generation. Finally, through comparing the utility values
of multiple excellent individuals, the individual with the best utility value are
output as the final result.

4.1 Encoding

According to the total number of compute nodes and storage nodes, the place-
ment strategy of each task and data is encoded as a real number between
[0, N°! + Nst°]. And each real number represents the location where the
corresponding task or data is placed. After the encoding operation is com-
pleted, the placement strategies set X = {X7,XO9P} is generated, where
XT = {al 2T 2T .. 2T .. 2T, |} represents the corresponding compute node
locations of M tasks. XOP = {a§P 2P .. 29D .. 23D } represents the cor-
responding storage node locations of P input data. In addition, the placement
position XHP of all historical data is fixed.

4.2 Objective Functions

As the three objective functions of this optimization problem: the average data
access time, the average resource utilization, and the data conflict degree, we



Coordinated Placement of Meteorological Workflows and Data 561

need to find a suitable placement scheme so that all three objective functions
are relatively good, not one or two of them are relatively good. The calculation of
average data access time is illustrated in Algorithm 1. Then, the NSDE algorithm
optimizes the population and finally obtain the best placement strategy.

Algorithm 1. Calculate the Average Data Access Time
Require: X, D, TS, M,~y
Ensure: Ty

1: for t,, in T'S do

2 for di in v,, do

3 d=dp,i=XZ%,jis position of dy
4: calculate TAC by (1)

5: Tgotu‘l+ — Tyﬁc

6 end for

7: end for

8: calculate T4 by (3)

9: return Tﬁg

4.3 Optimizing Problem Using NSDE

As an efficient population-based global optimization algorithm, NSDE is adopted
to optimize this multi-objective optimization problem. Firstly, we need to ini-
tialize an initial population as the first parental population.

Initialization. The size of population is N P, so this initial population can be
expressed as X = {Xo,X1,..., X, ..., Xnp—1}, where X; is the i-th individual
of population, and represents a placement strategy for all tasks and data. If
this optimization problem has M tasks and P user input data, then X; can
be expressed as X; = {xo, %1, %2, ..., TM, M 41, -, LM+ P—1} that represents the
placement strategies for M tasks and P user input data.

Evolution. Based on the parental population, the mutation, crossover, and
selection operations are performed recurrently.

In the mutation phase, according to the mutation factor F' and three ran-
domly selected individuals X,, X, and X, the mutation individual H; is calcu-
lated as follows:

H =X,+F=x(X,—X,) (14)

Finally, the mutation population H = {Hy, Hy, ..., H;, ..., Hyp—1} whose size is
also NP is generated.

In the crossover operation, according to the specified crossover probability
CR, the corresponding genes from the parental individual R; and the muta-
tion individual H; are selected to form the crossover individual R;. The specific
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calculation process is as follows:
_ [ H;j,rand(0,1) < CR||j = jrand
Ry = {Xi,j, Otherwise (15)
Finally, the crossover population R = {Rg, Ry, ..., Ri, ..., RNp—1} is generated.

In the selection operation, based on the population Y = {¥p,Y1,...,Y;, ...,
Yonp—1} merged by the parental population X and the crossover population R,
the fast non-dominated sorting method is performed for all individuals. Then,
all individuals in population Y are divided into multiple non-dominated layers to
achieve that all individuals in the lower non-dominated layer have better fitness
values than individuals in the higher non-dominated layer. And for each individ-
ual in the same layer, we continue to calculate the crowding distance. Finally,
the individuals in the lower non-dominated layer are preferentially retained into
the next generation parental population X, and secondly the individuals with
better crowding distances in the same layer are retained into the next generation
parental population X until the size of X is NP.

Iteration. The mutation, crossover, and selection operations are continuously
performed based on the parental population X to achieve population evolution,
and multiple excellent individuals are obtained finally.

Utility Value Comparison. For the multiple excellent individuals obtained by
NSDE, we also need to perform the wutility value comparison to obtain the optimal
individual as the final result. If T;vg, Ui and C! represent the average data
access time, the average resource utilization, and the data conflict degree of X;,
respectively, T, g’;;", et U min [Jmaz (C™in and O™ represent the minimum
and maximum of the corresponding fitness values, respectively. Therefore, the

utility value v; of X; can be calculated as following:

1 Tglljax _ Tg/v ﬁ _ W gmaz _ CZ
vi = 3 * (e e ) (16)
3 T(inuzx _ T(invlgn Umaa: _ Umzn Cmaz _ C’max

where the larger v;, the better the individual X; is.

5 Experiment and Analysis

Aiming at the three optimization goals of the coordinated placement problem,
we designed a series of experiments and compared CPDE method with another
common coordinated placement method in meteorological department. Firstly,
we introduce the settings of parameters and another common coordinated place-
ment method used in this experiment. Then, the performance of the two methods
is compared and analyzed.
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5.1 Parameters Setting and Comparison Method

In this experiment, we optimized three different scale workflows and compared
the performance of several optimization methods. Assume that the sizes of work-
flows are set to 2, 4 and 6, respectively, and each workflow contains 20 tasks,
but the data sets required for each task and the ordering of tasks execution are
different. The setting of parameters used are as shown in the following table
(Table 2).

Table 2. Parameters setting.

