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Abstract. In modern cloud datacenters, virtual machine (VM) scheduling is a
complex problem, especially taking consideration of the factor of service reli-
ability. Failures may occur on physical servers while they are running cloud
users’ applications. To provide high-reliability service, cloud providers can adopt
some fault tolerance techniques, which will influence performance criteria of VM
scheduling, such as the actual execution time and users’ expenditure. However,
only few studies consider fault tolerance and its influence. In this paper, we
investigate fault tolerance aware VM scheduling problem and formulate it as a
bi-objective optimization model with quality of service (QoS) constraints. The
proposed model tries to minimize users’ total expenditure and, at the same time
maximize the successful execution rate of their VM requests. The both objectives
are important concerns for users to improve their satisfactions, which can offer
them sufficient incentives to stay and play in the clouds and keep the cloud ecosys-
tem sustainable. Based on a defined cost efficiency factor, a heuristic algorithm
is then developed. Experimental results show that, indeed, fault tolerance signif-
icantly influences some performance criteria of VM scheduling and the devel-
oped algorithm can decrease users’ expenditure, improve successful execution
rate of their VM requests and thus perform better under fault tolerance aware
cloud environments.

Keywords: VM scheduling · Cloud computing · Fault tolerance · QoS · Users’
expenditure

1 Introduction

In modern cloud environments, providers can offer their customers the opportunities to
configure service requests with specific resource requirements, such as hardware and
software resource, and then encapsulate all these resource together into virtual machines
(VMs) [1]. By rentingVMs fromcloud providers and uploading their computing requests
to cloud data centers, customers can conveniently access and manage their applications
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from anywhere at any time. They no longer need to purchase and maintain the sophisti-
cated hardware and software resources for their peak loads and thus can decrease their
total cost of ownership [2, 3]. Thus cloud computing has now become one of the most
popular information communications technology paradigms and is widely accessed by
nearly all internet users in direct or indirect manners [4].

How to allocate each of the cloud users’ VM request to an appropriate cloud resource
is the central issue involved in VM scheduling under cloud computing environments.
This is a complicated and changeling problem, in which different performance criteria
should be optimized and at the same time, users’ QoS requirements (e.g. deadline and
budget) should be satisfied [5]. For cloud users, they generally want their service request
are successfully completed (i.e., their respective deadlines and budgets are fulfilled)
with the possible minimal expenditure. Conversely, if their service requests often miss
the deadlines, or the incurred expense is high, then users will undergo low level of
satisfaction degree and may lose interest in the cloud system and could finally leave
it, which will be adverse to the sustainable cloud ecosystem [3]. Therefore, this paper
mainly focuses on two major performance criteria of VM scheduling, i.e., successful
execution rate of users’ VM requests (SERoV) [3, 6] and the total expenditure (TE) that
users need to spend on completing users’ requests [7–9].

Moreover, another important concern in real-world cloud datacenters is that failures
may occur on physical servers (PSs) while executing cloud users’ VM requests. This
may also depress the level of users’ satisfaction degree (LoUSD) [9]. So in order to
increase the LoUSD, cloud providers generally adopt some fault tolerance techniques in
their data centers to improve the offered service reliability, such as fault recovery. Fault
recovery employs check-pointing and roll-back schemes and can enable a failed VM to
recover and resume the executing of the VM from an error [10]. However, it will in turn
influence the considered performance criteria in VM scheduling, such as SERoV and
TE, which is worthy of further research.

Many researches recently have investigated VM scheduling under cloud environ-
ments, from which mostly focusing on optimizing different performance criteria of dif-
ferent parties, such cloud providers and users (details are given in Sect. 2). For example,
Zhang et al. [8], from users’ standpoint, explored the cost-efficient VM scheduling with
the endeavor of minimizing the total expenditure for executing their VM requests. For
adjusting to the changing resource demands, Meng and Sun [11] mainly considered the
situation of workload fluctuations and developed a feedback-aware resource scheduling
algorithm based on the resource granularity of containers. In [12], Yu et al. tried to
optimize some criteria from cloud providers’ aspect and proposed a probability-based
guarantee scheme, which can effectively decrease the total migration overhead by avoid-
ing unnecessaryVMmigrations. In previouswork [3], we formulated theVMscheduling
problem as a multi-objective optimization model by considering the major concerns of
both parties, namely minimizing users’ total expenditure and at the same time, guaran-
teeing the profit fairness among all the cloud providers. Some useful approaches have
been proposed to resolve VM scheduling in cloud computing. However, most of these
studies are failed to consider the influences of resource failures and their recoveries,
which leads to a dilemma that the proposed approaches can’t applied to the real-world
cloud data centers. Therefore, this paper further studies the VM scheduling problem by
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taking into account the influences of resources failures and their recoveries, which can
be denoted by fault tolerance aware VM scheduling problem.

