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Abstract. Timely and precise yield estimation is of great significance to agricul-
tural management and macro-policy formulation. In order to improve the accu-
racy and applicability of cotton yield estimation model, this paper proposes a
new method called SENP (Seedling Emergence and Number of Peaches) based
on Amazon Web Services (AWS). Firstly, using the high-resolution visible light
data obtained by the Unmanned Aerial Vehicle (UAV), the spatial position of
each cotton seedling in the region was extracted by U-Net model of deep learn-
ing. Secondly, Sentinel-2 data were used in analyzing the correlation between the
multi-temporal Normalized Difference Vegetation Index (NDVI) and the actual
yield, so as to determine the weighting factor of NDVI in each period in the model.
Subsequently, to determine the number of bolls, the growth state of cotton was
graded. Finally, combined with cotton boll weight, boll opening rate and other
information, the cotton yield in the experimental area was estimated by SENP
model, and the precision was verified according to the measured data of yield.
The experimental results reveal that the U-Net model can effectively extract the
information of cotton seedlings from the background with high accuracy. And
the precision rate, recall rate and F1 value reached 93.88%, 97.87% and 95.83%
respectively. NDVI based on time series can accurately reflect the growth state
of cotton, so as to obtain the predicted boll number of each cotton, which greatly
improves the accuracy and universality of the yield estimation model. The deter-
mination coefficient (R2) of the yield estimation model reached 0.92, indicating
that using SENP model for cotton yield estimation is an effective method. This
study also proved that the potential and advantage of combining the AWS plat-
form with SENP, due to its powerful cloud computing capacity, especially for
deep learning, time-series crop monitoring and large scale yield estimation. This
research can provide the reference information for cotton yield estimation and
cloud computing platform application.
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1 Introduction

Crop yield estimation exerts a vital part in formulating economic policies, and is an
important factor affecting regional economic development, ensuring food security and
maintaining sustainable agricultural development [1]. Cotton is one of the main crops
in China. It is exceedingly beneficial to farmers and government to cognize cotton’s
growth and yield, because they can implement correspondingmanagement and formulate
policies in advance, so as to obtain better economic and environmental benefits [2].

For a long time, yield estimation has been a research hotspot in agricultural science
[3–5]. With the development of science and technology, the research on cotton yield
estimation has been developed from traditional ground survey to multi-dimensional
and spatio-temporal remote sensing estimation. Yeom proposed an automatic open cot-
ton boll detection algorithm using ultra-fine spatial resolution UAV images [6]. Using
NOAA/AVHRR satellite data with high time resolution, Dalezios established NDVI
based on time series to estimate cotton yield [7]. By integrating the concept of cotton
growing area with similarity analysis of time-series NDVI data, Gao proposed a method
of cotton yield estimation [8]. In a word, cotton estimates which based on time series
is an effective method, but how to improve the accuracy of the estimated model is a
challenging issue, yet to be adequately resolved. Besides, remote sensing image data
based on time series requires great computing power and the conventional methods are
not conducive to the rapid application and promotion of the estimation model.

Recently, quite a few cloud computation platforms for geospatial data processing
have become available with big data-processing tools and high-performance computa-
tional power [9], including Google Earth Engine (GEE), Amazon Web Service (AWS)
and National Aeronautics and Space Administration (NASA) Earth Exchange (NEX)
[10]. They possess plentiful imagery archives and data products, and also can be easily
carried out for thematic mapping as well as spatiotemporal analyses, with the support of
parallel-processing computation and advanced machine learning algorithms [11]. The
advent of cloud computation platforms has altered the way of storing, managing, pro-
cessing and analyzing of massive amounts of large-scale geospatial data [12]. Zhang
investigated the potential and advantages of the freely accessible Landsat 8 Operational
Land Imager (OLI) imagery archive and GEE for exact tidal flats mapping [13]. By
using GEE, Venkatappa determined the threshold values of vegetation types to classify
land use categories in Cambodia through the analysis of phenological behaviors and the
development of a robust phenology-based threshold classification (PBTC) method for
the mapping and long-term monitoring of land cover changes [14].

The explicit goal of this research is to propose a new cotton yield estimation model
with the help of cloud computing platform to accurately draw cotton yield estimation
map. The research results can provide technical ideas for more convenient, accurate and
widely used cotton yield estimation.

