
Refactor Business Process Models for Efficiency
Improvement

Fei Dai1,4, Miao Liu2, Qi Mo2,4(B), Bi Huang1, and Tong Li3,4

1 School of Big Data and Intelligent Engineering, Southwest Forestry University,
Kunming, China

2 School of Software, Yunnan University, Kunming, China
moqiyueyang@163.com

3 School of Big Data, Yunnan Agricultural University, Kunming, China
4 Key Laboratory for Software Engineering of Yunnan Province, Kunming, China

Abstract. Since business processes describe the core value chain of enterprises,
thousands of business processes are modeled in business process models. A prob-
lem is how to improve the efficiency of these models. In this paper, we propose an
approach to refactor these models for efficiency improvement. More specifically,
we first identify false sequence relations that affect model efficiency based on the
sequence relation matrix and the dependency relation matrix. Second, we refactor
a business process model by constructing and transforming a dependency graph
without altering its output result. After refactoring, the concurrent execution of
business tasks in the original models can be maximized such that its efficiency
can be improved. Experimental results show the effectiveness of our approach.

Keywords: Business process model · Efficiency improvement · Refactor · Petri
net

1 Introduction

Since business processes describe the core value chain of enterprises, many business
managers are attracted to build Process-Aware Information System (PAIS). With the
board use of PAIS, thousands of business process models [1] are modeled for a variety of
purposes, e.g. process analysis and process enactment. Since modeling business process
is error-prone [2], the quality ofmodels is difficult to be guaranteed [3].Whenmodeling a
business process model, a question that arises here is that, can we improve its efficiency?
For example, two tasks that can be executed concurrently have been modeled as being
executed sequentially.Consequentially, the enactment of this processmodel is inefficient.

Although there ismuchwork onmodel soundness analysis [4], i.e. proper termination
and no dead tasks, this technique cannot be used to improve themodel’s efficiency. Thus,
we focus on refactoring business process models for efficiency improvement.

In our approach, we first identify false sequence relations that affectmodel efficiency.
More specifically, given a business process model, we check whether two business tasks
with a sequence relation has a data dependency relation. If the two tasks has no data

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

X. Zhang et al. (Eds.): CloudComp 2019/SmartGift 2019, LNICST 322, pp. 454–467, 2020.

https://doi.org/10.1007/978-3-030-48513-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48513-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-48513-9_37

Refactor Business Process Models for Efficiency Improvement 455

dependency relation, the sequence relation among them is false. Second, we refactor a
business processmodel using a dependency graph. After refactoring, tasks in the original
business process models can be maximized concurrent execution, so their efficiency can
be improved.

In this work, we make the following main contributions:

• We identify false sequence relations based on the sequence relation matrix and the
dependency relation matrix.

• We refactor business process models for efficiency improvement by maximizing the
task’s concurrent execution.

We organize the rest of this article as follows. Section 2 introduces our motiva-
tion and related work. Section 3 presents the definitions used throughout this paper.
Section 4 presents a refactoring process for efficiency improvement. Section 5 evaluates
the effectiveness of our approach. Section 6 concludes our work and points out one future
direction.

2 Motivation and Related Work

2.1 Motivation

Figure 1 shows an inefficient online shopping purchase process in [5]. The circles denote
places which can have tokens and the rectangles denote tasks. First, goods are bought via
the Internet (task A). As a result of task A, the outputs are the buyer’s address (variable
x) and the money to be paid. Then, goods are shipped (task B). The input of task B
is the buyer’s address (variable x) and the output is the goods declaration (variable z).
Once task C is executed (i.e., the goods are received), the input of task C is the goods
declaration (variable z) and the output is the sign for receipt (variable s). Then, the bill
is sent to the buyer (task D). The input of task D is the buyer pays the amount (variable
y) and the output is the payment request (variable p). After task E is executed (i.e., the
bill is paid by the buyer), the input of task E is the payment request (variable p) and the
output is the completed payment (variable q). Finally, this transaction is archived by the
seller (task F), the input of task F is the buyer’s signature (variable s) and the completed
payment (variable q).