The rest of the paper is organized as follows. Section 2 reviews the related state-
of-the-art studies on VM scheduling. Section 3 describes the fault tolerance aware VM
scheduling problem in details. In Sect. 3, we formulate the studied problem as a multi-
objective optimization model. The developed algorithm is given in Sect. 4. Section 5
presents the experimental configurations, results and analyses. Finally, Sect. 6 concludes
this paper.

2 Related Work

Lots of efforts were focused on the research on VM scheduling in clouds and many
partly feasible solutions were also proposed. For example, Wei et al. [13] aimed to
improving the resource utilization of cloud data center’s physical servers and developed
a heterogeneity-based VM scheduling algorithm whose main idea is to guarantee that
the workloads on different kinds of resources of a PS are balanced. In [14], Imai et al.
adopted continuous air traffic optimization method to optimize VM scheduling and pro-
posed a time-series prediction based VM scheduling algorithm. The proposed algorithm
can effectively reduce the total running time of usedVMswhile achieving similar perfor-
mance. In [15], Secinti and Ovatman studied energy optimization of cloud data centers
by minimizing the number of VM migrations and service level agreement violations
under fault tolerance aware cloud environments. Moreover, many other researches [16–
18] also explored power consumption aware VM scheduling problem and tried to find
the best solutions for cloud datacenters’ energy optimization. These researches, from
cloud providers’ standpoint, explored VM scheduling problem by optimizing different
performance criteria.

Some related works studied VM scheduling from cloud users’ respective and made
endeavors to optimize their major concerns. For example, Wang et al. [19] tried to
decrease the response time of users’ applications with high performance computing
requirements and developed a synchronization aware VM scheduling algorithm by con-
sidering both intra-VMs’ and inter-VMs’ synchronization demands. In [20], Kohne et al.
further studied service level agreement (SLA) aware VM scheduling problem by con-
sidering two service level objectives, i.e., resource usage and availability. Zeng et al.
[21] studied workload-aware VM scheduling problemwith the objectives of minimizing
the network latency and maximizing the bandwidth utilization. Some other effective
execution time aware solutions, such as [22, 23], are also proposed for scheduling VMs
in cloud data centers. Nevertheless, in cloud environments, another important concern
for users to execute their VM requests is the total expenditure, which is not well resolved
in these studies.

For reducing users’ execution cost, some researches explored cost-based approaches
to address the problem [3, 8, 24–26]. In [24], Li et al. tried to cut down users’ expendi-
tures for renting the required computing resources under hybrid cloud environments and
developed an online resource scheduling algorithm by adopting Lyapunov optimization
framework. A particle swarm optimization (PSO)-based scheduling algorithm is devel-
oped in [25] with the aim of minimizing users’ total cost for executing their submitted
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VM requests. From the perspective of reducing the number of VMs rented from cloud
providers, Ran et al. [26] developed a dynamic VM scheduling strategy to determin-
ing the number of rented VMs according to users’ varied QoS requirements. In [27],
Sotiriadis et al. discovered that resource usages of running VMs vary highly among
their whole runtime by extensive experiments. Based on this discovery, they developed
a performance aware VM scheduling algorithm.

It can be found that although related studies have explored many aspects of per-
formance criteria of VM scheduling, one of the most important factors for both cloud
providers and users, i.e. service reliability, is not well addressed. In order to improve
service reliability, modern cloud data centers generally adopt fault recovery techniques,
which in turn will influence the performance criteria of VM scheduling, i.e., increasing
the actual runtimes of users’VMrequests and inevitably raising users’ expenditures. This
influence is worthy of deep research. However, only few of existing studies explored
this influence. For example, Sun et al. [28] investigated the tradeoff between perfor-
mance and energy consumption when reliability factor is considered. Our recent work
[29] explored the impact of resource failures and their recoveries and proposed a cost
optimization model under fault tolerance aware cloud environments.

