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Abstract. Computation offloading has become a promising method to
overcome intrinsic defects of portable smart devices, such as low operat-
ing speed and low battery capacity. However, it is a challenge to design
an optimized strategy as the edge server is resource-constrained and the
workflow application has timing constraints. In this paper, we inves-
tigated the hybrid workflow application computation offloading issue,
which further increases the difficulty. According to the analysis of the-
ory and consideration of time consumption and energy consumption, we
establish a multi-objective optimization model to solve the issue. Fur-
thermore, we propose a method based on particle swarm optimization
algorithm for multi-objective computation offloading to get the optimal
strategy for tasks offloading, which is suitable for all the hybrid workflow
applications. Finally, extensive experiments have verified the effective-
ness and efficiency of our proposed method.

Keywords: Mobile edge computing · Hybrid workflow applications ·
Multi-objective · Time consumption · Energy consumption

1 Introduction

With the development of cloud computing and big data, mobile devices are
becoming an essential part of people’s daily life [1,2]. People can obtain all the
services they need from cloud computing with the help of mobile devices. Never-
theless, the distance between the remote cloud and users is quite far, which may
reduce the quality of service [3,4]. Fortunately, there is another computing plat-
form named mobile edge computing (MEC), which can push computation and
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storage closer to mobile users [5,6]. Computation offloading of MEC can solve
the resource limitation problem of mobile devices effectively. Namely, offloading
some applications from local to the edge servers in MEC may be more energy
efficient [7,8].

In this paper, we mainly focus on the computation offloading of workflow
applications(WAs) in MEC. Although many studies investigate the computation
offloading of WAs in mobile cloud computing (MCC) well [9–13], the solutions
in MCC cannot be used for the issue in MEC directly due to the different archi-
tectures of MCC and MEC. The MEC has a three-tier architecture, the core
of which is the edge server [14]. Besides, we mainly focus on the cloudlet-based
MEC in this study [15]. The Edge server can significantly reduce the delay for
users to access the remote cloud, but the computing resources of the cloudlet are
limited. Therefore, the computation offloading strategy has a significant impact
on the completion time of the WA and the energy consumption of the mobile
device (MD).

In this paper, the hybrid WAs computation offloading in MEC is well inves-
tigated. Hybrid applications consist of several general WAs and several time-
constrained WAs. Our primary objective is finding optimization computation
offloading strategies to minimize the time consumption and the energy con-
sumption of each WA while meeting the time constraints of each WA that was
given in advance. Our primary contributions are summarized as follows.

1) We investigated the hybrid WAs computation offloading issue in MEC.
2) The hybrid WAs computation offloading is molded as a multi-objective

optimization problem, both energy consumption and energy consumption are
taken into consideration.

3) A multi-objective computation offloading method for hybrid WAs based on
improved particle swarm optimization is designed to minimize time consumption
and energy consumption for each WA while satisfying the deadline requirements
of the WAs.

4) Compared to other methods, the experimental results verify that our pro-
posed method is effective.

The rest of this paper is organized as follows. Section 2 introduces related
work. The system model and problem formulation are introduced in Sect. 3.
Section 4 gives the multi-objective offloading algorithm for the hybrid WAs
method. Section 5 introduces the experimental results and discussion. Section 6
describes the conclusion of this paper and the future work.

2 Related Work

Computation offloading has been well studied in [9–11]. Jia et al. [9] studied the
migration of linear topology tasks and parallel topology tasks in the MCC envi-
ronment and proposed an optimal linear task offloading strategy and heuristic
parallel task migration algorithm based on the strategy of load balancing. Deng
et al. [10] proposed a computational load offloading strategy for WAs based on a
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genetic algorithm. Based on their algorithm, some tasks of the WA are offloaded
to the remote cloud to execute so as to achieve the optimization of execution time
of WA and energy consumption of devices. Zhou et al. [11] consider the delay
transmission mechanism and then propose a multi-objective workflow schedul-
ing algorithm. They incorporate the delay transmission mechanism in the WA
scheduling process, which can effectively optimize the energy consumption and
completion time of WA at the same time.

