®

Check for
updates

A Parallel Drone Image Mosaic Method
Based on Apache Spark

Yirui Wu, Lanbo Ge, Yuchi Luo, Deqiang Teng, and Jun Feng®

College of Computer and Information, Hohai University, Nanjing, China

{wuyirui, junfeng}@hhu.edu.cn, lanbo_cs@163.com, hhu_1lyc@126.com,
3247592726Qqq . com

Abstract. MapReduce has been widely used to process large-scale data
in the past decade. Among the quantity of such cloud computing appli-
cations, we pay special attention to distributed mosaic methods based
on numerous drone images, which suffers from costly processing time. In
this paper, a novel computing framework called Apache Spark is intro-
duced to pursue instant responses for the quantity of drone image mosaic
requests. To assure high performance of Spark-based algorithms in a com-
plex cloud computing environment, we specially design a distributed and
parallel drone image mosaic method. By modifying to be fit for fast and
parallel running, all steps of the proposed mosaic method can be executed
in an efficient and parallel manner. We implement the proposed method
on Apache Spark platform and apply it to a few self-collected datasets.
Experiments indicate that our Spark-based parallel algorithm is of great
efficiency and is robust to process low-quality drone aerial images.

Keywords: Distributed mosaic method - Parallel processing - Apache
Spark - Big data - Drone aerial image

1 Introduction

In recent years, drones have shown significant potential to satisfy the demands of
outdoor aerial exploration in different fields, such as aerial photography, agricul-
tural, disaster observation and military purposes [7]. During a variety of appli-
cations, one of the key problems is to provide a high-resolution image with an
aerial view for large areas, which could offer sufficient and abundant information
for further analysis.

Generating a large and high-resolution aerial image with a traditional and
single-threaded mosaicking method is essentially low in running speed since it
requires two key and time-consuming steps, i.e., image registration and image
stitching, for quantity of high-resolution drone images. The former step is
designed to register the image in the same coordinate system to discover the
correspondence relationships among images with varying degrees of overlap,
meanwhile, the latter step is to generate a high-resolution image by stitching
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved

X. Zhang et al. (Eds.): CloudComp 2019/SmartGift 2019, LNICST 322, pp. 297-311, 2020.
https://doi.org/10.1007/978-3-030-48513-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48513-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-48513-9_25

298 Y. Wu et al.

(b) Image Pairing

(@) Preprocessing (c) Iterative Parallel Mosaicking

Flight
Parameters

Fig. 1. Framework of the proposed method to mosaic drone aerial images.

the registered images. Image stitching algorithms take alignment estimates pro-
duced by such registration algorithms as input. Afterwards, they are responsible
to blend the images seamlessly.

With the significant development of cloud computing for big data process-
ing, we try to utilize distributed computing idea and appropriate framework to
save computing time and efforts for drone image mosaicking. More precisely, we
proposed to accelerate the efficiency of the traditional mosaicking method by
modifying its structure with parallel and distributed computing idea, and utilize
Spark framework to implement drone image mosaic processing for instant run-
ning speed. Supposing hundreds of drones have uploaded different sequences of
aerial images to the proposed mosaicking system, we show the framework of the
proposed system in Fig. 1, including steps of (a) preprocessing, (b) roughly drone
image pairing and (c) iterative parallel mosaicking with PCA-SIFT features.

Specifically, corrections of perspective distortions and extraction of PCA-
SIFT features are performed during step (a). During step (b), we roughly pair
images based on image similarity before mosaicking, since it not only saves
time-consuming mosaicking trials but also helps improve traditional mosaicking
method to fit for distributed and parallel computing with such a light-weight
pre-processing part. Finally, a novel and distributed mosaicking algorithm based
on PCA-SIFT feature is carried out on Spark framework during step (c). It’s
noted that mosaicking process of step (c) is performed iteratively until all input
drone images are integrated to generate a single and final aerial image. Moreover,
we utilize two operations of Map and one operation of Reduce to construct the
proposed “MapReduce” system. The reason that we could design two separate
Map operations lies in the fact that steps of preprocessing and rough pairing
could be executed without interactions among different input drone images.