A
O:x
O:y

B
I:x
O:z

C
I:z
O:s

D
I:y
O:p

E
I:p
O:q

F
I:s
I:q

Fig. 1. An inefficient business process model

All the tasks must be executed sequentially in Fig. 1. Since task D can be executed
after task C has been completed, there is a sequence relation between them. However,
from a data perspective, the sequence relation is false. Since there is no intersection

456 F. Dai et al.

A
O:x
O:y

B
I:x
O:z

C
I:z
O:s

D
I:y
O:p

E
I:p
O:q

E
I:s
I:q

Fig. 2. A refactored business process model with more efficiency

between tasks C and D (i.e., tasks C and D have no data dependency), the two tasks can
be executed concurrently.

Based on the analysis, the original model in Fig. 1 is inefficient. After refactoring,
Fig. 2 shows the refactored model. Intuitively, the refactored model takes less time to
execute, i.e., the refactored model is more efficient than the original model. So this
refactoring technique can change the false sequence relation between two tasks in the
original process model into a concurrence relation, which maximizes the concurrent
execution of the two tasks.

2.2 Related Work

To improve the quality of activity tags, the authors proposed an approach based on
corpus’s second-order similarity in [6] to automatically annotate activity tags in the
business process model. Further, the authors investigated how the activity tag style
affects models’comprehensibility in [7]. The authors proposed an automatic refactoring
technique for converting the activity tag’ style in [8]. These works mentioned above
mainly focuses on the quality of the model from the view of activity tags. However, our
work focuses on the model’s efficiency improvement.

To improve the comprehensibility andmaintainability ofmodels, the authors summed
up eight process model smells to help process designers identify the process model
with low quality in [9]. The authors proposed a refactoring technique based on the
measure of activity tag consistency and process overlap,which can automatically identify
the opportunity to apply four refactoring operations in [10]. The authors focused on
selecting the appropriate business process model operation sets by evaluating the quality
of comprehensibility and modifiability in [11]. These works mentioned above mainly
focuses on focuses on the comprehensibility and maintainability of the model. However,
they also cannot be used to improve the efficiency of models.

Theonlyworkon refactoringmodels for efficiency improvement is in [5]. The authors
proposed an approach to refactor business process models for efficiency improvement
using process mining technology. Our work is different with Jin’s work in that our
approach can ensure that the refactored models are structured.

Refactor Business Process Models for Efficiency Improvement 457

3 Preliminaries

Petri nets are often used to model business process models, due to its formalization
foundation and analysis technique.

Definition 1 (Petri net): A Petri net is a triple N = (P, T, F) where:

• P is a set of places;
• T is a set of transitions;
• F ⊆ (P × T) ∪ (T × P) is a flow relation.

StateM is the marking of N and can be defined as:M:P → {0,1,2,3, …}.M0 often
refers to the initial state of N.

Denote X = (P ∪ T), for a node u∈X, •u = {v ∈ X | (v, u) ∈ F} is called the preset
of u; u• = {v ∈ X | (u, v) ∈ F} is called the postset of u.

Definition 2 (WF-net): A Petri net N = (P, T, F) is a WF-net(workflow net), iff:

• i ∈ P is a source place such that •i = φ;
• o ∈ P is a sink place such that o• = φ; and
• x ∈ P ∪ T is on a path from i to o.

WF-net is a subclass of Petri net. It was first proposed in [12] and was used to model
business processes.

Definition 3 (DWF-net) [5]: A DWN = (P, T, F, D, Input, Output) is a DWF-net
(workflow net with data), where:

• N = (P, T, F) is a WF-net;
• D is the set of data consumed and provided by WF-net;
• Input: T → D denotes the set of data consumed by tasks,
• Output: T → D denotes the set of data provided by tasks.

