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Abstract. Quantum computing is currently considered to be a new type
of computing model that has a subversive impact on the future. Based on
its leading information and communication technology advantages, IBM
launched IBM Q Experience cloud service platform, and achieved phased
research results in the quantum simulator and programming framework.
In this paper, we propose a quantum solution for the 3-SAT problem,
which includes three steps: constructing the initial state, computing the
unitary Uf implementing the black-box function f and performing the
inversion about the average. In addition, the corresponding experimental
verification for an instance of the Exactly-1 3-SAT problem with QISKit,
which can connect to IBM Q remotely, is depicted. The experimental
result not only show the feasibility of the quantum solution, but also
serve to evaluate the functionality of IBM Q devices.

Keywords: Quantum computing · 3-SAT problem · IBM Q · QISKit ·
Grover algorithm

1 Introduction

With the continues development of quantum field, quantum computing has
become a hot research field. And a key to quantum computing is the study
of quantum algorithms. Firstly, Feynman [1] proposed the idea of combining
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quantum mechanics with computational problems in 1982. Then, Deutsch and
Jozsa proposed Deutsch-Jozsa algorithm [2] which is the first quantum algo-
rithm. Compared with the traditional calculation, the algorithm has obvious
acceleration. In 1994, the emergence of Shor algorithm [3] not only accelerates
the computing speed, and also affects the running basis of RSA encryption tech-
nology. In addition, the search algorithm proposed by Grover [4] in 1996 is also a
very classic algorithm. Generally speaking, the search complexity of computers
can be depicted as N (N is the size of database). Because of its wide applica-
tion, Grover algorithm further demonstrates the advantages of quantum comput-
ing. The above mentioned quantum algorithms, especially Shor algorithm and
Grover algorithm, fully demonstrate the development potential of quantum com-
puting, which can be widely used in data security and commercial development.
At present, there are many new quantum algorithms come into being, such as
quantum secure sharing (QSS) [5,6], quantum key agreement (QKA) [7,8], quan-
tum secure direct communication (QSDC) [9–11], quantum private comparison
(QPC) [12–15], quantum sealed-bid auction (QSBA) [16,17], remote preparation
of quantum states [18–21], quantum steganography [22–24], delegating quan-
tum computation [25,26], and quantum machine learning algorithms [27,28].
However, these algorithms also have some shortcomings and can be improved.
However, these improvements are theory research, few would give the experimen-
tal results show that, after all, from the real it’s early, in other words, the advent
of quantum computer algorithm to improve the existence of a real error, whether
can the real experiment, whether real applications remains to be further inves-
tigation Therefore, we need a quantum simulation cloud platform, which can
provide us with a good environment to verify and improve quantum algorithms.

At the end of 2017, an open-source quantum computing framework, namely
QISKit [29], is released by IBM, which allows the users to implement remote
quantum experimental verification of IBM Q [30] through localized python pro-
gramming. The SAT problem is the oldest and well-known NP-Complete prob-
lem. There have been many algorithms and techniques that have been invented
to solve it. The best SAT solvers can solve tens of thousands of variables. We
know that the NP-Complete problem could be converted in polynomial time,
and the SAT solver is very efficient. Then the SAT is naturally very practical.
In this paper, we use QISKit to directly program the algorithm for an Exactly-1
3-SAT problem, and connect the remote IBM 5-qubit device (i.e., ibmqx4) to
verify the quantum solution in the real quantum computer.

The remaining structure of the paper is as follows: In Sect. 2, preliminaries
about quantum computation, IBM Q and Grover’s algorithm are briefly intro-
duced. In Sect. 3, the quantum solution based on the Grover’s algorithm, which
is used to solve the 3-SAT problem, is depicted. In addition, we give an instance
of this problem, and then its implementation circuit and QISKit program are
presented, respectively. Subsequently, the experimental result of the solution for
Exactly-1 3-SAT problem are analyzed in detail in graphical form. Finally, Sect. 4
is dedicated for conclusion.



412 Y. Zhang et al.

2 Preliminaries

2.1 Quantum Computation

According to the analysis of the superposition principle, we can find that the
change of state of quantum information units can add up with several possible
situation. For a quantum state, we can control a quantum bit to get two quan-
tum state. If we can control N qubits at the same time, it represents that we can
get 2N condition for effective control, information storage times to grow expo-
nentially. This is a quantum computer parallel computing ability. We can design
different quantum circuits by referring to quantum gate sets, so that we can use
quantum states to transmit information and achieve the purpose of quantum
communication.