Parameter Value
Number of compute nodes 19
Number of storage nodes 17
Bandwidth of the edge layer 200 MB/s
Bandwidth of the aggregation layer | 500 MB/s
Bandwidth of the core layer 1GB/s
Forwarding power of the switch 5W

Besides our proposed CPDE method, we also compare performance with
another coordinated placement method commonly used by meteorological
department, the Coordinated Placement method based on Greedy algorithm
(CPG), which is briefly described as follows:

Compared with data conflict degree, CPG is more concerned with average
data access time and average resource utilization. Based on historical data that
has been placed, tasks are preferentially placed at the computing node closest to
their required historical data to ensure that each task has the shortest average
data access time for historical data. Secondly, based on the placement of each
task, the input data is preferentially placed on the storage node closest to the
task set to which is belongs. And for the storage nodes having the same dis-
tance, the input data is preferentially placed on the storage node with highest
resource utilization. However, our proposed CPDE method estimates the average
data access time, the average resource utilization and the data conflict degree
comprehensively, and optimizes the placement strategy using NSDE algorithm.

5.2 Comparison and Analysis of Method Performance

In this section, we will compare and analyze the performance of two methods
on the three objective functions to demonstrate the superiority of our proposed
CPDE method in terms of overall performance.

Figure3 and Fig.4 shows the performance comparison of CPDE method
and CPG method on the average data access time indicator and the average
resource utilization indicator based on three scale data sets. Overall, the dif-
ference between two methods in these two performance indicators is not very
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The Average Data Access Time
(ms)
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8

6

4 mCPDE

2 ECPG

0

2 4 6
Number of workflows

Fig. 3. Comparison analysis of the average data access time.

obvious. Only when the data set is small, for example, the number of workflows
is 2, the performance of CPG method on the average data access time indica-
tor is better than CPDE method, but the performance of CPDE method on the
average resource utilization indicator is better than CPG method. However, with
the size of data set expands, the performance of CPDE method on the average
data access time indicator gradually begins to outperform CPG method, but
the performance of CPG method on the average resource utilization indicator
gradually also begins to outperform CPDE method.

Figure5 shows the performance comparison of CPDE method and CPG
method on the data conflict degree indicator based on three scale data sets. It
can be clearly seen that the two methods have a large gap in this performance,
and the performance of CPDE method is always significantly better than CPG
method.

CPG method prioritizes the average data access time indicator and the aver-
age resource utilization indicator, and both of these indicators tend to place
all tasks and data centrally to ensure the less data access time and the higher
resource utilization. But CPG method does not consider the data conflict degree
indicator, because in order to ensure the smaller data conflict degree, it is neces-
sary to disperse the conflicting data, which contradicts the placement principle
of CPG method. However, our proposed CPDE method can optimize these three
indicators at the same time, so that CPDE method has better comprehensive
performance than CPG method.

Finally, it can be determined that our proposed CPDE method is definitely
better than CPG method, which has been verified in this experiment.
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The Average Resource Utilization
100%
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Number of workflows

Fig. 4. Comparison analysis of the average resource utilization.

6 Related Work

In order to improve the execution efficiency of applications in the cluster, opti-
mizing the data placement strategy helps to reduce the data access time to the
application.

Li et al. proposed a two-stage data placement strategy and adopt the dis-
crete PSO algorithm to optimize the placement of data for reducing data transfer
cost [4]. In [7], aiming at the efficient data-intensive applications, an adaptive
data placement strategy considering dynamic resource change is proposed, based
on the resource availability, this placement strategy can reduce the data move-
ment cost effectively. Ebrahimi et al. proposed a BDAP data placement strategy,
which is a population-based distributed data placement optimization strategy
[8]. These data placement strategies have a good effect. However, with the rapid
increase of applications and data in the cluster, the resource utilization of equip-
ment is also receiving more and more attention. In [10], based on the limited
resources, Whaiduzzaman et al. proposed a PEFC method to improve the per-
formance of cloudlet. In [12], Chen et al. proposed a correlation-aware virtual
machine placement scheme to enhance resource utilization. In addition, ensuring
the stability and security of data in cluster is also receiving increasing attention.
In [14], Kang et al. formulated the data placement problem as a linear program-
ming model and developed a heuristic algorithm named SEDuLLOUS for solving
the Security-aware data placement problem. At the same time, some scholars
have conducted comprehensive research on these indicators. In [16], proposes a
BPRS big data copy placement strategy, which can reduce the data movement
of each data center and improve the load balancing problem.
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The Data Conflict Degree
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Fig. 5. Comparison analysis of the data conflict degree.

However, to the best of our knowledge, there are still few placement strategies
that consider the three important factors of average data access time, average
resource utilization and data conflict degree. Therefore, based on these three
objectives, this paper proposes to optimize the placement of tasks and data
using NSDE algorithm, and achieved remarkable results.

7 Conclusion and Future Work

The meteorological department mainly optimizes the placement of massive mete-
orological historical data for reducing the average data access time of applica-
tions. But it lacks the optimization of the coordinated placement of tasks and
input data in each application. Therefore, firstly, the coordinated placement
problem of meteorological workflows and data is modeled as a multi-objective
optimization problem. And minimizing the average data access time and the
data conflict degree, maximizing the resource utilization are used as the three
optimization objectives. Secondly, we analyze and construct the models of these
three objective functions, respectively. Then, based on NSDE algorithm, we pro-
pose a coordinated placement optimization method named CPDE to optimize
the multi-objective problem. Finally, by comparing with the commonly used
coordinated placement methods of meteorological departments, the availability
and superiority of our proposed CPDE method is demonstrated.

However, in the future work, we also need to further consider the energy
consumption of the data center and the execution time of each application from
the perspective of resource providers and users, respectively. In addition, We
consider to appropriately improve our proposed CPDE method to improve the
performance of method, such as the optimization speed.
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