From the above review of the related work, it can be noted that existing studies
have explored VM scheduling problem from different aspects by optimizing different
objectives, however, only few works consider the influence of resource failures and their
recoveries, in which the level of users’ satisfaction degree, one of the most attractive
concerns for cloud users, is not well addressed. On the basis of the existing works, this
paper further takes users’ satisfactions into consideration and explores fault tolerance
aware VM scheduling problem by considering the influences of resource failures and
recoveries.

3 Problem Description and Optimization Model

3.1 Problem Description

In cloud environments, users may need to execute their applications by submitting VM
requests to cloud providers who own the necessary infrastructure resources in their data
centers. Users’ VM requests can be submitted at random instants with some specific
resource demands (e.g. CPU cores, memory size) and certain QoS requirements [3, 7,
8]. Generally, cloud users always want their applications to be successfully completed
as soon as possible and at the same time, at the lowest cost. Thus this paper considers
two QoS constraints, i.e., budget and deadline which users are more concerned about.
Each VM request may need to execute several tasks and all the tasks contained in the
same VM request should be executed concurrently on the same physical server [8, 12,
16, 29]. Suppose that cloud users totally submit n(n ≥ 1) VM requests to a cloud data
center, denoted by VM = {VM1, VM2, …, VMn}. The i-th VM request VMi(1 ≤ i
≤ n) can be characterized by a tuple with six terms, VMi = (Ki, WLi, memi, subti, Bi,
Di) [7, 8, 25]. In the tuple, the term Ki(Ki ≥ 1) is the number of tasks contained by
VM request VMi, each of which requires one CPU core to execute. It means that VMi

can be successfully allocated to a PS only if the PS can provide at least Ki CPU cores
for it. WLi = {wlik |1 ≤ k ≤ Ki} represents the set of workloads of VMi’s Ki tasks, in
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which wlik is the workload length that VMi’s k-th task need to complete. The termmemi

denotes the required memory size of VMi. The term subti stands for VMi’s arrival time,
which indicates when VMi arrives at the cloud data center. Bi and Di are VMi’s budget
and deadline constraint respectively. The former indicates that a user’s expenditure for
executing VMi must be less than Bi and the latter indicates that the cloud user desires
its VM request VMi to be completed no later than Di.

In order to satisfy performance requirements of the worldwide users, cloud providers
have established some cloud data centers around the world. A cloud data center contains
some infrastructure resources,whichmay consist of thousands of heterogeneous physical
servers (PSs). Without loss of generality, we use PS = {PS1, PS2, …, PSm} to represent
the m(m ≥ 1) heterogeneous PSs in the cloud data center. The j-th (1 ≤ j ≤ m) physical
server, PSj, can also be characterized by a tuple with six terms, PSj = (Corej,Memj, sj,
pj, λj,μj) [3, 8, 29]. In PSj, the terms Corej andMemj represent PSj’s CPU and memory
capacities, i.e., the number of available CPU cores and memory size respectively. The
parameter sj denotes the processing speed of each of PSj’s CPU cores. pj represents the
price of each of PSj’s CPU cores, which is the cost of renting a single CPU core for a
time unit. Suppose that the failures on physical server PSj follow a Poisson process with
the failure rate, denoted by λj (λj ≥ 0) and the failures on different PSs are independent
of one another. That is to say, the interval time series of successive failures on PSj are
independent and obey a negative exponential distribution with the same parameters λj,
i.e., F(t) = 1 − e−λjt, t ≥ 0. Once a failure happens on a PS, it will initiate a repair
process. Accordingly, we assume that the repair times of failures on physical server PSj
are also independent and follow a negative exponential distribution with the same repair
rates, denoted by μj(μj ≥ 0), i.e., G(t) = 1 − e−μjt, t ≥ 0 [9, 10].