In traditional computer, a bit represents a Boolean variable with a range of
{0, 1}. However, a quantum bit is a vector which is in 2-dimensional complex
Hilbert space, which represents the state of a two-state quantum system. |0〉 and |1〉
are used to refer to the corresponding “0” and “1” state, where “ ” is called Dirac
notation. Quantum ratio has two unique properties: superposition and entangle-
ment, which can be used for specific calculations. Specifically, superposition state
refers to the state of a single quantum bit that could be described as the superpo-
sition of two ground states, just like schrodinger’s cat, which is a superposition of
life and death. The quantum superposition state |ϕ〉 is expressed as

[
α
β

]
= α

[
1
0

]
+ β

[
0
1

]
. (1)

α and β represent the probability amplitude of |0〉 and |1〉 respectively, where
|α|2 can be understood as the probability of observing the quantum bit is 0,
and |β|2 could be understood as the probability of observing the quantum bit
is 1. The state of quantum bit satisfies normalization, namely: |α|2 + |β|2 = 1.
The superposition state of a qubit could be viewed as the linear superposition
of states 0 and 1. It is linear and entangled state.

Quantum computers are built from quantum circuits that contain wires and
basic quantum gates, which is in order to carry and manipulate some of the
quantum bits that carry communication information. Quantum gates can be
divided into two types: single qubit gates and multiple qubit gates. Quantum gate
can all be represented in the form of a matrix U . The unitary limit (U†U = I,
where U† is a conjugate transpose of U , obtained by U transpose and complex
conjugate of U) is the only limitation on quantum gates [31], each valid quantum
gate can be represented as a unitary matrix. For visual display, in Table 1 below
we list some line symbols and matrix representations used in this paper.

In the actual quantum circuit, we use special line symbol to represent the
quantum gate, and a line symbol represents a quantum gate that can manipulate
the quantum state.
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Table 1. Common quantum gate and line symbols

Quantum gate Line symbol Matrix form

Hadamard 1√
2

[
1 1

1 −1

]

Pauli-X

[
0 1

1 0

]

Pauli-Y

[
0 −i

i 0

]

Pauli-Z

[
1 0

0 −1

]

Controlled-NOT

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎥⎦

Controlled-Z

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤
⎥⎥⎥⎥⎦

X ≡
[

0 1
1 0

]
. (2)

If X-gate is applied to manipulate the quantum state |ψ〉=α |0〉 +β |1〉, the result
of the operation can be obtained by multiplying the vector:

X

[
α
β

]
=

[
β
α

]
. (3)

2.2 IBM Q

In 2016, IBM opened the IBM Q experience prototype 5-qubit device to the pub-
lic. Then, they launched IBM Q [30], which is the first general-purpose quantum
computer for commercial and scientific research. In the same year, they proposed
two devices with 5 qubits named ibmqx2 and ibmqx4. In 2018, a third public
device with 16 qubits (ibmqx5) is added which can be accessed using QISKit.
Recently, they have announced that they successfully built and tested a 20-qubit
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device for their client. Meanwhile, their simulator is up to 32 qubits for more
and more people to use and research. The experimental verification of quantum
algorithms has become a reality, providing reliable data support for the research
and development of quantum algorithms to help us assist in the analysis of the
performance of the algorithm.

In IBM Q, all devices provide a lot of elementary gates, such as:X-gate,H-gate,
cX-gate (control-NOT gate), cZ-gate (control-Z gate), ccX-gate (control-control-
NOTgate, namelyToffoli gate) and so on.The couplingmapof ibmqx2 and ibmqx4
are shown in Fig. 1. In general, two qubit gates may act between adjacent qubits,
which are connected by a superconducting bus resonator. IBM Q experienced the
use of cross-resonance interaction technology as the basis for quantum gate oper-
ations. When the qubits with higher frequencies are selected as control qubits and
the qubits with lower frequencies are selected as targets, the interaction becomes
stronger, so the qubits’ frequency determines the gate’s steering direction.

Fig. 1. The coupling map picture: ibmqx2(a) and ibmqx4(b). The arrows point from
the qubit with higher frequency to that with lower frequency

Quantum Information Software Kit(QISKit) [29] is a Software Kit for design-
ing short-depth Quantum circuits and building short-term Quantum applications
and experiments on Quantum computers. Relevant data are collected after the
program compilation is completed. In summary, the QISKit toolkit includes
python-based software tools for creating, manipulating, visualizing, and explor-
ing quantum states, tools for describing qubits, scripts for batch processing, and
compilers for mapping required experiments to actual hardware. Different from
the IBM Q web page experiment mode, this kind of programming call mode
can overcome the cumbersomeness of drawing complex circuit diagrams on web
pages, and has the advantage of easy expansion of composite quantum gates and
easy preservation of experimental data.