2 Materials and Methods

2.1 Study Area

In this paper, Shihezi reclamation area of the 8th division of Xinjiang production and
construction corps in China was selected as the study area. It is located between latitudes
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44° 29′ 36′′ and 44° 29′ 55′′ North and longitudes 86° 01′ 00′′ and 86° 01′ 50′′ East.
The total area of the study area is about 637.08 acres, as shown in the Fig. 1. Xinjiang
has unique ecological and climatic conditions, even continuous farmland, and standard
farmland construction. The mechanization and scale of cotton planting are relatively
high, making it the most suitable area for remote sensing yield estimation and precision
agriculture in China [15].

Fig. 1. Location map of the study area

2.2 Datasets

UAV Data. TheUAVdata are obtained byDapeng cw-10UAVequippedwith sensors of
Canon camera EF-M18-55, which is mainly used for the extraction of cotton seedlings.
The data is a visible remote sensing image of the UAV taken at 11 am on May 23, 2018,
with a resolution of about 2.5 cm. At the time of data collection, the weather was good
and there was no wind. The UAV has a flight height of 150 mwith a longitudinal overlap
of 80% and a side overlap of 60%. Visible light data obtained by UAV are calibrated and
corrected by Pix4D software, and the whole workflow is automatically accomplished by
the software.

Sentinel-2 Data. Sentinel-2 data are mainly obtained fromAWS, which is used inmon-
itoring the growth of cotton in multi-time. The satellite carries a multispectral imager
(MSI), with an altitude of 786 km, covering 13 spectral bands and a width of 290 km.
The ground resolution is 10 m, 20 m and 60 m respectively. Sentinel-2 data are the only
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data that contains three bands in the range of the red edge, which is exceedingly effective
for monitoring vegetation health [16].

Ground Measured Data. The measured data on the ground are mainly used in calcu-
lating the process data and verify the results. In order to record the position and boundary
of ground measured data in detail and precisely match with UAV data, the experiment
found a total of 60 evenly distributed sample areas in the research area, including 40
experimental sample areas and 20 verification sample areas. We inserted a rod in the
center of each sample area and placed a red disk at the top of the rod. The size of the
sample area is 3 × 3 m. Therefore, it is indispensable to find the position of each rod in
the image, and extend 1.5 m up, down left and right respectively based on the center of
the rod, so as to obtain the position and vector boundary of the sample area. Experiments
demonstrate that the accuracy of the ground data collected by this method is higher than
that of other positioning methods, such as handheld GPS.

2.3 Yield Estimation

By using UAV data, exact information of cotton seedling emergence can be obtained
to grasp the spatial position and quantity of seedlings in the region. Using Sentinel-2
data, the growth state of cotton can be monitored in multi-time to estimate the boll
number. Based on the above results, the estimated yield of per cotton can be acquired.
Therefore, this study proposed a cotton yield estimation model and method based on
SENP (Seedling Emergence and Number of Peaches) with this notion, which provides
a technical method for realizing more precise cotton yield estimation (Fig. 2).

Fig. 2. Technology roadmap of SENP

Cotton Seedling Extraction. Deep learning has the characteristics that can extract the
image features automatically to make precise classification and recognition decisions
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[17]. Therefore, aiming at the high resolution remote sensing data of UAV, this exper-
iment uses the Fully Convolutional Networks (FCN) to extract the seedlings of cotton.
This network is frequently used in processing remote sensing images and has achieved
favorable results [18, 19]. We input the remote sensing image of cotton seedlings into
the cloud computing platform. Subsequently, we use the U-Net model which was stored
in the cloud computing platform and trained in advance to calculate the input image.
Finally, the extracted results are converted into point element classes, which are stored
in the cloud platform for later loading into the Sentinel-2 data (Fig. 3).

Fig. 3. Structure chart of U-Net

Cotton Growth Monitoring. The growth state of cotton in each growth period will
affect the formation of yield. Accordingly it has potential advantages to construct the
multi-temporal remote sensing yield estimation model to estimate the yield of cotton by
comparisonwith the single time. Firstly, theNDVI data ofmultiple periods are calculated
by using Sentinel-2 data. Secondly, correlation analysis was conducted between the
calculated results of all NDVI and themeasured results in the sample area, and theweight
of each period of data in the production estimation was obtained according to the size
and proportion of the correlation coefficient. According to the weight, a comprehensive
NDVI (CNDVI) can be calculated to evaluate the growth state of cotton during the whole
growth process. Finally, the predicted boll number of per cotton can be obtained by fitting
the measured average peach number in the experimental sample with CNDVI.