As a result of the different architecture between MCC and MEC, the com-
putation offloading of WAs in MCC cannot be used for the issue in MEC.

Computation offloading of general applications has been studied in [18]. In
terms of using augmented reality applications in the environment of MEC, the
authors proposed a corresponding algorithm for computation offloading. Fur-
thermore, they proposed a multi-user computing offloading algorithm for the
applications with high latency requirements and multi-user participation. Li
et al. [19] try their utmost to minimize the computation latency of each task
by proposing a migration algorithm. In this way, the applications are divided
into many parts and are migrated to multiple cloudlets. But, they merely con-
sider the latency optimization.

Zhang et al. [20] proposed an offloading strategy which reduced the energy
of home automation applications. In order to reduce the WAs′ total energy con-
sumption within the constrained deadline, the MDs are made scheduled using
the particle swarm optimization. Nevertheless, their method focuses on the opti-
mization of energy consumption.

In this paper, we focus on the multi-objective optimization for hybrid WAs
in MEC. Both energy consumption and time consumption are taken into con-
sideration.

3 The System Model and Problem Formulation

In this section, the architecture of MEC is introduced. As shown in Fig. 1, we
can see that MEC has a three-tire architecture which consists of mobile users,
MEC servers, and remote cloud. In addition, there are some applications like
WA in mobile devices that should be executed within given constrained time. In
addition, these applications can be processed locally or can be offloaded to the
cloud via WAN or cloudlet via LAN according to the strategy to reduce energy
consumption or execution time, or both of them.

3.1 Basic Mode

In this section, the referred variable symbols are introduced. N represents
computation task. Nf represents the number of the fth WA’s computation
tasks. The workflow is used to model the mobile application, denoted as
W = {w1, w2, . . . , wf}. In this paper, the WAs include scheduled and unsched-
uled WA which are denoted as Wf (V, ξ). The set of computation tasks are rep-
resented by V = {v1,f , v2,f , . . . , vi,f} and ξ = {r(vi,f , vj,f )|vi,f , vj,f ∈ V } repre-
sents the dependencies between tasks in the certain workflow. S represents the
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Fig. 1. The architecture of MEC

set of offloading strategies. S = {Si,f |i = 1, 2, . . . , N, f = 1, 2, . . . , F}, where
Si,f ∈ {1, 2, 3}. Si,f = 1 means that the vi,f is executed on the local network,
Si,f = 2 denotes the task is offloaded and computed by the cloudlet, and Si,f = 3
denotes the task is offloaded and computed by the cloud.

3.2 Time Consumption Mode

The time for a single user consumed consists of the waiting time, executing
time, and transmitting time. The model of the waiting time in the cloudlet is
imitated by the Fig. 2. When the tasks are chosen to be offloaded to the cloudlet,
which obeys the rule that first comes will be the first severed. As all tasks arrive
randomly and the computing resources in cloudlets are limited, queuing occurs
when the number of arriving tasks more than the computing number within
capacity.

Average Waiting Time. It is hypothesized that the service time of the cloudlet
is subjected to the parameter μ, which presents the negative exponential distri-
bution. And the interval of the time that task arrived at cloudlet from the mobile
devices follows the parameter λ, which presents the negative exponential distri-
bution. F indicates the number of virtual machines distributed in the cloudlet,
which indicates the computing power of the cloudlet. The waiting time mode
is established according to the basis of the queuing theory. The possibility of
inactive cloudlet is shown as:
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Fig. 2. The task queue in cloudlet