If a DWF-net is unstructured, the work in [13] and [14] discussed how to convert
unstructured DWF-nets into structured DWF-nets in detail. Thus we suppose that each
DWF-net is structured.

Definition 4 (Direct sequence relation): Let DWN = (P, T, F, D, Input, Output) be a
workflow net with data, t1, t2 ∈ T. We say t1 and t2 have a direct sequence relation,
denoted as t1 > t2, if there exists a place p ∈ P, such that t1 ∈ •p ∧t2 ∈ p•∧|•p| = 1∧|p•|
= 1.

Definition 5 (Transitive sequence relation): Let DWN = (P, T, F, D, Input, Output)
be a workflow net with data, t1, t2, t3 ∈ T. We say t1 and t3 have a transitive sequence
relation, denoted as t1 � t3, if t1 > t2∧t2 > t3.

In this paper, direct sequence relations and transitive sequence relations are called
sequence relations.

458 F. Dai et al.

Definition 6 (Direct data dependency relation): LetDWN = (P, T, F, D, Input, Output)
be a workflow net with data, t1, t2 ∈ T, t1 is executed before t2, there is a direct data
dependency relation denoted as t1δdt2, if t1 and t2 satisfy one of the following conditions:

• Output(t1) ∩ Input(t2) ⊆ D. That is, there is a true-dependency relation between t1
and t2.

• Output(t2) ∩ Input(t1) ⊆ D. That is, there is an anti-dependency relation between t1
and t2 t1 and t2.

• Output(t1)∩Output(t2)⊆D. That is, there is an output-dependency relation between
t1 and t2 t1 and t2.

The relation of δd can be transitive.

Definition 7 (Transitive data dependency relation): Let DWN = (P, T, F, D, Input,
Output) be a workflow net with data, t1, t2, t3∈T, there is a transitive data dependency
relation denoted as t1δ*t3 if t1δdt2 ∧ t2δdt3.

Transitive data dependency relations are also transitive. In this paper, direct data
dependency relations and transitive data dependency relations are called data dependency
relations denoted as δ.

Definition 8 (Control dependency relation):LetDWN = (P, T,F,D, Input, Output) be
a workflow net with data, t1, t2 ∈ T, t1 is executed before t2, there is a control dependency
relation between t1 and t2, denote as t1δct2, iff t1 ∈ •p ∧ t2 ∈ p•∧¬(|•p| = 1 ∧ |p•| = 1).

4 Our Proposed Approach

Figure 3 shows an overview of our approach, which consists of five steps.

• Step 1: construct a sequence relation matrix from the given business process model.
• Step 2: construct a dependency relationmatrix from the given business process model.
• Step 3: identify false sequence relations based on the sequence relation matrix and
the dependency relation matrix.

• Step 4: construct a dependency graph.
• Step 5: transform a dependency graph into a DWF-net.

4.1 Construct a Sequence Relation Matrix

According to the αmining algorithm [15], there are three types of task relations, namely
sequence relation, selection relation, and concurrency relation. Since only the sequence
relation leads to model inefficiency, we try to construct a sequence relation matrix that
records the direct sequence relation or the transitive sequence relation between two tasks
in a business process model using Algorithm 1.

Refactor Business Process Models for Efficiency Improvement 459

construct a
sequence relation

matrix

construct a
dependency

relation matrix

identify false
sequence relations

Transform a
dependency

graph

Construct a
dependency

graph

Fig. 3. Overview of our approach

According to definition 4, we obtain all direct sequence relations of > directly
by traversing all the places in a business process, which be found in lines 1–9 of
Algorithm 1.

According to Definition 5, after direct sequence relations are obtained, the transitive
sequence relations of � can be computed using the lines 10–18 of Algorithm 1.

Let m and n be separately the number of places and the number of transitions.
Algorithm 1’s worst time complexity is O(m*n2 + n3).

