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Abstract. The hydrological data of small and medium watershed devel-
ops with the passage of time. The rainfall-runoff patterns in these data
often develop over time, and the models established for the analysis of
such data will soon not be applicable. In view of the problem that adapt-
ability and accuracy of the existing data-driven flood real-time forecast-
ing model in medium and small watershed with concept drift. We update
the data-driven model using incremental training based on support vec-
tor machine (SVM) and gated recurrent unit (GRU) model respectively.
According to the rapid real-time flood forecasting test results of the
Tunxi watershed, Anhui Province, China, the fast real-time flood fore-
cast data-driven model with incremental update can more accurately
predict the moment when the flood begins to rise and the highest point
of flood stream-flow, and it is an effective tool for real-time flood fore-
casting in small and medium watersheds.

Keywords: Medium and small watershed - Concept drift -
Data-driven model - Fast real-time flood forecasting

1 Introduction

The floods in small and medium watershed are characterized by sudden bursts,
shorter concentration of flow time and shorter foresight period. Timely and effec-
tive flood warning and forecasting of small and medium watershed can help
humans effectively prevent floods and reduce flood damage. It is one of the
important non-engineering measures for disaster prevention and mitigation [1].
Flood prediction models are important for disaster assessment and extreme event
management. Robust and accurate predictions contribute significantly to water
management strategies, policy advice and analysis, and further evacuation mod-
eling [2]. Therefore, the importance of forecasting systems for rapid real-time
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and short-term prediction of floods and other hydrological events is emphasized.
At present, flood forecasting generally adopts a hydrological model based on
runoff process and a data driven model considering historical data input and
output. Moreover, due to the dynamic nature of climatic conditions, the pre-
diction of flood front time and location is basically complicated. Therefore, to
simulate the complex mathematical expressions of physical processes and water-
shed behavior, data-driven modeling basically does not consider the physical
mechanism of hydrological processes and aims to establish an optimal mathe-
matical relationship between input and output data is more popular [3].

The classic black box hydrological time series data-driven forecasting model
has a long tradition in flood models, which prediction methods assimilate mea-
sured climate and hydrometeorological parameters to provide better insights,
including Auto-Regressive (AR) [4], Auto-Regressive and Moving Average
(ARMA) [5], Auto-Regressive Integrated Moving Average (ARIMA) [6], Linear
Regression (LR) [7], and Multiple Linear Regression (MLR) [8]. Compared with
the physical model considering the computational cost and the large parameters
the above models have certain advantages. However, it cannot deal well with the
problems of non-stationarity and nonlinearity in the hydrological process.

In the past two decades, forecasting models using data-driven technology
have made great progress in predicting and simulating the application of non-
linear hydrology and capturing noise in complex data sets. Classical data-driven
modeling methods mainly include Artificial Neural Networks (ANN) [9-11], Sup-
port Vector Machines (SVM) [12-14], Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) [15,16], Wavelet Neural Networks (WNN) [17-19], Decision Tree (DT)
[20,21], and Ensemble Prediction System (EPS) [22-25].

In recent years, hydrologists have been trying to use the artificial learning
method based on deep learning to deal with this hydrological time series pre-
diction task, and [26-28] have better performance. Among these deep learning-
based methods, Long and short term memory (LSTM) Neural network can be
used as data-driven models for describing the rainfall-runoff relationship and
the performance is better than some commonly used conventional prediction
models. The Gated Recurrent Unit (GRU) structure [29] was proposed in 2014.
Analysis of the work of chung2014empirical, trofimovich2016comparison shows
that GRU performance is comparable to LSTM, but its advantages are more
computationally efficient and fewer parameters.

In this paper, based on the SVM and GRU models, we propose an incremental
update method to forecast floods in small and medium watershed with data drift.

2 The Method of Prediction Model

2.1 Concept Drifts

In machine learning, the unexpected changes in data mining and predictive anal-
ysis of basic data over time are called concept drifts [35-38]. Concept drifts of
Medium and small watershed due to changing of watercourse, new reservoir,
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human activities or they can be attributed to a complex nature of the environ-
ment. Usually, when the research data has a conceptual drift, there are several
ways to deal with it. The first is based on resampling and adaptive sliding win-
dow selection samples, [38] uses a fixed-size sliding window for sample selection,
which only retains the current trusted data window to solve the concept drift in
the data stream, but This led to another problem, the sample selection of model
training completely abandoned the old samples outside the time window. [39]
proposed a “Adwin” method, which constructs a sliding window of different sizes
to select the appropriate amount of training data to learn new concepts. Second,
build by updating the weights of the submodels, such as [40] learning The key
idea is to automatically adjust the window size, sample selection, and exam-
ple weighting separately to minimize the estimated generalization error; third,
recently, the dynamic classifier set, [41] proposes a new dynamic clustering for-
est to handle Concept drift in the emergence of time series, this new collection
method aims to classify “new and old” data by combining multiple cluster trees.