Thus, the fault tolerance aware VM scheduling problem can be formally described
as follows: suppose that there is a cloud data center with m heterogeneous PSs PS =
{PS1, PS2, …, PSm}, and all cloud users submit totally n VM requests, VM={V1, V2,
…, Vn}, the studied problem is how to map each VM request to a suitable PS, so as
to maximize the SERoV and at the same time, minimize users’ TE under the cloud
environment where fault tolerance techniques are adopted.

3.2 Optimization Model

Definition 1 Scheduling Matrix (SM). Denote by X = (xij)n×m the scheduling
matrix, where the decision variable xij indicates that whether VMi is assigned to PSj.
The reasonable range of xij is 0 or 1: If VMi is assigned to PSj, then xij = 1; otherwise,
xij = 0.

Denote by τ ikj the ideal execution time of the k-th task ofVMrequestVMi on physical
server PSj, so we have

τik j = wlik
s j

, (1)

where wlik , in terms of millions of instructions (MI), is the workload length of the kth
task of VMi and sj is the processing speed of PSj’s each CPU core, in terms of million
instructions per second (MIPS).
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However, in real-life cloud environment, failuresmay happen on PSs and fault recov-
ery techniques are generally adopted. In this situation, the actual execution time of k-th
task of VMi on PSj, denoted by ATikj, is different from its ideal execution time. Denote
by Nj(τ ikj) the total number of failures that occur on PSj during the time interval τ ikj
and the failure rate of PSj is λj, then the probability of Nj(τ ikj) = M (M = 0, 1, 2, …)
can be given by

Pr{N j (τik j ) = M} = (λ jτik j )
M

M ! e−λ j τik j , M = 0, 1, 2, . . . . (2)

It can be seen that Nj(τ ikj) is a stochastic variable whose expectation can be given
by

E[N j (τik j )] = λ jτik j . (3)

Denote by RT (M)
j the recovery time of theM-th (M = 0, 1, 2, …) failure occurred on

PSj. By summing up all Nj(τ ikj) failures’ recovery times, we can get the total recovery
time of PSj during (0, τ ikj], denoted by RTj(τ ikj).

RTj (τik j ) =
N j (τik j )∑

M=1

RT (M)
j . (4)

The actual execution time of k-th task of VMi on PSj, ATikj, is the sum of the ideal
execution time and the total recovery time on PSj during executing the task, as shown
in Eq. (5).

ATik j = τik j + RTj (τik j ). (5)

It can be seen that ATikj is a random variable whose expectation can be given by

E[ATik j ] = (μ j + λ j )τik j

μ j
. (6)

Generally, cloud users always hope that their VM requests can be successfully com-
pleted at lowest possible expenditure. If users need to spend much expenditures or their
VM executions often violate QoS constraints, then they are very likely to lose interest
in the data center. Therefore, this paper makes an endeavor to maximize the successful
execution rate of VM requests (SERoV) and minimize the total expenditure (TE) for exe-
cuting all cloud users’ VM requests. Users’ total expenditure equals to the sum of the
execution costs for all the successfully completed VM requests, as shown in Eq. (7).

T E =
n∑

i=1

m∑

j=1

xi j ·
[
Ki · max

1≤k≤Ki
(ATik j ) · p j

]
, (7)

in which xij, shown in Definition 1, is the decision variable of the studied problem. The
term max1≤k≤Ki (ATik j ) is the actual completion time of VMi on PSj, which equals to
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the maximum actual completion time among VMi’s Ki tasks. It can be noted that TE is
a random variable whose expectation can be given by

E[T E] =
n∑

i=1

m∑

j=1

xi j ·
[
Ki · E[ max

1≤k≤Ki
(ATik j )] · p j

]
. (8)

Denote by θ the SERoV, which can be calculated by the number of successfully
completed VM requests divided by n, i.e., the total number of VM requests submitted
by all cloud users. Then we have

θ = 1

n

n∑

i=1

ϕi , (9)

in which the variable ϕi, given by Eq. (10), indicates whether VM request VMi is
successfully assigned to a PS.

ϕi =
m∑

j=1

xi j . (10)

This paper explores the fault tolerance awareVMscheduling by focusing on optimiz-
ing twomajor performance criteria for cloud users, i.e.,maximizing the SERoV andmin-
imizing TE, under certain budget and deadline requirements. Thus the studied problem
can be formulated as a multi-objective optimization model with some constraints.