NDV I = N I R − R

N I R + R
(1)

CNDV I =
n∑

i=1

ai N DV Ii (2)

Where NIR and R represent Near Infrared band and Red band respectively and a
represents the weight of NDVI in different periods.
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Cotton Yield Estimation Model. The definition of SENP is formularized as:

SEN P =
n∑

i=1

Ci × Yi × T (3)

Y = N × W (4)

T = (

j∑

i=1

(Bi ÷ Ai )) ÷ j × L (5)

In the formula, SENP is the predicted total output of cotton in a certain region.
And n represents the total number of cotton seedlings in the region. C represents cotton
seedlings of different spatial positions. Y represents the predicted yield of per cotton
at the corresponding position. T represents the rate of boll opening. N represents the
number of bolls. W represents the weight of each boll. And j represents the number of
sample areas. B represents the number of boll that has opened. A represents the total
number of bolls in sample area. L is a scaling factor (Fig. 4).

Fig. 4. Concept map of SENP

2.4 Build Cloud Platform Based on AWS and ESE

AWS. Generally, the services provided by cloud computing can be divided into three
layers. These three layers are Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) [20]. The first layer is Infrastructure, and the
second layer is Platform, and the third layer isApplication. Infrastructure services include
virtual or physical computers, storage in block, and network infrastructure (such as load
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balancing, content delivery networks, DNS resolution) [21]. The service of the platform
includes object storage, authentication service and access service, runtime of various
programs, queue service, database service and so on [22]. The service of application
software has many projects, such as mail service, code hosting service and so on. Users
can access and use these services through desktop computers, laptops, mobile phones,
tablets and other Internet terminal devices. Amazon’s cloud service provides dozens of
services [23], including IaaS, PaaS and SaaS.

In 2006, AWS began offering IT infrastructure Services to enterprises as Web Ser-
vices, now commonly referred to as cloud computing. One of the main advantages of
cloud computing is the ability to supersede upfront capital infrastructure costs with lower
variable costs [24]. Instead of planning and purchasing servers and other IT infrastruc-
ture weeks in advance, companies can run hundreds of servers in minutes and get results
faster by using cloud computing platform [25]. In 2018, AWS launched 1957 new ser-
vices and features, delivering innovation at an unmatched pace, especially in new areas
such as machine learning and artificial intelligence. At present, Amazon Web Services
provide a highly reliable, extensible and low-cost infrastructure platform in the cloud,
offering support to hundreds of enterprises in 190 countries and regions, making it the
most comprehensive and widely used cloud platform in the world [26] (Fig. 5).

Fig. 5. Structure chart of cloud computing services

ESE. ENVI Services Engine (ESE) is an enterprise server product advanced by Exelis
VIS. ESE provides ENVI, IDL, SARscape and other remote sensing image process-
ing capabilities as services to support online, on-demand remote sensing image appli-
cations [27]. It breaks down the barrier of professional remote sensing software and
high-end hardware for non-professionals and establishes more direct contact between
remote sensing experts and prospective end users. ESE can be deployed in a variety
of enterprise-level environments, including cluster environment, enterprise-level server
or cloud platform [28, 29], etc., making full use of high-performance server hardware
conditions to efficiently accomplish the remote sensing image processing of the large
amount of data.

ESE is established on top of mainstream REST frameworks and can run in clus-
tered environments, with scalability and load balancing capabilities. ESE gets HTTP
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and REST requests from the client-side, where ESE performs remote-sensing relevant
processing requests, and thereafter passes the results to the application. ESE’s image
processing function is packaged with JSON standard and can be seamlessly integrated
with image data services provided by other middleware (such as ArcGIS Server) (Fig. 6).

Fig. 6. Workflow of ESE

Cloud Platform Construction. The experiment mainly used AWS and ESE to estab-
lish a cloud computing platform for cotton yield estimation. The back-end development
of the platform mainly uses Interface Description Language (IDL) to customize appli-
cations, such as the calculation of NDVI, the classification of growth monitoring and the
calculation of SENP model. While the front-end development of the platform mainly
uses JavaScript to create custom Web applications, including the loading of maps, pre-
sentation of yield results and so on. The experiments used amazon’s Elastic Compute
Cloud (EC2) and Simple Storage Service (S3) Cloud services. EC2 is aWeb service that
provides scalable cloud computing capabilities and is designed to provide developers

Fig. 7. Usage of EC2 and S3
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with easy access to network-scale computing [30]. S3 is an internet-oriented storage
service that can store and retrieve data anywhere on the Web at any time (Fig. 7).