The main contribution of this paper is to propose a parallel and distributed
drone images mosaicking method, which has been successfully implemented on
Spark platform. Essentially, how to design task-specified and cloud-based sys-
tems to perform image processing tasks with high efficiency is a major concern
in the domain of cloud computing for big data processing. We try to complete
such tasks by design a novel drone images mosaicking method based on the
traditional mosaic method, which is further improved with thoughts of paral-
lel and distributed running. After implementation on Spark with in-memory

A Parallel Drone Image Mosaic Method Based on Apache Spark 299

representation, results on several self-collected datasets with relatively cheap
drones have proved that the proposed system is of great efficiency and accuracy
for drone image mosaicking tasks.

2 Related Work

The existing methods related to our work can be categorized into image mosaick-
ing methods and the development of cloud computing.

Mosaicking Methods. Essentially, mosaicking is well-developed in the domain
of image processing. Generally speaking, it consists of five steps [13]: 1) image
pre-processing, including operations of image denoising, creating image match-
ing templates and so on; 2) image matching, which is the key step to find
the exact position of feature points between the original and reference image;
3) calculate transformation parameters of two images in the geometric model
based on matching feature points; 4) uniform coordinate transformation, which
converts the image to be stitched into the coordinate system of the reference
image; 5) fusion reconstruction, where the overlapping regions of both images
are fused to reconstruct a large image. It’s noted that the second and third steps
refer to image registration procedure, meanwhile, the fourth and fifth steps rep-
resent the procedure of image mosaicking.

With similar structure explained above, quantity of mosaicking methods is
proposed to deal with different situations in a variety of applications. For exam-
ple, Wang et al. [20] convert a surveillance video clip into one abstraction image
with SIFT-based image aligning and integrating. Zhang et al. [23] propose an
image mosaic method based on Speed Up Robust Feature (SURF) to achieve
rapid image splicing in UAV low-altitude remote sensing field. To obtain the
morphology of the whole microstructure, Wang et al. [18] proposes a SIFT-
based mosaic algorithm by using multiple images from a microgroove structure
processed by femtosecond laser. Afterwards, a stitched image of the whole groove
structure could be studied experimentally and realized.

Based on former successful implements of image mosaicking methods, we
can notice it’s useful to adopt the classic SIFT algorithm for step 2, i.e., image
matching. To solve problems of translation, rotation and scale variances between
original and reference images, the SIFT algorithm realizes the matching of the
extracted feature points and forms a high quality panoramic image by match-
ing several feature points [2]. However, directly utilizing SIFT for large-scale
mosaicking is impossible, due to the large amount of computation brought by
quantity trials of image matching between each pair of input images. Therefore,
drone image data with the huge volume feature cannot be directly mosaicked by
a single computing node with a traditional mosaicking algorithm.

Development of Cloud Computing. Faced with “big data” challenge [10],
adopting a parallel computing architecture such as MapReduce [4] is a proper
choice to mosaic quantity of drone images. MapReduce is carefully designed to store
and parallel process large volumes of data in a distributed network. By separating

300 Y. Wu et al.

available disk, computing resource and scheduling jobs, its successor platforms,
such as Hadoop Standalone and Hadoop YARN [17], have become popular for big
data operating. Recently, Apache Spark (Spark), an innovative framework for real-
time processing, has been proposed by the University of California, Berkeley to
perform in-memory computing and big data analysis [22]. In Spark, Berkeley pro-
posed to utilize internal memory rather than disk to process in MapReduce, con-
sidering the fact that internal memory channels have higher bandwidth than disks
and other PCI devices. Based on the Spark platform, Amazon.com constructed a
general-purpose and scalable in-memory computing framework to process large-
scale data at extremely high speed (reported 100-TB data sort in 23 min on 207
nodes) [21]. It’s great potential to use the Spark framework on Hadoop platform to
mosaic large-scale drone images. However, How to design a task-specified mosaic
algorithm to fit parallel programming and utilize features of drone images, and
what the performance gain is remain to be explored.

Most related to our project, Huang et al. [5] propose a strip-oriented paral-
lel programming model to facilitate the design of generic remote-sensing (RS)
algorithms using an Apache Spark on Hadoop YARN. They report a multitask-
ing algorithm took less than 4h to process more than half a terabyte of RS
data on a small YARN cluster, which proved their proposed algorithms are of
great efficiency. However, they pay special attention to generic parallel RS algo-
rithms other than a complicated and task-specified algorithm, such as mosaic,
detection, classification and so on. Plaza et al. [14] introduce an open-source
segmentation framework that runs efficiently on large electron microscopy (EM)
image datasets. Their proposed framework is implemented in Apache Spark and
laid over DVID [1], a volume data-service for accessing and versioning volume
data. It’s reported that ingestion and segmentation with the proposed system on
453 GB EM data only took 1 h, which demonstrates the scalability and efficiency
by applying image processing algorithms on the Spark platform.