Pidle = [
F−1∑

n=0

ρnf

nf !
+

ρF

F !(1 − ρF )
]−1 (1)

where ρ = λ
μ denotes the cloudlets utilization and ρF = ρ

F . nf represent the fth

workflow’s queue length. When the cloudlet is working normally, pnf
shows the

possibility of the queue size getting to nf . Then, pnf
is given as:

pnf
=

⎧
⎪⎪⎨

⎪⎪⎩

ρnf

F !Fnf−F
· pidle nf ≥ F

pnf

nf !
· pidle nf < F

(2)

When nf ≥ F , we use Cw to indicate the possibility of the waiting tasks in
cloudlet. And it is denoted as

Cw(F, ρ) =
∞∑

nf=F

pnf
=

ρF

F !(1 − ρF )
· pidle (3)

Based on the theory, Lq represents the average waiting length of the queue and
LF represents the waiting length of the current queue and is calculated by

Lq =
∞∑

nf=F+1

(nf − F )pnf
=

pidle · ρF

F !
·

∞∑

nf=F

(nf − F )ρnf−F
F (4)

LF = Lq + ρ (5)

Generally speaking, the average time of tasks waiting in the cloudlet is given as

Twait =
LF

λ
− 1

μ
=

1
F · μ − λ

Cw(F, ρ) (6)
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Processing Time and Transmission Time
According to the waiting time model, the execution time of tasks with different
strategies si,f , which offload tasks to different locations is exactly computed. wf

represents the fth WA’s workload. fl, fcl and fc show the computation capacity
of the MD, cloudlet and cloud. The latency time of WAN and LAN is denoted
as LWAN , LLAN . The execution time model is shown below.

T
si,f
exe (vi,f ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wf

fl
si,f = 1

Twait +
wf

fcl
+ LLAN si,f = 2

wf

fc
+ LWAN si,f = 3

(7)

The time spent during the data transmission among MD, cloud, and cloudlet
is computed by

T
(si,f ,sj,f )
tran (vi,f , vj,f ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 St = 1
di,f

Bcl
St = 2

di,f

Bc
St = 3

(8)

If the tasks vi,f and vj,f are executed in the same locations or they are
executed in the cloudlet and the cloud respectively, for instance, (si,f , sj,f ) ∈
{(2, 3), (3, 2), (1, 1), (2, 2), (3, 3)}, the transmission time will be equal to 0, and
we define this situation as St = 1. In addition, when vi,f and vj,f are executed
on the different locations, such as (si,f , sj,f ) ∈ {(1, 2), (2, 1)}, the task data
is transmitted via the network LAN, where its bandwidth is depicted as Bcl

and St = 2. Furthermore, when (si,f , sj,f ) ∈ {(1, 3), (3, 1)}, the task data is
transmitted via the network WAN, where its bandwidth is Bc, and St = 3. The
total time consumption is given by

Ttotal(Si,f ) =
Nf∑

i=1

T
si,f
exe (vi,f ) +

∑

r(vi,f ,vj,f∈ξ)

T
(si,f ,sj,f )
tran (vi,f , vj,f ) (9)

3.3 Energy Consumption Model

The energy consumed for processing and transmission makes up the total energy
consumption. The processing energy consumption of the task vi,f is represented
by E

si,f
exe (vi,f ) and Etrans(vi,f , vj,f ) denotes the energy consumption which is

caused by the data transmission between the task vi,f and the task vj,f . The
formulation is given as

E
si,f
exe (vi,f ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wi,f

fl
· pA si,f = 1

(Twait +
wi,f

fcl
+ LLAN ) · pI si,f = 2

(
wi,f

fc
+ LLAN ) · pI si,f = 3

(10)
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where the consumed power when MD is in the active state is denoted as pA and
pI denotes the consumed power of inactive MD. The energy consumption caused
by transmission between task vi,f and task vj,f is shown as

E
(si,f ,sj,f )
tran (vi,f , vj,f ) =

di,j

B
· pT (11)

where pT shows the transmitted power of the MD. Thus, the total energy con-
sumption of the fth workflow is given as

Etotal(Si,f ) =
N∑

i=1

E
si,f
exe (vi,f ) +

∑

r(vi,f ,vj,f∈ξ)