2.3 Grover’s Algorithm

Grover’s algorithm [4] is one of the main algorithms in quantum computing. It is
better than the best classical algorithm to do square acceleration when dealing
with the problem of searching M target Numbers from unordered D databases.
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In other words, the time required for the classical algorithm to complete the task
is proportional to, while the quantum algorithm can be implemented within the
time scale. If D is a very large number, it saves a lot of time. The power of
the Grover algorithm lies in its versatility: its formulas are universal and can be
applied to many problems, such as cryptography, matrix and graphics problems,
optimization, and quantum machine learning. The detailed implementation steps
of the Grover quantum search algorithm could be seen in Fig. 2:

Fig. 2. Quantum circuit representation of Grover algorithm

The steps of Grover’s algorithm are as follows: let |s〉 represents the uniform
superposition of all states.

|s〉 =
1√
N

N−1∑
x=0

|x〉. (4)

A “quantum oracle” operator Uω is required in Grover’s algorithm, which could
identify the target solution to the search problem and turn their magnitude
negative. And we apply the operator Uω on the states. Then the operator Us =
2 |s〉 〈s| − I is the grover-diffusion operator. Then the operator Us is applied on
the states after Uω. Next, we perform the measurement Ω on then quantum
state. The result will be eigenvalue λω with probability approaching 100% for
N � 1. From λω, that Ω may be obtained.

3 Quantum Solution for the 3-SAT Problem Based on
IBM Q

The SAT problem is well-known as the first NP-Complete problem [32]. The NP-
Complete problem could be rotated within polynomial time. And the efficiency
of the SAT solver is good. So the SAT problem is naturally very practical. SAT
is used for test verification in many fields such as EDA. And it also can be used
in AI fields such as automatic theorem proving and so on.

A quantum solution for the 3-SAT problem is proposed in this paper. The
problem of 3-SAT can be described as follows: the assignment requires that each
clause contain a truth value. For the input data, the formula in conjunctive
normal form ∧m

k=1Ck over n Boolean variables x1, . . . , xn, with m literals per
clause C1, . . . , Cm. For the Output data, is there an assignment of x1, . . . , xn
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such that every clause C1, . . . , Cm has exactly one true literal? In order to solve
this problem, a quantum solution for the 3-SAT problem based on the Grover’s
algorithm is proposed, which is to find satisfying assignment.

The quantum solution can be divided into three steps:

(1) constructing the initial state.
(2) computing the unitary Uf with the black-box function f .
(3) performing the inversion about the average.

Program 1: Quantum solution for the 3-SAT problem
input : SAT formula in conjunctive normal form ∧m

k=1Ck over n Boolean
variables x1, x2, x3, with 3 literals per clause C1, C2, C3.

output: The answer of x1, x2, x3 such that every clause C1, C2, C3 has exactly
one true literal.

1 #constructing a 3-qubit initial state, the x4 is an auxiliary qubit ;
2 circuit.x(x4);
3 for j in 4 do
4 circuit.h(xj);
5 end
6 #computing the unitary Uf implementing the black-box function f ;
7 formula=[C1, C2, C3];
8 def Uf (circuit, x1, x2, x3, formula)
9 #performing the inversion about the average

10 for j in range(3) do
11 circuit.h(x[j]);
12 circuit.x(x[j]);

13 end
14 for j in range(3) do
15 circuit.ccZ(circuit,[x[j] for j in range(2)], x[2]);
16 end
17 for j in range(3) do
18 circuit.x(x[j]);
19 circuit.h(x[j]);

20 end

Program 1 shows the detailed procedure of the quantum solution for SAT
problems.

In our experimental implementation, an Exactly-1 3-SAT instance is specified
as a list of clauses, where there are three integers in each clause. In this paper,
we agree that a positive integer is an index of positive text and a negative integer
is the opposite. For example, the corresponding python list is shown as follows.

(x1∇x2∇¬x3) ∧ (¬x1∇¬x2∇¬x3) ∧ (¬x1∇x2∇x3) (5)

We use the up formula as an example and the symbol ∇ is used to emphasize
that this is an Exactly-1 3-SAT formula, rather than the usual ∧. This is like a
problem definition that requires each clause to have only one real word. Based on
Grover’s algorithm, we are going to use three subsections to show the processes
of our solution.
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3.1 Constructing the Initial State

We take 3 qubits as an example to show how to prepare an initial quantum state.
In Grover’s algorithm, a function with an n-qubit input and a single-qubit output
is applied. We need n qubit and an ancilla qubit to prepare the initial state. The
circuit for constructing a 3-qubit initial state can be seen in Fig. 3. And the
corresponding program in python using QISKit can be seen in Program 2.