2.2 Support Vector Machine Model

Support vector machine (SVM) models based on statistical learning theory can
be used for pattern classification and nonlinear regression [42-45]. Literature
[14] uses SVM to predict the groundwater level, the results show that the SVM
water level prediction model is more accurate than the artificial neural network
model. Moreover, [12] demonstrates that the SVM model works better in terms of
uncertainty and is more predictive of extreme hydrological events. [46] Under the
uncertainty of climate change scenarios, the SVR model estimates regional floods
more accurately than the ANN model. [47] Processing real-time flood forecasting
Using support vector machine to do single output, multi-output forecasting, and
multi-step iteration strategy forecasting and other experimental schemes, the
results show that the single-output scheme has the highest forecasting accuracy,
and the multi-step iterative forecasting accuracy is the worst.

Based on the principle of structural risk minimization, SVM maps hydrolog-
ical historical sample data from nonlinear regression in low-dimensional space to
high-dimensional space by solving the flood forecasting problem that belongs to
nonlinear regression. Then, the linear regression of high-dimensional space is fur-
ther realized to correspond to the nonlinear regression of low-dimensional space.
Given a historical flood sample datasets D = {(x1,41), (X2,¥2), ", (X5, 91},
where [ denote sample number. The principle of flood forecasting is to find the
mapping between input and output by training the sample datasets: y = f(x).
The basic idea of the SVM prediction is to learn a regression model so that f(x)
and y are as close as possible. The regression model is as follows:

f(z) = wo(x) +b (1)

where ¢(-) denote the nonlinear mapping, w is the wights, b is the bias. Suppose
the support vector regression can allow a maximum deviation of € between f(x)
and vy, so the loss is calculated when the absolute value of the deviation between
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f(z) and y is greater than e. As shown in Fig. 1, a strip of width 2¢ is constructed

on both sides of f(z). When the training sample is within this space, the sample
is predicted correctly.

y‘

-

Fig. 1. Illustration of support vector machine.

2.3 Gated Recurrent Unit Model

Fig. 2. Illustration of gated recurrent unit.

Recently, LSTM and GRU Recurrent Neural Networks (RNN) have proven to
achieve the most advanced results in many time series applications (e.g., machine
translation, and speech recognition). Their powerful predictive performance,
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ability to capture long-term time-dependent and variable-length observations
are also advantageous in processing predictions in hydrological time series data.
We use a GRU-based rapid flood forecasting model because it has higher com-
putational efficiency and fewer parameters than LSTM. The structure of GRU is
shown in Fig. 2. For a hidden unit, GRU has a update gate z and a reset gate r,
z; determine how much the previous state of the unit is updated to the current
state at time ¢, 7; is used to forget the state of the previous calculation. z; and
ry are calculated as follows

Zt = O'(Wth + Uzht_l) (2)

Tt :O'(WTXt—FUThtfl) (3)

The activation h; and candidate activation Et of the GRU at time t are
computed as follow

Et = tanh(WhXt + Uh (’I"t O) ht_1)) (4)
ht = (1 - Zt)ht—l + Zt’ivlt (5)
where matrices W,, Wy, W,., U,, Uy, and U, are model parameters.
3 Experiment

3.1 Datasets
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Fig. 3. Map of the study Tunxi watershed.
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In this paper, our study used a datasets from 1981-2003 in Tunxi watershed,
Anhui Province, China. As shown in Fig. 3, Tunxi hydrological station is located
in the river outflow location of Tunxi watershed, and it monitors the flow and
rainfall values. In addition, there are another 10 rainfall stations in the Tunxi
watershed.

3.2 Model Forecasting Method

features target

Fig. 4. Features and target of the forecasting model.

In order to improve the flood forecasting and early warning period in small and
medium watershed, we use rainfall forecast information that is known in advance.
As shown in Fig. 4, Our forecast target stream-flow Q¢4 is contributed by crea-
tures previous rainfall [P;_,, - - - P;_1], previous stream-flow [Q;—_, - - - Q¢—1], and
forecast rainfall [P; - - Piy,]. Where Q¢_,, denote actual measured stream-flow
at time ¢t —m, P,_,, denote actual measured area rainfall at time ¢t — m, Q1
denote forecasted stream-flow at time ¢ + n, P.y, denote future area rainfall at
time t + n, m denote m hours before the start of the forecast time ¢, n denote
model forecast n hours.

Test data .
[
i

Train data

Fig. 5. Distribution of data training sets and test sets in Tunxi watershed. Data from
the Tunxi watershed from 1981 to 2003, where the data from 1981 to 1986 was used as
the first batch training data, and each subsequent year’s data is added to the training
set in batches. The data from 2001 to 2003 was used as the final batch testing data.

The training data and test data distribution method of adding our model is
shown in Fig.5. We first use the data from 1981-1986 as the training data for
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the initial model, We first use the data from 1981-1986 as the training data of
the initial model, and then the data of each year was added to the training data.
Testing data was also added in a similar way. The training model was updated
as shown in Fig.6. We feed the assigned training data to the corresponding
training model, and then the training model is updated by the test error of the
testing data. The training models 2-15 are updated in the same way. Finally,
the prediction model performance is evaluated by the testing data 15.