E
(si,f ,sj,f )
tran (vi,f , vj,f ) (12)

3.4 Problem Formulation

The objective of the offloading issue is not only to minimize the total consump-
tion of energy, but also optimize the execution time of the WAs while meeting
timing constraints of WAs. The objective function is calculated by

Min Etotal(Si,f ),∀f ∈ {1, 2...F} (13)

Min Ttotal(Si,f ),∀f ∈ {1, 2...F} (14)

s.t.Ttotal(Si,f ) ≤ Tddl,∀f ∈ {1, 2...F} (15)

si ∈ {1, 2, 3} (16)

where Tddl shows the constrained time of the fth WA.

4 Multi-objective Offloading Algorithm for Hybrid
Workflow Applications

In this section, the details of our algorithm are illustrated. Firstly, in order to
make PSO algorithm more suitable for solving discrete problem, we redefine
some basic parameters. Then, the basic steps of multi-objective offloading algo-
rithm for hybrid WAs(MOHWA) are described. Meanwhile, the structure and
the construction method of hybrid WAs are depicted.

4.1 Preliminary

PSO is an effective and efficient algorithm inspired by the foraging behavior of
animals where each particle in the group can update its velocity and direction
dynamically through continuous learning of the group and its activities so as to
improve the collective interests effectively. Originally, PSO algorithm was pro-
posed for solving continuous space problems in 1995 [16]. Later, in 1997, the
discrete binary version of the algorithm was presented to operate on discrete
binary variables [17].
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PSO propose an efficient global search algorithm based on the group intelli-
gence. Firstly, PSO distributes the particles into solution space randomly. Each
particle has a position, velocity and other information, and we will record the
optimal position of the particle. Then, a fitness function is designed to evaluate
the position of particles. Before each movement of particles, it will search the
nearby area first, and compare the position of the nearest particle to the target
with the best position in its own memory and adjusts its speed and direction
according to these, until the particles in the group pass through the target posi-
tion or reach the upper limit of iteration times.

PSO is often used to solve the continuous problems, but in solving discrete
problems, the performance of PSO is not very well. Therefore, we redefine some
parameters and attributes in PSO to solve discrete offloading strategy problems.
The redefinition is as follows:

Definition 1. The Properties of Particles: As shown in Fig. 3, each task is an
individual in the algorithm, also known as a particle, and each WA is a group,
also known as population. Every individual in the swarm can search for the best
position through his own experience and the experience of the group by vectors
adding.

Definition 2. The offloading paths of particles: Defining the location of each
particle is its offloading strategy. Each WA consists of many tasks. When tasks
are offloaded, they have three paths to choose. We define the offloading path
d ∈ {1, 2, 3}, and the position of particles P k

i (d, n) ∈ {0, 1}. If P k
i (1, n) = 1, the

task will be executed locally. If P k
i (2, n) = 1, the task will be offloaded to cloudlet

for execution. Correspondingly, if P k
i (3, n) = 1, the task will be offloaded to the

cloud.

Definition 3. The velocity of particles: We define the velocity of each particle
as a matrix of d×1. Correspondingly, the velocity equation V k+1

i (d, n) in discrete
case is constructed. Furthermore, the velocity of each WA is a matrix of d × n.
In this way, we can easily find out which path the particle offloaded with the
fastest speed.

Definition 4. Redefining Decision Parameters: We redefine the determinant
parameters of the method. Convert the velocity inertia parameter ω, the impact
of the optimal location currently found by individuals c1 and the impact of the
optimal location currently found by groups c2 from fixed to variable ones. They
will change with the need of our offloading strategy. Moreover, the convergence
factor α is added to prevent the potential problem of local convergence of the
algorithm.