5. set t1> t2 in SM;
6. end for
7. end for
8. end if
9. end for
10. for t1∈T do
11. for t2∈T do
12. for t3 T
13. if((t1 t2 t2 t3 t1! t3) (t1 t2 t2 t3 t1! t3) (t1 t2 t2 t3 t1! t3)

(t1 t2 t2 t3 ∧ 1! t3) then
14. set t1 t3 in SM;
15. end if
16. end for
17. end for
18. end for
19. return SM;

Algorithm 1: construct a sequence relation matrix

Input: DWN=(P, T, F, D, Input, Output)
Output: a sequence relation matrix SM|T|*|T|
1. for p∈P do
2. if (|•p|==1)∧(|p•|==1) then
3. for t1∈•p do
4. for t2∈p• do

460 F. Dai et al.

For the model in Fig. 1, we can construct the sequence relation matrix as follows.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D E F
A > � � � �
B > � � �
C > � �
D > �
E >

F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.2 Construct a Dependency Relation Matrix

For two transitions having a sequence relation, the data dependency relation between
them is either δd, δ*, δc or null. In this step, we construct a dependency relation matrix
using Algorithm 2. The dependency relation matrix records the direct data dependency
relation or the transitive data dependency relation between two tasks in a business process
model. Besides, the dependency relation matrix records the control dependency relation
between two tasks in a business process model.

According to Definition 6, we can obtain all direct data dependency relations of δd

directly by traversing all the transitions in a business process, which be found in lines
1–7 of Algorithm 2.

According to Definition 7, after direct data dependency relations of δd is obtained,
the transitive data dependency relations of δ* can be computed using the lines 8–16 of
Algorithm 2 (lines 8–16).

According to Definition 8, we can obtain all control dependency relations of δc

directly by traversing all the places in a business process, which be found in lines 17–25
of Algorithm 2(lines 17–25).

Let m and n be separately the number of places and the number of transitions.
Algorithm 2’s worst time complexity is O(m*n2 + n3).

Refactor Business Process Models for Efficiency Improvement 461

1 for t1∈T do
2 for t2∈T ∧(t1>t2∨t1 t2) do
3 if ((Output(t2)∩Input(t1) ≠φ)∨ (Output(t1)∩Input(t2)≠φ) ∨(Output(t1)∩Output(t2)≠φ)) then
4 set t1δdt2 in DM;
5 end if
6 end for
7 end for
8 for t1∈T do
9 for t2∈T do
10 for t3∈T
11 if((t1δdt2 t2δdt3 t1!δ*t3) (t1δdt2 t2δ*t3 t1!δ*t3) (t1δ*t2 t2δ*t3 t1!δ*t3) (t1δ*t2 t2δdt3 t1!
δ*t3)) then
12 set t1δ*t3 in DM;
13 end if
14 end for
15 end for
16 end for
17. for p∈P do
18. if ((|•p|==1) (|p• 1)) ((|•p ∧(|p•|==1)) then
19. for t1∈•p do
20. for t2∈p• do
21. set t1δc t2 in DM;
22. end for
23. end for
24. end if
25. end for
26. return DM;

Algorithm 2: construct a dependency relation matrix

Input: DWN=(P, T, F, D, Input, Output)
Output: a dependency relation matrix DM|T|*|T|

For the model in Fig. 1, we can construct the dependency relation matrix as follows.
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D E F
A δd δ∗ δd δ∗ δ∗
B δd δ∗
C δd

D δd δ∗
E δd

F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.3 Identify False Sequence Relations

We identify false sequence relations using Algorithm 3. If the two tasks have a sequence
relation in a sequence relation matrix but have no data dependency relation in the corre-
sponding dependency relation matrix, the sequence relation is false. The false sequence
relation can be a false adjacent sequence relation (for two adjacent transitions on the
same path) or a false transitive sequence relation (for two not adjacent transitions on the
same path).

462 F. Dai et al.

1) a false adjacent sequence relation: If two tasks in a business process model have an
adjacent sequence relation in its sequence relation matrix but no direct data depen-
dency relation in its corresponding data dependency relation matrix, the adjacent
sequence relation is false.