Objectives:

Min E[TC] =
n∑

i=1

m∑

j=1

xi j ·
[
Ki · E[ max

1≤k≤Ki
(ATik j )] · p j

]
; (I)

Max θ = 1

n

n∑

i=1

ϕi . (II)

Subject to:

i). For each i ∈ {1, 2, . . . , n} and each j ∈ {1, 2, . . . ,m}, the value of decision
variable xij is within the range of {0, 1};

ii). For each i ∈ {1, 2, . . . , n}, then ∑m
j=1 xi j ≤ 1;

iii). For each j(1 ≤ j ≤ m}, then
∑n

i=1 xi j Ki ≤ Core j and
∑n

i=1 xi jmemi ≤ Mem j ;
iv). For each i ∈ {1, 2, . . . , n}, if the value of decision variable xij is 1, then physical

server PSj must satisfy Eq. (11) and Eq. (12).

wti + E[ max
1≤k≤Ki

(ATik j )] ≤ Di ; (11)

Ki · E[ max
1≤k≤Ki

(ATik j )] · p j ≤ Bi . (12)
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The first optimization objective, (I), is to minimize the expectation of total expendi-
ture for executing all cloud users’ VM requests. The second one, (II), is to maximize the
successful rate of their VM requests. By optimizing the two objectives, cloud providers
can offer sufficient incentives for their users to stay and play in the data centers, which
cloud help to keep the cloud ecosystem sustainable.

The constraint i) gives the decision variable xij’s feasible region. The second con-
straint, ii), guarantees that a VM request must be allocated to exactly one PS. The third
constraint, iii), is PSj’s resource capacity restrictions, which means that the total CPU
cores and memory size required by VM requests assigned to PSj must not exceed its
CPU andmemory capacities respectively. The last one, constraint iv), ensures that ifVMi

is allocated to PSj, then the physical server should satisfy VMi’s deadline and budget
requirements. The termwti, in Eq. (11), is the waiting time interval that VM request VMi

waits for being executed on PSj. The term E[max1≤k≤Ki (ATik j )] is the expectation of
actual execution time of VMi on PSj. Equation (11) guarantees that VM request VMi’s
waiting time sums up its actual execution time should not exceed the required deadline.
Equation (12) guarantees that the expenditure for executing VMi on PSj must not exceed
the required budget.

From the above descriptions, it can be seen that the proposed multi-objective opti-
mization model belongs to the combinatorial optimization, which is NP-hard problem
[30]. Heuristic-based approaches, which can offer an approximately optimal solution
in an acceptable time frame proportional to the number of variables, have recently
attracted much attention to deal with VM scheduling problem [3, 30]. Therefore, this
paper develops a heuristic method, i.e., greedy-based best fit decreasing scheduling
(GBFDS) algorithm, to solve the fault tolerance aware VM scheduling problem.

4 Proposed Algorithm

Before describing the details of GBFDS algorithm, we first define two concepts used in
the developed algorithm.

Definition 2. Cost Efficiency (CE) factor: The cost efficiency of physical server PSj is
mainly influenced by four parameters, i.e., its CPU cores’ price (pj), processing speed
(sj), failure rate (λj) and recovery rate (μj). If failures frequently occur on PSj, then
VM requests assigned on the server will experience long executing time, which will
inevidently increase users’ expenditure. Similarly, if the price of PSj’s CPU core is high,
it will also increase users’ cost for executing their VM requests. On the contrary, the
higher its processing speed is, the shorter time that the PS needs to complete a VM
request. And similarly the higher its recovery rate is, the shorter time the PS recovers
from a failure. Therefore, the CE factor of PSj, denoted by CE(PSj), can be defined as
the product of its processing speed, recovery rate and the inverse of its failure rate and
CPU cores’ price, as shown in Eq. (13). The higher a PS’s CE factor is, the lower the
cost for executing a VM request is.

CE(PSj ) = μ j s j
λ j p j

. (13)
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Definition 3. Candidate Server Set (CSS): For an arbitrary VM request VMi ∈ VM,
if the available resources (CPU cores and memory size) of a physical server PSj ∈ PS
are no less than VMi’s resource requirements and, at the same time, can successfully
complete VMi’s tasks before the specified deadline with the expenditure no more than its
budget, then PSj is a candidate server of VMi. The candidate server set of VMi, denoted
by CSSi, is composed of all its candidate servers.