At the same time, AWS in the global region and AWS in the Chinese region are
used respectively. AWS in the global region is mainly used for downloading Sentinel-2
data, calculating NDVI and storing data, and after that passing the results to AWS in
the Chinese region. While AWS in the Chinese region mainly calculates UAV data and
multi-temporal NDVI data, and uses SENP model to estimate cotton yield. The final
consequence can be viewed in real time via the Web on a computer, tablet or mobile
phone (Fig. 8).

Fig. 8. Cloud computing platform of SENP

2.5 Accuracy Assessment

In order to strictly verify the reliability of production estimation model and the feasi-
bility of constructing cloud platform, the precision evaluation is carried out by rigorous
standards. Three indexes, Precision, Recall and F1 were used to evaluate the precision
of cotton seedling emergence. For cotton yield estimation, Coefficient of Determination
(R2) and Root Mean Square Error (RMSE) were selected to evaluate the results.

Precision = T P

T P + FP
(6)

Recall = T P

T P + FN
(7)

F1 = 2 × Precision × Recall

Precision + Recall
(8)
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RMSE =

√√√√√
N∑
i=1

(Ỹi − Yi )2

N
(9)

R2 =
(
N∑
i=1

(Ỹi − ¯̃Yi )(Yi − Ȳi ))2

N∑
i=1

(Ỹi − ¯̃Yi )2(Yi − Ȳi )2
(10)

Where TP is the number of cotton seedlings correctly extracted. FP is the number
of cotton seedlings wrongly extracted, and FN is the number of cotton seedlings not
extracted. N is the number of samples. Ỹi and Yi represent predicted yield and actual

yield. Ỹ and Ȳi are the average of predicted and measured yields respectively.

3 Results

3.1 Seedling Emergence and Extraction Results

The emergence of cotton seedlings is a key link in the construction of the SENP model,
which will affect the final estimation results to a large extent. Consequently, the meth-
ods and results of cotton extraction are crucial. At present, most scholars use spectral
information to calculate some vegetation indices of crops for extracting, and most of
them have achieved some favorable results [31–33]. But the research on the extraction
of cotton seedlings is still infrequent. In this paper, the high-resolution data obtained by
UAV were used and the spatial information of each cotton seedling in the region was
extracted by deep learning. The study area was about 637.08mu, and a total of 4,364,255
cotton seedlings were extracted in the end. The density of the cotton was about 6,850
per mu. Verified by the measured data, it can be seen that the accuracy of this method is
extremely high. The precision rate is 93.88%, and the recall rate is 97.87%, and the F1
value is 95.83%. Accordingly, the experimental results manifest that U-Net model can
effectively extract emergence information of cotton seedling. It is a valid method, which
can not only provide supports for the construction of SENP, but also provide a new idea
for extraction of cotton seedling (Fig. 9).
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Fig. 9. UAV images and seedling extraction results

3.2 Growth Monitoring Results

The multi-temporal growth monitoring of cotton is also another vital link in the con-
struction of the SENPmodel and the vegetation growth is an extremely complex process.
Since when the conditions of soil, water and chlorophyll change, it may have an impact
on the final yield. So it is necessary to monitor the growth of cotton based on time
series. By using Sentinel-2 data of cotton in 10 periods, the NDVI values of each period
were calculated and analyzed. Furthermore, the correlation between the actual yield and
40 experimental samples was calculated to determine the weight of each period that
was selected. By assigning weights to multi-temporal NDVI images, we used an image
(CNDVI) to classify the growth state of cotton accurately, objectively and reasonably.
According to the results of calculation, the correlation coefficients between NDVI and
yield are 0.69, 0.72, 0.75, 0.81, 0.88, 0.87, 0.82, 0.83, 0.75 and 0.72 respectively. The
results demonstrate that the correlation between the NDVI and the actual yield in cotton
boll period is relatively large, while the correlation between bud stage and boll opening
period is relatively small. Therefore, according to the size and proportion of the corre-
lation coefficient, the weights of 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.10, 0.11, 0.10 and
0.09 were assigned to each period’s NDVI image to construct CNDVI. The experimental
results can show that the estimated results based on multi-period are higher than that
based on single period (Fig. 10).
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Fig. 10. Cotton data based on time series: (a) Multi-temporal NDVI data; (b) Correlation linear
graph of NDVI and actual output in each period