3 Methodology

In this section, we describe the proposed system by preprocessing, Drone Images
Pairing based on Similarity and Iterative Parallel Mosaicking with PCA-SIFT
features.

3.1 Preprocessing

In this subsection, we first utilize flight parameters as input to correct perspective
distortions and then extract PCA-SIFT features for further mosaicking.
Essentially, adopting a cheap consumer drone to collect data would bring sev-
eral matters to quality of the inputting images. Among these matters, perspective
distortion caused by unsteady flight would harm visual effect of the final mosaick-
ing image without preprocessing. Therefore, the core of the preprocessing step is
to design suitable Correlation filters (CF), which acts as a measure of similarity

A Parallel Drone Image Mosaic Method Based on Apache Spark 301

Drone Plane
-7

Land Plane

@ (b) (©)

Fig. 2. lllustration of perspective distortion model. (a) Perspective distortion is caused
by the angle between the camera of drone and land planes, (b) input image with
perspective distortion, and (c) the image after correction of perspective distortion.

between two functions. Many CF designs can be interpreted as optimizing a dis-
tance metric between an ideal desired correlation output for an input image and
the correlation output of the training images with the filter template [15].

We model the discussed problem as shown in Fig. 2. As a result, the projec-
tions from land plane to the imaging plane, i.e., drone plane should be a group of
divergent trapezoid shapes. Therefore, perspective distortion correction for the
drome is actually a reverse trapezoid-based compensation problem. According to
the above analysis, we use trapezoid-based reverse transformations for perspec-
tive distortion correction. Suppose (z,y) is a pixel from a captured aerial image,
while (2,4') is its corresponding corrected point, then (z,y) and (z',y’) obey
the following linear transformation model:

z’ S, 00 T
Y| =10580]|y (1)
w’ 0 01 w

where (w,w’) are Homogeneous coordinates and S,, , S, are flight parameters in
X-axis and Y-axis achieved directly from the drone we use in the experiments.
We show an example result in Fig. 2, where (b) and (c) represent the image with
perspective distortion and after correction, respectively.

Due to camera auto exposure and white balance affected by ambient light,
there exists a difference in brightness and color between the images. This is
contrary to the brightness constancy, so we should adjust the brightness of the
images. We can use the sample point to adjust image brightness. The three image
channels RGB are handled separately, and the difference in brightness and color
can be approximated by the following linear equation:

R’ ar, 0 0 R, b,
G'|=]0a, 0[.|Gi|+ b, (2)
B’ 0 0g,| | B by

where a and b are linear transformation parameters. The sample points are
chosen from the SIFT match previous step and its neighbor points. MSAC [3]

302 Y. Wu et al.

was used to refine the sample points. Regression analysis is used to fetch the
linear transform parameters of the three channels.

After correction, we extract PCA-SIFT features to prepare for further
mosaicking. SIFT is proved to be a robust and stable descriptor in image match-
ing or content analysis [8,9]. However, the extracted 128-dimension SIFT feature
makes matching quite inefficient, especially for instant drone image mosaic. We
thus utilize PCA-SIFT [6], a PCA (Principal Components Analysis) version of
original SIFT features, to decrease the dimensions of feature space and fasten
the process of image mosaic. Besides, for images containing a large number of
straight lines (such as buildings, etc.), the different angles’ collection of the same
object by the drone will make the contour not parallel. To increase the quality
of image mosaic, we made some small rotation transformation.

3.2 Drone Images Pairing Based on Similarity

In this subsection, we mainly describe the proposed algorithm to roughly pair
drone images based on the similarity between two images.

Calculating the similarity between two images is a hot topic in computer
vision [19,25]. Former methods adopt elementary image processing to calculate,
such as histogram, Average Hash and Perceptual Hash [24]. These methods are
not only fast in speed, but also simple and straightforward in implementation.
However, they are not effective in calculating category-level image similarity
[16]. Inspired by the significant power of deep learning architectures, researchers
propose a deep ranking model to calculate and sort similarity among category-
level images. For example, Wang et al. [19] integrate deep learning techniques and
fine-grained ranking model to learn the image similarity ranking model directly
from images.