If a VM request’s CSS contains few candidate servers, it means that the VM request’s
QoS constraints are tight or its resource demands are very high and few PSs can satisfy
its requirements. Granting high priorities to these VM requests can effectively increase
their successful execution rate.

Based on above-mentioned definitions and analysis, the proposed algorithm prefer-
entially schedules the VM request whose CSS has fewest candidate physical servers to
improve SERoV. In order to decrease could users’ total expenditure, GBFDS algorithm
allocates the VM request, VMi, whose CSS contains more than one candidate server to
the server whose cost efficiency factor is the smallest among VMi’s candidate servers.
The processes of GBFDS algorithm are shown as follows.

Algorithm 1: Greedy-based Best Fit Decreasing Scheduling (GBFDS) algorithm
Inputs: VM={VM1,VM2,…,VMn} and PS={PS1, PS2, …, PSm}. 
Outputs: the scheduling matric X=(xij)n×m.

1 Initialization: mark all VM requests’ states as unscheduled
set X=0 and all VM requests’ CSSs as Φ; 

2  sort physical servers in descending order by CE factor, such as PS1′, PS2′, …, PSm′;
3 foreach unscheduled VM request VMi∈V do
4 foreach physical server PSj′ (1≤j≤m) do
5      if PSj can satisfy VMi’s resource demands and QoS requirements then
6        CSSi = CSSi PSj′;
7 if CSSi = Φ then
8      add VM request VMi to unsuccessful scheduled set U; 
9      change VM request VMi’s state to failed scheduling; 
10   else if |CSSi|=1 then
11     assign VM request VMi to the candidate server (PSj′ might as well) in CSSi; 
12     change available resource capacities (CPU cores and memory size) of PSj′;
13     set xij=1;
14     change VM request VMi’s state to scheduled; 
15 while there exists unscheduled VM request in V do
16 find the candidate server set with fewest candidate servers, CSSi might as well;
17   assign VMi to the physical server PSj′ whose subscript is the smallest in CSSi;  
18   change the available resource capacity of PSj′;
19   set xij=1;
20   change VM request VMi’s state to scheduled; 
21 return X;

Initially, GBFDS algorithm sets all VM requests’ states as unscheduled, all VM
requests’ CSSs as empty set and all the elements xij of X = (xij)n×m as 0. After this,
all the PSs are sorted in descending order by their values of CE factors. Might as well,
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the order of PSs after sorting is PS1′, PS2′, …, PSm′. Then, the following steps will be
iteratively executed by GBFDS algorithm.

For each VM request VMi (1≤ i≤m) in the state of unscheduled, GBFDS algorithm
firstly find out its candidate server set, CSSi, by orderly checking PS1′, PS2′, …, PSm′.
During this process, if one VM request VMi’s candidate server set CSSi is empty, which
means that no existing physical server can satisfy VMi’s resources or QoS requirements,
then the VM request, VMi, can’t be successfully scheduled and its state will be changed
to failed. Otherwise, if the VM request VMi’s candidate server set only contains one
candidate server, PSj ′, then GBFDS algorithm preferentially schedules VMi and assigns
it to PSj ′ and then changes the relevant parameters. Secondly, for the other VM requests
withmore than one candidate server in their candidate server sets, the proposed algorithm
preferentially schedules the VM request VMi, which contains fewest candidate servers
in its candidate server set CNSi and then assigns VMi to its candidate server PSj ′ whose
CE factor value is the smallest among all the PS inCNSi. The scheduling process will be
iteratively invoked until all VM requests are not in unscheduled state. Finally, GBFDS
algorithm returns the values of the obtained scheduling matric, X = (xij)n×m.