3.3 Output Estimation Results

When the results of cotton seedling extraction and multi-temporal growth monitoring
are obtained, the yield estimation model can be constructed. In the experiment, the yield
of study area can be estimated with the aid of formula (3). The total area is 637.08
acres and the total output of cotton is 261,200.75 kg. Through the analysis of results,
it can be seen that the cotton yield in this region is relatively high. At the same time,
there is a positive correlation between the yield and the growth of cotton. Provided that
the growth situation is better, the yield is higher, which also accords with the actual
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situation of production. The experimental results also indirectly reveal that the theory
for estimating the yield by using SENP is feasible. In order to further quantitatively
verify the accuracy of results, this experiment uses actual yield of 20 validation samples
to carry out regression analysis on the predicted results of yield, and selects R2 and
RMSE as indicators to test the reliability of the model. If R2 gets closer to 1, the better
it fits. If R2 is bigger and RMSE is smaller, the prediction ability will be stronger. By
calculation, it can be seen that the R2 of yield estimation has reached 0.92 and the RMSE
is just 6.04, indicating that the accuracy of cotton yield estimation using SENP model
is extremely high.

In the past, the calculation based on deep learning or time series was extremely time
consuming and requires strong capability. Nevertheless, this experiment uses AWS to
give full play to its advantages, so that it takes just 22 s fromdata download to presentation
of yield estimation. Moreover, the whole process is accomplished automatically. Users
can view the results of cotton growth and final yield estimation by logging on the Web
conveniently. So we can see that the efficiency of this platform is overwhelmingly high,
which fully proves the potential and advantages of the combination between SENP and
AWS (Fig. 11) (Table 1)

Fig. 11. Results of yield estimation

Table 1. Efficiency of the platform

Tasks Time

Data download 70 m/s

Cloud computing 12 s

Data transmission 20 m/s

Results show 0.5 s
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3.4 Cloud Platform Display

Based on AWS and ESE, this experiment has successfully established an online cloud
platform of cotton estimation. The back-end development of the platform is based on
IDL, while the front-end development of the platform is mainly based on JavaScript.
When users log on the Web through the Internet, they can not only obtain cotton yield
estimation, but also realize numerous functions, such as searching and managing infor-
mation of land, transmitting and viewing sensor information, obtaining meteorological
data, generating results report and so on (Fig. 12).

Fig. 12. Cloud platform display

4 Discussion

Prediction of cotton yield is a complicated work, which not only requires considering
the practicability and feasibility of the technology, but also requires considering the
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credibility and accuracy of the prediction results. This paper proposes a new cotton
yield estimation model named SENP. The application of this method in accurate yield
estimation has certain reference value, but the potential factors that may affect the results
of yield estimation still need further exploration and research.

(1) UAV is an effective way to gain high-resolution data with a lot of superiorities. But
the capability of data acquisition is relatively influenced by some factors. If search
further explores cotton yield estimation methods in larger areas in the future, there
may be some limitations on data acquisition.

(2) The experiment used NDVI data of 10 periods to monitor and analyze the growth
of cotton, and achieved some favorable results. However, how to choose the best
time of cotton monitoring has not been studied systematically. And in the future,
we will try to use more data at different times to monitor cotton growth so as to
explore the possibility of improving the accuracy of the model.

(3) Cloud computing has many advantages and the platform based on AWS and ESE
can efficiently and rapidly calculate the results of yield estimation. In the later
stage, it can attempt to further optimize the display of interface and graphics pro-
cessing algorithm to improve the calculation speed and increase the quality of user
experience.

5 Conclusions

Taking full advantage of cloud computing, this paper presents a new cotton yield estima-
tion model based on AWS, which can provide a new notion for innovative application of
cloud computing platform and research of cotton yield estimation. Themain conclusions
of this research are as follows:

(1) For high-resolution data of UAV, U-Net model can effectively extract the infor-
mation of cotton seeding emergence, accurately obtain the spatial position of each
cotton seedling and calculate the total number of cotton in the region.

(2) Exact monitoring results of cotton growth are conducive to the establishment of
model. Using NDVI data of cotton in a certain period to evaluate its state is not
representative and precise. While using time series data of NDVI is a better way to
monitor the growth of cotton.

(3) The experimental results demonstrate that it is feasible to use the information of
emergence and growth of cotton to estimate yield. Verified by actual yield, the
cotton yield estimation model based on SENP was confirmed to be reliable with
high accuracy.

(4) Giving full play to the advantages of cloud computing, an online cotton yield estima-
tion platform based on AWS and ESEwas established, which can provide reference
information for regional agricultural management and macro decision-making. It
has played an active role in boosting the process of precision agriculture in China.
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