2) a false transitive sequence relation: If two tasks in a business process model have a
transitive sequence relation in its sequence relation matrix but no transitive data
dependency relation in its corresponding data dependency relation matrix, the
transitive sequence relation is false.

Let n be the number of transitions in a business process model. The worst time
complexity of Algorithm 3 is O(n2).

Algorithm 3: identify false sequence relations

Input: DWN=(P, T, F, D, Input, Output), the related SM|T|*|T|, and the DM|T|*|T|
Output: the set of false sequence relations FSR
1 for t1∈T do
2 for t2∈T do
3 if ((t1,t2)== SRM) ((t1,t2)== φ in DM) then
4 FSR = FSR ∪{(t1,t2)};
5 end if
6 if ((t1,t2)== in SRM) ((t1,t2)== φ in DM) then
7 FSR = FSR ∪{(t1,t2)};
8 end if
9 end for
10 end for
11 return FSR;

For the model in Fig. 1, we can see that the direct sequence relation between the two
tasks C and D is false and that the transitive sequence relations between tasks B and D,
C and E, B and E are false.

4.4 Construct a Dependency Graph

We construct a dependency graph using Algorithm 4, which can be used to describe
data dependency relations between two tasks intuitively. In the dependency graph, the
two tasks with connected arcs must be executed sequentially while the two tasks without
arcs can be executed concurrently. In general, the circles denote tasks, the directed edges
denote arcs, and the label of each directed edge denotes the type of dependency relations.

Definition 9 (Dependency graph): A dependency graph is a triple DG = (T, A, R),
where:

• T is the set of tasks (T
= φ);
• A ⊆ T × T is the set of arcs;
• R: A → {δd, δ*, δc}is a labeling function that assigns to each arc x of A a label R(x).

According to Definition 9, we can traverse all the transitions in a business process to
obtain a dependency graph directly. The algorithm of constructing a dependency graph
can be found in Algorithm 4.

Refactor Business Process Models for Efficiency Improvement 463

Let n be the number of transitions in a business process model. The worst time
complexity of Algorithm 4 is O(n2).

2 for t1∈T do
3 for t2∈T do
4 if ((t1,t2)==δd in DM) then
5 set A= A∪{(t1,t2)}; R=R∪{((t1,t2), δd)}
6 end if
7 if ((t1,t2)==δ* in DM) then
8 set A= A∪{(t1,t2)}; R=R∪{((t1,t2), δ*)}
9 end if
10 if ((t1,t2)==δc in DM) then
11 set A= A∪{(t1,t2)}; R=R∪{((t1,t2), δc)}
12 end if
13 end for
14 end for
15 return DG

Algorithm 4: construct a dependency graph

Input: DWN=(P, T, F, D, Input, Output), the related dependency matrix DM|T|*|T

Output: the dependency graph DG
1 DG.T=DN.T

For the model in Fig. 1, we construct its dependency graph, which is shown in Fig. 4.

A

B

D

C

E

F

d

d

d

d

d

d

Fig. 4. A dependency graph for the process model in Fig. 1

4.5 Transform a Dependency Graph

Transform a dependency graph means to transform a dependency graph into a DWF-net
according to the transforming rules using Algorithm 5. There are four steps:

1) transform node: each node in the dependency graph is transformed into a transition
in the Petri net (rule 1);

2) transform sequence structure: each graph segment as shown in Table 1 (rule 2) in
the dependency graph is transformed into a sequence structure;

3) transform selection structure:each graph segment as shown in Table 1 (rule 3 and
rule 4) in the dependency graph is transformed into a selection structure;

4) add extra places: add the start place and the end place.