Fig. 3. Circuit for constructing an initial quantum state.

Program 2: Constructing the initial state
1 def input state(n):

2 for j in range (n) do
3 circuit.h(f in[j]);
4 end
5 circuit.x(f out);
6 circuit.h(f out);

3.2 Computing Unitary Uf Implementing the Black-Box Function f

The implementation of Uf for an Exactly-1 3-SAT problem is the most com-
plex part of the code, and there are several ways to complete it. To reduce
computational complexity and save resources, the problem of computing Uf is
decomposed by introducing m ancilla qubits. For each clause, a highly efficient
and feasible quantum circuit is constructed in which the phase of the correspond-
ing auxiliary qubit is reversed if and only if there is only one true word in the
clause (here, these auxiliary qubits will be initialized in state |0〉).

Taking x1∧(¬x2)∧x3∧(x1∇¬x2∇x3) as an example, we show the correspond-
ing circuit in Fig. 4. We apply three H gates to get initial states, and then the
next three C-NOT (Control-Not) gates complete the function of x1 ∧ (¬x2) ∧ x3

and store the result in q [3]. And the next two CC-NOT (Control-Control-Not)
gates complete the function of (x1∇¬x2∇x3) and the result is stored in q [3]
finally.

Then, inspired by the above circuit, we drawn the circuit for (x1∇x2∇¬x3)∧
(¬x1∇¬x2∇¬x3) ∧ (¬x1∇x2∇x3) in Fig. 5. q [3] , q [4] and q [5] are auxiliary
qubits. And the final result is stored in q [6]. The corresponding program in
python using QISKit can be seen in Program 3.
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Program 3: Computing the unitary Uf implementing the black-box func-
tion f

1 def black box u f(circuit, f in, f out, aux, n, exactly 1 3 sat formula):

2 num clauses = len(exactly 1 3 sat formula);
3 for (k, clause) in enumerate(exactly 1 3 sat formula) do

4 for literal in clause do

5 if literal > 0 then
6 circuit.cx(f in[literal − 1], aux[k]);
7 end

8 else

9 circuit.x(f in[−literal − 1]);
10 circuit.cx(f in[−literal − 1], aux[k]);

11 end

12 end

13 circuit.ccx(fin[0], fin[1], aux[numclauses]);
14 circuit.ccx(fin[2], aux[numclauses], aux[k]);
15 circuit.ccx(fin[0], fin[1], aux[numclauses]);
16 for literal in clause do
17 if literal < 0 then

18 circuit.x(f in[−literal − 1]);
19 end

20 end
21 if (num clauses==1) then

22 circuit.cx(aux[0], f out[0]);
23 end
24 else if (num clauses==2) then
25 circuit.ccx(aux[0], aux[1], f out[0]);
26 end
27 else if (num clauses==3) then

28 circuit.ccx(aux[0], aux[1], aux[num clauses]);
29 circuit.ccx(aux[2], aux[num clauses], f out[0]);
30 circuit.ccx(aux[0], aux[1], aux[num clauses]);

31 end

32 end

33 for (k , clause ) in enumerate(exactly 1 3 sat formula) do
34 for literal in clause do
35 if literal > 0 then

36 circuit.cx(f in[literal − 1], aux[k]);
37 end
38 else
39 circuit.x(f in[−literal − 1]);
40 circuit.cx(f in[−literal − 1], aux[k]);

41 end

42 end

43 circuit.ccx(f in[0], f in[1], aux[num clauses]);
44 circuit.ccx(f in[2], aux[num clauses], aux[k]);
45 circuit.ccx(f in[0], f in[1], aux[num clauses]);
46 for literal in clause do
47 if literal < 0 then
48 circuit.x(f in[−literal − 1]);
49 end

50 end

51 end
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Fig. 4. Circuit for x1 ∧ (¬x2) ∧ x3 ∧ (x1∇¬x2∇x3).

3.3 Performing the Inversion About the Average

In order to carry out inversion operation on the average value of all the obtained
quantum state amplitudes, we need to perform the following operations:

∑
j∈{0,1}n

αj|j〉n →
∑

j∈{0,1}n

⎛
⎝2

⎛
⎝ ∑

k∈{0,1}n

αk

2n

⎞
⎠ − αj

⎞
⎠ |j〉n (6)

where
∑

k∈{0,1}n
αk

2n is the average value of all the obtained quantum state ampli-
tudes, and therefore we update the corresponding amplitudes by taking twice
the average and subtracting each coefficient from it. This mapping is realized by
the matrix as follows.