For the proposed method, we aim to utilize a paring algorithm to avoid time-
consuming mosaicking trials and convert the following parallel mosaic algorithm
to fit for parallel running. Considering the feature of suitability for small com-
putation tasks of the Spark-based system, we adopt histogram, a light-level but
highly effective for resemble images similarity calculating algorithm, to be the
pairing algorithm. In fact, we utilize histogram to search and pair two aerial
images by calculating the similarity between the subareas of two images cap-
tured in a disorderly flying video sequence, which could be written as following:

N 255

Sim(G, S) = max 3% - |9,k — i,

1,2 =1 i—1 max gzgk:asz,],k)

3)

where g and s refer to the histograms of G and S respectively, N represents
the blocks we split for each subarea and k represents the number of subareas.
Note that k is settled with 2, which represents we utilize the left and right parts
of aerial images with preset areas to calculate. In that way, we aim to search
horizontal neighboring images and pair them up. Splitting blocks are used to
improve the robustness of the histogram method, preventing similar color of

A Parallel Drone Image Mosaic Method Based on Apache Spark 303

G, S results in high similarity. After calculating similarity, we roughly pair two
images by

P(1I;) = argmax Sim(1;, I;), where I;, I; € ¢ (4)

J

where 1 refers to the set of unpaired images. We show two successful mosaicked
samples in Fig. 3 to illustrate the calculation of similarities, where we can notice
the right part of (a),(e) and the left part of (b),(f) are similar in both appearance
and corresponding histograms.

() (d) (8) (h)

Fig. 3. Sampling images and their corresponding histograms.

The importance of such roughly pairing operation lies in the fact that we
cannot achieve a parallel workflow without pre-arrangement. More precisely, the
collected images are often disordered and will not succeed if mosaicked directly
because they share few same features. We need to do similarity matching to
adjust these images to a sequence that can be mosaicked correctly, that is, two
images that can be mosaicked put together. Specifically, for an image, another
image that is most likely to be mosaicked with it is selected through similarity
comparison. Thus, the image sequence that can be mosaicked correctly can be
generated through multiple operations.

3.3 Iterative Parallel Mosaicking with PCA-SIFT

In this subsection, we describe the proposed iterative parallel mosaicking
algorithm.

We show the workflow of the proposed mosaic algorithm in Fig.4 . We can
observe the input is a pair of drone images Py, ¢ = {li 1.1, Ijt,r} computed by
former subsection, where ¢ and r represents the index of turn and iteration,
respectively. We firstly judge whether ¢t < 1 to prevent cycle running, where 7
equals 4 in experiments. Then, we follow [20] to try mosaicking between paired

304 Y. Wu et al.

Go to next Iteration with r=r+1, =0

I, Go on Pairing and Ignore I, with =t+1
ihr

|
Query Image
Ii,l,r

Fail

Py

Rough Pair

A4

Mosaic Image
1, k,r,r=M U ihrs Ij,l,r)

Fig. 4. Workflow of the proposed Iterative Parallel Mosaicking algorithm for disorderly
fly model.

subareas of I; ; , and I}, ,, which first utilize PCA-SIFT features to calculate dis-
tance and then properly integrate similar parts between two images. Specifically,
we need to establish the mathematical relationships that map pixel coordinates
from one image to another. For standard lens images, the mathematical model is
usually established by affine transformation, and the least squares method is used
to optimize the parameters, which can be expressed as Iy, = M (L ¢y, I, »)-

Due to the rough pairing results, we could get wrong trials especially for
location with homogeneous visual appearances. With a wrong trial, the proposed
algorithm goes on pairing in the next turn with ignoring I, .. With a successful
mosaic trial, the proposed algorithm outputs the mosaic image I, ; , and puts it
in dataset 1 for next iteration of computation by setting r =r + 1 and ¢ = 0.

Essentially, the proposed iterative mosaicking algorithm could be parallel
performed. We could utilize spark nodes to execute the workflow presented in
Fig. 4 at the same time, where the number of the nodes could be defined as half
of the size of ¢ for each iteration and we only need a lock scheme on acquiring
permissions of the image set to guarantee the successfully parallel running. The
highly parallel performance of the proposed mosaicking algorithm is actually
ensured by a simple but effective pair algorithm and a short pipeline length, i.e.,
the maximal turn number 7. It’s noted that several corner images may result in
unpaired images with ¢ > 7, which will be regarded as images in 1 for the next
iteration.