464 F. Dai et al.

4. end for
//) transform selection structures
5. for ((ti, tj), δc), (ti, tk), δc), …, (ti, ts), δc))∈R in SDG do
6. Pr=Pr-{pik}-….-{pis}; Fr=Fr-{(ti, pik)}-…-{(ti, pis)}-{(pik, tk)}-…-{(pis,ts)}∪(pij, tk)
∪…∪(pij, ts);
7. end for
8. for ((ti, tj), δc), (tk, tj), δc), …, (ts, tj), δc))∈R in SDG do
9. Pr=Pr-{pkj}-….-{psj}; Fr=Fr-{(tk, pkj)}-…-{(ts, psj)}-{(pkj, tj)}-…-{(psj, tj)}∪(tk, pij)
∪…∪(ts,pij);
10. end for
//add the start place and the end place
11. for ti∈Tr do
12. if ••ti=φ then
13. Pr=Pr∪{psatrti}; Fr =Fr∪{(psatrti,ti)};
14. end if
15. if ti

•=φ then
16. Pr=Pr∪{pendi}; Fr =Fr∪{(ti, pendi)};
17. end if
18. end for
19. return DNr

Algorithm 5 transform a dependency graph

Input: DWN=(P, T, F, D, Input, Output) and its related simplified dependency graph SDG = (T,
A , R)
Output: a structured workflow net with data DNr=(Pr, Tr, Fr, Mr, Dr, Inputr, Outputr)
//transform nodes
1. Tr=T; Inputr= Input; Dr=D;O utputr=Output;
// transform sequence structures
2. for (ti, tj)∈A in SDG do
3. Pr= Pr∪pij; Fr=Fr∪{(ti, pij)}∪{(pij, tj)};

Table 1. Transformation rules

We can transform the dependency graph in Fig. 4 into a DWF-net in Fig. 2 using the
above transformation rules.

Refactor Business Process Models for Efficiency Improvement 465

5 Experiments

We implemented a prototype tool based on PIPE (The Platform Independent Petri Net
Editor) [16]. In Fig. 5, the example given in this paper is on the left and the refactored
model is on the right.

200 different DWF-nets are generated randomly. All experiments were conducted
on the same computer with Inter (R) i5 2.5 GHz and 8 GB RAM, Windows 10 and
JDK 7.

To evaluate the effectiveness of our approach, parallelism degree (PD) as Eq. 1 is
used to measure the concurrency according to the work in [5, 17]. If the PD of the
refactored model is greater than the PD of the original model, it means that our approach
can improve the original business process model’s efficiency.

PD =
∑

dout (t)>1
(dout (t) − 1) (1)

Where dout (t) represents the output degree of task t; dout (t) > 1 indicates that the
out degree of task t is greater than one. If PD = −1, no task in the business process
model can execute concurrently.

Fig. 5. The screenshot of tool prototype

Table 2 presents some experimental results, including the tasks with dout (t) > 1
in the original model (numberb), the parallelism degree in the original model (PDb),
hit before refactoring(

√
indicates the original model is structured and × indicates the

original model is not structured), the tasks with dout (t) > 1 in the refactored model
(numbera), the parallelism degree in the refactoredmodel (PDa), and hit after refactoring
(
√

indicates the refactored model is structured and × indicates the refactored model is
not structured) in each example.

From the experimental results, we can see that: 1) In each example, the PD of the
refactored model is greater than the PD of the original model. That is, our approach can
improve the original business process model’s efficiency. 2) All the business process
models are structured before and after refactoring. That is, our approach can ensure that
the refactored models are structured.

466 F. Dai et al.

Table 2. Evaluation results

No. The original model The refactored model

Numberb PDb Structurednessb Numbera PDa Structurednessa

1 0 0
√

1 1
√

2 0 0
√

2 4
√

3 2 2
√

4 5
√

4 0 0
√

1 2
√

5 0 0
√

2 2
√

6 1 2
√

2 3
√

7 0 0
√

2 2
√

8 1 1
√

3 3
√

9 0 0
√

1 1
√

10 1 1
√

1 2
√

6 Conclusions

This paper proposed an approach for refactoring process models for efficiency improve-
ment. First, we identify false sequence relations based on the sequence relation matrix
and the dependency relation matrix. Second, we refactor a business process model by
constructing and transforming a dependency graph. In a refactored model, the concur-
rent execution of business tasks in the original models can be maximized. Finally, we
present a prototype implementation and evaluate the effectiveness of our approach.