W =

⎛
⎜⎜⎜⎝

2
2n − 1 2

2n . . . 2
2n

2
2n

2
2n − 1 · · · 2

2n

...
...

. . .
...

2
2n

2
2n · · · 2

2n − 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2
2n

2
2n · · · 2

2n
2
2n

2
2n · · · 2

2n

...
...

. . .
...

2
2n

2
2n · · · 2

2n

⎞
⎟⎟⎟⎠ − I⊗n (7)

And the corresponding program in python using QISKit can be seen in
Program 4.

Fig. 5. Circuit for (x1∇x2∇¬x3) ∧ (¬x1∇¬x2∇¬x3) ∧ (¬x1∇x2∇x3).
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Fig. 6. Result for (x1∇x2∇¬x3) ∧ (¬x1∇¬x2∇¬x3) ∧ (¬x1∇x2∇x3).

Together with the above three programs, Program 5 shows the whole program
for quantum solution in python using QISKit, which is used to solve the Exactly-
1 3-SAT problem.

After executing Program 5, we can get the result for an instance of Exactly-1
3-SAT in Eq. 5, which can be seen in Fig. 6. Obviously, |101〉 (i.e., x1 = 1, x2 =
0, x3 = 1) is the answer to (x1∇x2∇¬x3) ∧ (¬x1∇¬x2∇¬x3) ∧ (¬x1∇x2∇x3).
Then, we could get the answer with 94% probability through the quantum
solution.

Program 4: Inversion about the average
1 def inversion about average(circuit, f in, n):

2 for j in range(n) do
3 circuit.h(f in[j]);
4 end
5 for j in range(n) do
6 circuit.x(f in[j]);
7 end
8 3 controlled Z(circuit, [f in[j]forjinrange(n − 1)], f in[n − 1]);
9 for j in range(n) do

10 circuit.x(f in[j]);
11 end
12 for j in range(n) do
13 circuit.h(f in[j]);
14 end
15 def 3 controlled Z(circuit, controls, target):

16 circuit.h(target);
17 circuit.ccx(controls[0], controls[1], target);
18 circuit.h(target);
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Program 5: Quantum solution for Exactly-1 3-SAT problem
1 import sys;
2 from qiskit import QuantumRegister, ClassicalRegister;
3 from qiskit import QuantumCircuit;
4 from qiskit import compile, Aer;
5 from qiskit.tools import visualization;
6 n = 3;
7 exactly 1 3 sat formula = [[1, 2,−3], [−1,−2,−3], [−1, 2, 3]];
8 f in = QuantumRegister(n);
9 f out = QuantumRegister(1);

10 aux = QuantumRegister(len(exactly 1 3 sat formula) + 1);
11 ans = ClassicalRegister(n);
12 qc = QuantumCircuit(f in, f out, aux, ans, name =′ grover′);
13 input state(qc, f in, f out, n);
14 black box u f(qc, f in, f out, aux, n, exactly 1 3 sat formula);
15 inversion about average(qc, f in, n);
16 black box u f(qc, f in, f out, aux, n, exactly 1 3 sat formula);
17 inversion about average(qc, f in, n);
18 for j in range (n) do
19 qc.measure(fin[j], ans[j]);
20 quantum simulator = Aer.get backend(′qasm simulator py′);
21 qobj = compile(qc, quantum simulator, shots = 2048);
22 job = quantum simulator.run(qobj);
23 result = job.result();
24 counts = result.get counts(′grover′);
25 visualization.plot histogram(counts);

4 Conclusion

In this paper, a quantum solution for the 3-SAT problem based on Grover’s
algorithm is proposed, which includes three steps: constructing the initial state,
computing the unitary Uf , implementing the black-box f and performing the
inversion of the average amplitude of all quantum states. Next, the corresponding
experimental verification for an Exactly-1 3-SAT problem instance with QISKit,
which can connect to IBM Q remotely, is depicted. We can get the answer |101〉
with 94% probability through the quantum solution. The experimental result
not only show the feasibility of the quantum solution, but also serve to evaluate
the functionality of IBM Q devices. For this kind of localized programming mode
based on QISKit, the design of quantum functional circuits can be packaged in
the form of functions for reusing and expansion. With the increasing scale of
practical problems, we need to consider the design of feasible quantum circuit
optimization scheme.
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