5 Performance Evaluation

5.1 Simulation Configurations

In the experiments, we simulate a cloud data center, which totally contains one hundred
physical servers. The number of CPU cores of each PS is an integer within the range
of {2, 4, 8, 16}, which is randomly generated by a uniform distribution. The memory
size of each PS is also randomly generated by a uniform distribution within the range
of {4 GB, 8 GB, 16 GB, 32 GB}. For the parameters of processing speed and price of
each physical server’s CPU cores, we use the similar approach adopted in [3, 9, 10, 19,
29] to generate the values. The former parameter is in the range of 100–200, which is
randomly generated by a uniform distribution with the average speed of 150, in terms of
million instructions per second (MIPS). The CPU core’s price of each PS is within the
range of 0.35–1 and roughly linear with its processing speed, which is used to guarantee
that a faster PS needs more renting expenditure than a slower one for executing the same
VM request. The failure rates and the recovery rates of physical servers are uniformly
distributed within the range of [0.01, 0.1] and [0.05, 0.15], respectively [9, 10, 28].

For the parameters of users’ VM requests, all the experiments randomly set their
arrival times within the range of (0, 100], which means that all VM requests arrive
at the data center within a scheduling interval (T = 100 s). Their required number of
tasks (i.e., CPU cores) and memory sizes are both integers, which randomly generate
by uniform distributions within the range of [1, 7] and {1 GB, 2 GB, 3 GB, 4 GB}
respectively. Tasks’ workload lengths are uniformly generated within the value set,
{100000, 120000, 140000, 160000, …, 500000}, in terms of million instructions (MI).
The required deadline of each VM request is roughly linear with its average estimated
runtime of the largest workload among all its tasks with a 10% variation and the budget
requirement is set as its deadline multiplying by the number of task, as well as the
average price with a 10% variation. For eliminating the influence of causal factors, all



A Multi-objective Virtual Machine Scheduling Algorithm 539

the experiments are repeatedly conducted 100 times and the presented results are the
mean value of these repeated experiments.

5.2 Performance Metrics

In order to test and verify the feasibility of the proposed optimization model and algo-
rithm, we compare the developed algorithm with two other related ones, i.e., FCFS [19]
and MBFD [29], under four popular performance metrics. The first measured metric is
the SERoV, which is one of the optimization objectives of the proposed model and can
be calculated by Eq. (9) and Eq. (10). The second one is the average expenditure (AE),
which can be calculated as the expectation of total expenditure (shown in Eq. (8)) divided
by the number of successfully executed VM requests. The third metric is the average
execution time (AET), which is the average value of all the successfully executed VM
requests’ actual completion times. The actual completion time of a successfully executed
VM request is defined as the time span between its submitted time and completed time.
The last measured metric is the overall user satisfaction (OUS). Generally, the cloud
users want their submitted VM requests can be successfully completed as soon as possi-
ble and at the same time, at the lowest possible expenditure. Therefore, the satisfaction
of the cloud user who submits VM require VMi, denoted by usi, is influenced by three
factors, i.e., whether VM request VMi is successfully executed or not (ϕi), the used time
and expenditure for executing VMi. Denote by Etimei and Ecosti the execution time and
expenditure of VM request VMi respectively, so we have

usi = ϕi · [α · di − Etimei
di

+ β · bi − Ecosti
b

]. (14)

In Eq. (14), α and β are cloud users’ preference coefficients for time and cost with
the values satisfying α + β = 1. If a cloud user prefers its VM request to be completed
as soon as possible, then we can set α > β, and vice versa. In this paper, we trade time
and expenditure as two factors with equal importance and thus set α = β = 0.5

Summing up the values of all cloud users’ satisfactions, we can get the overall user
satisfaction, OUS (as shown in Eq. (15)).

OUS =
n∑

i=1

usi . (15)

5.3 Simulation Results

In this section, we conduct two experiments to fully evaluate the performance of the
proposed model and developed algorithm.

Experiment 1. In this experiment, we first fixed all physical servers’ recovery rate as
0.1 to observe the influence of failure rate under varied values from 0.01 to 0.1. The
obtained results are shown in Table 1. It can be seen that, with the increasing of PSs’
failure rate, the results of SERoV and OUS smoothly decrease and these of AE and
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AET gradually increase, which means that all the measured metrics get worse. This is
because, with the increasing of failure rates, the probability that failures happen on a
physical server increases, which will evidently increase the execution time of users’ VM
requests, thus increasing users’ expenditures. This will be more likely to violate users’
deadline and budget constraints and thus decrease the SERoV.