4.2 The Basic Steps of MOHWA

Compared to other algorithms, PSO has a better computing ability, which can
achieve convergence in a short time, especially in solving big data issues. How-
ever, the diversity of the population in the search space may be lost, which may
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Fig. 3. The graphical representation of PSO

lead to local convergence. In order to solve this problem, we propose an improved
optimization method based on PSO algorithm, named MOHWA. Our objective
is to find the best offloading strategy to optimize both energy consumption and
the time consumption of MDs jointly. In our algorithm, each particle is evalu-
ated by the fitness function and the computation of the fitness value is shown
as Eq. (17):

Fit(Vi,j) = Etotal(Si, f) + Ttotal(Si,f ),∀f ∈ {1, 2...F} (17)

Equation (17) means the smaller of the fitness, the result is better. The prop-
erties of the particle are defined by a d×N position matrix P (d, n) and a 1×N
velocity matrix V (d, n). The position and the velocity of particles update as the
algorithm iterates to find the best position, P (d, n) and V (d, n) is updated by
using Eq. (18) and (19):

P k+1
i (d, n) =

{
1 if(V k+1

i (d, n) = maxV k+1
i (d, n))

0 otherwise
(18)

V k+1
i (d, n) = wV k

i (d, n)

+ c1r1((pbesti(d, n)) − Xk
i (d, n))

+ c2r2((gbesti(d, n)) − Xk
i (d, n)) (19)

In Eqs. (18) and (19), V k
i and P k

i refer to the velocity and position of the
task in the k-th iteration. In Eq. (18), the position of particles is updated by
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comparing their velocities. In Eq. (19), w is inertia weight, which is used to
measure the effect of current individual speed, the larger w, the greater the
impact of current individual speed vice versa. Similarly, c1 and c2 are used to
measure the impact of the optimal location currently found by individuals and
groups to the next offloading respectively. The greater the values of c1 and c2,
the greater the impact of the corresponding factors. Finally, the position of the
current individual can be updated by adding vectors.

Algorithm 1. PSO-based location updating method
Input: Attributes of Workflow and Deadline Wf = (V, ξ), Tddl;
Output: Optimal location S∗ = (s∗

1, s
∗
2, · · ·, s∗

n), Time, Energy;
1: Predefine the bandwidth of LAN Bc and the bandwidth of WAN Bcl

2: Predefine the computation capacity fc and fcl
3: Set the cloudlet parameters λ, η, and MV
4: Initialize the key parameters w, c1, c2, r1, r2
5: Initialize the position of particles Pi = p1, p2, · · ·, pn, pn ∈ {1, 2, 3}
6: Set the convergence factor α ∈ (0, 1)
7: gbestnew ← 0, Di

p ← 0, Di
g ← 0, pbestinew ← 0

8: for each i ∈ θ do
9: Use (9) and (12) calculate the extremum of two targets pbestie, pbestit, gbeste

and gbestt
10: end for
11: while (k � Imax) or (gbestnew � Istop) do
12: gbestnew = Average(gbeste, gbestt)
13: for each i ∈ θ do
14: Di

p = Abs(pbestie − pbestit)
15: Dg = Abs(gbeste − gbestt)
16: if Di

p < Dg then
17: pbestinew = RandSelect{pbestie, pbestit}
18: else if Di

p � Dg then
19: pbestinew = Average{pbestie, pbestit}
20: end if
21: Bring pbestnew and gbestnew into (18) and (19) to renewal P and V
22: end for
23: for each i ∈ θ do
24: if α = 1 then
25: pi = RandSelect{1, 2, 3}
26: end if
27: end for
28: end while