The next step will focus on refactoring business process models with inefficient
process fragments substitution. Inefficient process fragments refer to sequence process
fragments with false sequence relations. If we can replace these inefficient process
fragments in an original process model with efficient process fragments, its efficiency
can be improved.

Acknowledgment. This work was supported by NSFC (No. 61702442 and 61862065), and the
Basic Research Project in Yunnan Province (2018FB105).

References

1. Leopold, H., Mendling, J., Reijers, H.A., Rosa, M.L.: Simplifying process model abstraction:
techniques for generating model names. Inf. Syst. 39, 134–151 (2014)

2. Herbst, J., Karagiannis, D.: Workflow mining with InWoLvE. Comput. Ind. 53, 245–264
(2004)

3. Khlif, W., Ben-Abdallah, H.: Integrating semantics and structural information for BPMN
model refactoring. In: Proceedings of the International Conference on Computer and
Information Science, pp. 656–660. IEEE (2015)

Refactor Business Process Models for Efficiency Improvement 467

4. Aalst, W.M.P.: Workflow verification: finding control-flow errors using petri-net-based tech-
niques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management.
LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45594-9_11

5. Jin, T., Wang, J., Yang, Y., Wen, L., Li, K.: Refactor business process models with maximized
parallelism. IEEE Trans. Serv. Comput. 9, 456–468 (2016)

6. Leopold,H.,Meilicke,C., Fellmann,M., Pittke, F., Stuckenschmidt,H.,Mendling, J.: Towards
the automated annotation of process models. In: Zdravkovic, J., Kirikova, M., Johannesson,
P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 401–416. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19069-3_25

7. Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: empirical
insights and recommendations. Inf. Syst. 35, 467–482 (2010)

8. Leopold, H., Smirnov, S., Mendling, J.: Refactoring of process model activity labels. In:
Hopfe, Christina J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol.
6177, pp. 268–276. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13881-
2_28

9. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model
repositories. Comput. Ind. 62, 467–486 (2011)

10. Dijkman, R., Gfeller, B., Küster, J., Völzer, H.: Identifying refactoring opportunities in process
model repositories. Inf. Softw. Technol. 53, 937–948 (2011)

11. Fernández-Ropero, M., Pérez-Castillo, R., Caballero, I., Piattini, M.: Quality-driven business
process refactoring. In: Proceedings of the International Conference on Business Information
Systems (ICBIS 2012), pp. 960–966 (2012)

12. Van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circuits
Syst. Comput. 8, 21–66 (1998)

13. Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Inf.
Syst. 37, 518–538 (2010)

14. Polyvyanyy, A., García-Bañuelos, L., Fahland, D.,Weske,M.:Maximal structuring of acyclic
process models. Comput. J. 57, 12–35 (2014)

15. Van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

16. Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: a tool for the performance evaluation of
generalised stochastic Petri nets. ACM SIGMETRICS Perform. Eval. Rev. 36, 34–39 (2009)

17. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Pre-
diction, andGuidelines for Correctness. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-89224-3

https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/978-3-319-19069-3_25
https://doi.org/10.1007/978-3-642-13881-2_28
https://doi.org/10.1007/978-3-540-89224-3

	Refactor Business Process Models for Efficiency Improvement
	1 Introduction
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Related Work

	3 Preliminaries
	4 Our Proposed Approach
	4.1 Construct a Sequence Relation Matrix
	4.2 Construct a Dependency Relation Matrix
	4.3 Identify False Sequence Relations
	4.4 Construct a Dependency Graph
	4.5 Transform a Dependency Graph

	5 Experiments
	6 Conclusions
	References