Test and update Test anci update Test anci update Test
‘A ‘A ‘A v
A A A A

Add in Add in Add in Add in

| | | |

Fig. 6. The incremental update method of training model. First, the training data 1
was added to the training model 1, and then the training model 1 was tested by the
testing data 1, and finally the training model 1 was updated to the training model 2
based on the error between the test result and the real value.

In this paper, we trained two types of data-driven models with incremental
update capabilities using experimental data with conceptual drift. As a compar-
ative experiment, we also trained two types of without using incremental update
data driven models. The model is classified as follows

e SVM: The support vector machine model that does not use incremental
updates.

e SVM-IU: The support vector machine model that use incremental updates.

e GRU: The gated recurrent unit model that does not use incremental
updates..

e GRU-IU: The gated recurrent unit model that use incremental updates.

3.3 Model Performance Criteria

The average deviation between the flood forecast value and the actual value
in the experiment is to be measured by the following four evaluation criteria.
forecast error of the maximum flow value of a flood is calculated as

/ —
EQ’mM — M x 100% (6)
Qmam
where @', denote the peak value of a flood forecasting stream-flow, Q.ax

denote the recording peak value of a flood stream-flow.
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Forecast error of the time when the peak of the flood occurs is calculated as

/

tmax = ‘tnlax - tmax‘ (7)

where ¢/ denote the moment of the predicted flow maximum, ¢,,,, denote the
moment of the recording flow maximum.
Root mean square error is calculated as

TN (P - Qi)
RMSE = \/ SR (8)

Determination coefficient is calculated as

N
_ Zi:l(Pi — Qi)2
~ —
e (P —Q)?
where P; denote stream-flow recording value at time i, Q; denote stream-flow

prediction value at time i, @ denote average stream-flow recording value, and N
is the number of test samples.

(9)

y =

3.4 Results and Analysis

Table 1. Average performance criteria of the models.

Model | Eg.maz(%) | tmas(s)| RMSE | Dy(%)
SVM 25.21 2.88 421 71.32
SVM-IU | 15.38 1.58 255 81.65
GRU 16.51 1.61 262 82.35
GRU-IU | 10.81 0.63 114 87.98

In this section, we compare data-driven models under different training methods.
To be fair, we present the best performance for each type of method under
different parameter settings in Table 1. Moreover, the same kinds of model uses
the same parameters for different update methods.

In terms of fast real-time flood stream-flow prediction, we propose four indi-
cators to evaluate model performance. The predicted flood peak error Eg max
and the error at the moment of occurrence t,,,, are the most important indica-
tors for hydrologists. SVM-IU shows 9.83% and 1.3 s improvements beyond SVM
on Eq may and ty,q,. GRU-IU shows 5.7% and 0.98 s improvements beyond GRU
on Eg mae and tp,q,. In addition, RMSE and D, are the fitting performance of
the evaluation prediction model. SVM-IU shows 166 and 10.33% improvements
beyond SVM on RMSE and D,. GRU-IU shows 148 and 5.63% improvements
beyond GRU on RMSE and D,. We conclude that the SVM improvement
is higher than the GRU improvement after using incremental update training
method.



Data-Driven Fast Real-Time Flood Forecasting Model 371

A more clear illustrate of the real-time prediction performance of the models
is shown in Fig.7. The model using incremental training can more accurately
predict the moment when the flood begins to rise and the highest point of flood
stream-flow occurs.

] —=— Ground truth . —=— Ground truth ]
2000 —o— SV . 2000 —e— GRU
—A— SW-TU —&— GRU-TU

B Area rainfall], B Area rainfall]
1500 4

1000 1000 4

stream-flow (m’/s)
stream-flow (m’/s)
(uw) [rejures

500 4

T T T
5 10 15 20 5 5
time (h) time (h)

(a) Comparison with SVM and SVM-IU  (b) Comparison with GRU and GRU-IU

Fig. 7. Comparison with the ground truth stream-flow and predicted stream-flow com-
puted by SVM and GRU model, where (a) shows a comparison of SVM models using
incremental update and no using incremental update, (b) shows a comparison of GRU
models using incremental update and no using incremental update.

4 Conclusion

In this paper, we propose a incremental update method based on SVM and GRU
flood predict model in the Tunxi watershed with drift concept. In the proposed
data-driven forecasting model with incremental updates, we construct training
data and testing data in batches through the hydrological characteristics of small
and medium watersheds. During training, we update the model based on the
error of the small batch of test data on the initial model. Experiment results on
the Tunxi dataset show the proposed method outperforms initially comparative
methods and the effectiveness of the proposed incremental update model. In
the future, our work includes the exploration on other hydrology purposes with
the proposed method, such as flood submergence area warning and urban storm
flooding.
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