Algorithms 1 describes the basic steps of MOHWA. The input is attribute
Wf = (V, ξ) of WAs and the constrained deadline Tddl, the output is the optimal
offloading strategy. Firstly, we set Bc, Bcl, fc fcl and some key parameters used
in calculation (line 1–4). Next, we need to randomize the initial position Pi =
(p1, p2, · · ·, pn). In this experiment, the offloading path is set to three levels: local
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execution, offloading to cloudlet execution and offloading to cloud execution,
which is expressed as pn ∈ {1, 2, 3} (line 5). Then we define the scope of α, which
is the convergence factor and effectively prevents local convergence and greatly
improves the inherent shortcomings of PSO (line 6). Some other characters that
need to be predefined are to prepare for iteration (line 7). Next, updating the
extremum of the particles (line 8–10). gbestnew is a trade-off between the optimal
values of a population on two objectives, in which Average can be an average or a
dynamic selection of a certain proportion (line 11–12). Di

p and Dg are predefined
quantities for the next two-objective optimal solution, and their values change
dynamically with the change of iteration (line 13–15). Then, according to the
comparison of Di

p and Dg, the value of pbestinew can be obtained (line 16–20).
Using gbestnew and pbestinew instead of the original gbest and pbest in Eq. (19),
which calculate V and P are the result of multi-objective considerations (line
21). Finally, the convergence factor α is used to further modify the results to
prevent local convergence of the results (line 22–28).

4.3 The Mechanisms of Hybrid Workflow Applications

When solving hybrid WAs synthetically based on PSO with two objectives of
energy consumption and time consumption. The emphasis is on the establish-
ment of WAs model and how to avoid the disadvantage that PSO is easy to
converge locally. In order to optimize hybrid WAs, we define a set of ordered
WAs and a set of unordered WAs.

(a) graph1 (b) graph2

Fig. 4. The collection of sequential WAs

As shown in Fig. 4, there are two ordered WAs, each WA has 13 subtasks and
each subtask represents a particle in the swarm. There is a certain amount of
assignments that need to be transferred between two tasks. Each task may have
several precursor tasks and several successor tasks. For each task, it can only be
performed if all of its predecessor tasks are finished. For example, for task 5 in
Fig. 4.(b), it can only be computed when task 2, task 3 and task 4 have been
finished.

Similarly, as shown in Fig. 5, a set of unordered WAs are defined, and the
relationship between tasks is more stochastic than the two WAs in Fig. 5. In this
way, we can construct three different input situations: two ordered WAs, two
ordered WAs and an unordered WA, two ordered WAs, as well as two unordered
WAs. Moreover, comparing energy consumption and time consumption of MDs
can also test the adaptability of our method efficiency.
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(a) graph3 (b) graph4

Fig. 5. The collection of unordered WAs

5 Experimental Evaluation

In this section, a series of comparative experiments are conducted to evaluate
the performance of MOHWA. First, in order to test efficient, we preset a series
of relevant parameters. Then, we evaluate the performance of MOHWA by com-
paring it with the other three traditional task offloading paths, and on this basis,
we increase the number of WA to evaluate the performance further.

5.1 Experimental Settings

In order to analyze the effectiveness of the proposed method, we construct some
other task offloading methods besides MOHWA. The specific methods are as
follows.

No Offloading(NO): All tasks are completed on MDs, which is also the tra-
ditional task execution scheme, defined as NO. There is no transmission energy
consumption in the execution of tasks, but it may cause a heavy hardware burden
on local devices as the limitation of local computing efficiency and resources.

Offloading to Cloudlet Completely (OCCL): All tasks are offloaded to
the cloudlet for calculation, defined as OCCL. This is a more efficient strategy,
which allows faster computation, but the computing resources on the cloudlet
are limited. When the amount of tasks is very large, the task is not suitable for
execution on the cloudlet.

Offloading to Cloud Completely (OCC): All tasks are offloaded to could for
calculation, defined as OCC. This strategy can reduce the consumption of com-
puting greatly, which has almost infinite computing resources. However, there
will be a large transmission delay in task transmission compared with other
offloading methods.

MOHWA: One part of tasks are offloaded to the cloudlet, the other part are
offloaded to cloud, and the rest of them are completed on MD.