Table 1. Results obtained by GBFD algorithm with different failure rates when physical servers’
recovery rate is fixed as 0.1.

Failure rete SERoV AE AET OUS

0.01 100% 2.22 0.84 102.11

0.02 100% 2.42 0.91 93.37

0.03 100% 2.63 0.99 84.64

0.04 100% 2.83 1.06 75.90

0.05 100% 3.02 1.11 68.10

0.06 100% 3.24 1.19 59.15

0.07 100% 3.44 1.24 51.86

0.08 100% 3.66 1.33 42.18

0.09 97% 3.90 1.37 33.45

0.1 72% 3.70 1.56 17.08

Second, Table 2 shows the results ofmeasuredmetrics obtained byGBFDSalgorithm
with varied recovery rates under the situation that all physical servers’ failure rate is fixed
as 0.01. It can be found that all themeasuredmetrics get better with recovery rate varying
from0.05 to 0.14. The reason lies in that,with the increasing of physical servers’ recovery
rates, the recovery time that a failed PS needed to recover from a failure is decreased and
thus the average execution cost decreases, which means that the PS will be more likely
to successfully complete the served VM requests and thus increase successful execution
rate and cloud users’ satisfactions.

Thus, we can conclude that, as expected, adopting fault tolerance techniques in cloud
data centers does have significant impact on the performance metrics of VM scheduling.

Experiment 2. In this experiment, we evaluate the performance of the developed
GBFDS algorithm by comparing with other ones. The results of the four performance
criteria obtained by different algorithm are presented in Table 3. From the results, we
can the following trends: First, the developed GBFDS algorithm can obtain the highest
successful execution rate. Compared with FCFS and MBFD, GBFDS algorithm can
successfully execute more VM requests by 12.05% and 4.25%, respectively. This is
because GBFDS algorithm preferentially schedules tight-QoS-constrained VM requests
whose candidate server sets may have few candidate servers. Granting higher priority
to schedule these VM requests can increase their probability of being successfully com-
pleted and thus improve SERoV. Second, the developed GBFDS algorithm can achieve
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Table 2. Results obtained by GBFD algorithm with different recovery rates when physical
servers’ failure rate is fixed as 0.05.

Recovery rete SERoV AE AET OUS

0.05 71.5% 3.70 1.56 17.08

0.06 100% 3.73 1.34 39.42

0.07 100% 3.48 1.26 50.13

0.08 100% 3.29 1.20 57.69

0.09 100% 3.14 1.15 63.62

0.10 100% 3.02 1.11 68.10

0.11 100% 2.94 1.10 70.57

0.12 100% 2.86 1.07 74.44

0.13 100% 2.80 1.05 77.24

0.14 100% 2.74 1.03 79.64

the smallest average expenditure (AE) of all successfully executed VM requests. Specif-
ically, compared with other methods, GBFDS algorithm can cut down the users’ AE by
about 2.79% and 0.71%, respectively. Third and most important, the developed GBFDS
algorithm can obtain the highest degree of user satisfaction. Compared with the other
methods, GBFDS algorithm can improve cloud users’ satisfaction by about 20.1% and
10.4%, respectively. It can be concluded that, compared with some popular algorithms,
the developed GBFDS algorithm can achieve higher successful execution rate, lower
execution cost, and most important, higher degree of user satisfaction in most cases.
Thus the proposed GBFDS algorithm can meet users’ satisfaction better.

Table 3. Results obtained by compared algorithms under fault tolerance-aware environments.

Metrics FCFS MBFD GBFDS

SERoV 82.3% 90.1% 94.35%

AE 2.87 2.81 2.79

AET 1.23 1.19 1.21

OUS 57.69 63.74 69.26

6 Conclusions

In this paper, we deal with the problem of fault tolerance aware VM scheduling. By
considering the impact of fault tolerance techniques, two stochastic models of actual
execution time and cost are deduced. Then the studied problem is formulated as a multi-
objective optimization model with multiple QoS constraints. A greedy-based best fit
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decreasing algorithm is then developed. Finally, the experimental results demonstrate
the feasibility of the proposed model and algorithm. As future work, we will consider
the situation that not all failures are recoverable and VM requests may fail.
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