In our experiment, the methods are implemented base on MATLAB language
on a physical machine with 2 Intel Core i5-5200U 2.20 GHz processors and 4 GB
RAM and the operating system is Win7 64. Specific settings are shown in Table 1.
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Table 1. Simulation environment

Parameter Value

MDs’ power when CPU is idle 0.001 W

MDs’ power when CPU is busy 0.5 W

Task transfer capabilities of MDs 0.1 W

Task processing capabilities of MDs 500 MHZ

The computing competence of the cloudlet 2000 MHZ

The computing competence of the cloud 3000 MHZ

The latency of LAN 1 ms

The latency of WAN 30 ms

The bandwidth of LAN 100 kb/s

The bandwidth of WAN 50 kb/s

5.2 Performance Evaluation

In this paper, both energy consumption and the time consumption of each WA
under the constraint of time are considered, and the benefits are assessed by
fitness function. As shown in Fig. 4 and Fig. 5, four WAs are used for exper-
imental evaluation, each WA contains 13 tasks. There are certain constraints
and natural attributes between each service. The quantity for each service is
set as ω = {5, 14, 20, 5, 16, 13, 68, 55, 23, 53, 10, 22, 5}, and the dependence is
εi ∈ {1, 2, 3}. The relationship between the tasks determines the transmission
consumption between them. There are six situations. When εi = εj , both tasks
are completed at the same location, the transmission consumption Etran = 0.
When εi = 1, εj = 2, we need to use Eq. (12) to calculate the consumption.
Similarly, when εi = 1, εj = 3 or εi = 2, εj = 3 we need to use the corresponding
equation to solve its consumption.

As shown in Fig. 6, MOHWA is compared with the other three methods.
When WA = 2, the input is a mixture of two ordered WAs. When WA = 3, the
input is a mixture of two ordered WAs and one unordered WA. When WA =
4, the input is a mixture of two ordered WAs and two unordered WAs. These

(a) Energy consumption (b) Time consumption

Fig. 6. Comparison of two objectives with different strategies
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three scenarios have included almost all possible scenarios in hybrid WA, greatly
simplifying the experimental process. As the number of WAs increases, the con-
sumption of each method also rises, but we can see that MOHWA still has good
advantages, and through the analysis of the offloading results, we can get that
MOHWA is still feasible although the input is multi-WA.

Then, in order to explore how to optimize the unloading strategy concretely,
we analyze the offloading path of tasks. As shown in Fig. 7, we explore the spe-
cific offloading paths of the three hybrid WAs we contributed. We can know
that most of the tasks will be offloaded to the cloudlet because cloudlet has a
high computing speed and a closer distance between the mobile terminal and
the cloudlet, which also has a smaller transmission cost. However, there are still
a few tasks that have not been offloaded and are still computed locally. This
is because it does not generate the cost of task transmission and is suitable for
computing with small amount of task. Moreover, a small portion of the rest tasks
will be offloaded to the cloud for computation. Although the task offloaded to
the cloud will generate a lot of transmission cost, the tasks with a long queue
time delay are suitable to be offloaded to cloud due to its strong computing
power and nearly infinite computing resources. MOHWA achieves optimization
by allocating offloading strategies reasonably.

(a)The number of WAs = 2 (b)The number of WAs = 3

(c)The number of WAs = 4

Fig. 7. The number of tasks offloaded to each path

6 Conclusion

In this paper, the multi-objective computation offloading problem for hybrid
WAs in MEC environment are investigated. To tackle this problem, we have
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proposed a multi-objective computation offloading algorithm for hybrid WAs,
which generates the optimal application strategy while meeting the constrained
deadline of WAs. Extensive experimental evaluations have conducted to show
the efficiency and effectiveness of our proposed method.

In the future, we will focus on the computing offloading problem under the
dynamic changing circumstance of some key factors such as the queueing waiting
time and the power of edge servers. AdditioAccording to the waiting timenally,
we will improve the mathematic mode and the efficiency of optimization method
further, such as the convergence speed. In addition, the computation offloading
for WAs in multi-cloudlet scenario will be studied [21,22].
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