3.4 Implementation Details

We adopt spark to be the implementation framework and believe Spark to be
an ideal framework for several reasons:

— An in-memory representation for large label data will empower future algo-
rithms to use high-level, global context to improve mosaic quality.

— Spark expands the widely-used MapReduce model by supporting many com-
putational models, such as interactive query and stream processing, and sup-
porting to work with other famous big data tools, such as Hadoop clusters.

A Parallel Drone Image Mosaic Method Based on Apache Spark 305
2. RDD Objects 3. DAG Scheduler

4.Task Scheduler 5. Worker

D TaskSet Task
Cluster Execute
Manager Tasks

1. Initialzation

System
Initialization

NEyEN

Split graph into stages of tasks

Fig. 5. Execution workflow of the proposed mosaic algorithm implemented on Spark.

— The core component of Spark is fast and versatile so that it supports to be
designed for a variety of application scenarios, such as machine learning and
image processing.

The implementation is built on the core component of Spark since it supports
fast response for requests. The Core component consists of different modules,
such as task scheduling, memory management, error recovery, interaction with
the storage system and so on. It also includes definitions of APIs for Resilient
Distributed Datasets (RDDs), which can be operated parallel on multiple com-
pute nodes. As shown in Fig. 5, we describe detailed steps as below:

1. Read dataset of drone images and set initial parameters based on data size and
node configuration. We specially define a reasonable partition scale parame-
ter to maximize the usage of cluster resources by guidance of [5]. Apply for
Executor resource to Hadoop Standalone and start the Standalone Executor.

2. According to the total workflow of the proposed mosaicking algorithm, per-
form MAP operation to define the corresponding RDD objects, which further
construct a directed acyclic graph (DAG). From Fig. 5, we can notice steps of
distortion correction and feature extraction could be parallel executed, since
such RDD objects for each image is irrelevant with other images. Meanwhile,
steps of pair and mosaic could be parallel performed for every two images if
designing the proper lock scheme.

3. Through the operation of Reduce, DAG is translated into a physical execution
plan by splitting DAG into stages of tasks and tracking parent nodes.

4. With the physical execution plan, the Spark task scheduler would submit a
job to perform these operations. Note that each job contains one or more
procedures, which consist of a series of parallel computing tasks.

5. Every procedure, corresponding to one or more steps in the DAG, would be
performed with multiple parallel pipelines inside one worker.

The experiment environment consists of six nodes. We used 2 Amax PSC-
HB1X servers. Both of them have 24 cores, 12 GB main memory and 2 TB disk.
We employ a VMware Workstation Pro 12.1.0 to create 4 more virtual nodes
and all of them hosted on Amax PSC-HB1X servers. Therefore, each node owns
4 cores and 2 GB in total. All nodes adapt as OS 14.04.2 LTS. The Spark version

306 Y. Wu et al.

is Spark 2.1.3. The JDK version is JDK 1.8.0. The python interpreter version is
python 3.5.2. Daemons of the Hadoop master and the Spark master are running
on the same nodes, with other nodes being used for storage and computing.
Therefore, we have one spark master and five spark slaves in total.

4 Experiments

In this section, we show the effectiveness and efficiency of the proposed system
for drone image mosaicking tasks. We first introduce dataset and measurements,
and then describe performance analysis on both time and quality.

4.1 Dataset and Measurement

We apply the proposed drone image mosaic method on a self-collected dataset,
which contains 5840 images with 31.38 GB size. All these data are captured at
six locations named Campus, GeneralMount, CowheadMount, XiaolongBridge,
JinzhiFactory, Baijial.ake, and the corresponding captured image numbers are
540, 810, 620, 1000, 1540 and 1330. We use a DJI Phantom 3 drone to collect
data. Samples of data and the drone are shown in Fig.2. Note that we achieve
aerial images by firstly taking videos and then equally sampling videos. For
the video captured at Campus, we fly the drone at 140 m to get aerial images at
4700 * 3200 resolution. For other videos, we fly the drone at 90 m to get images at
4000 * 3000 resolution. In fact, DJI Phantom 3 drone is developed for consumer
utilization, so that it’s cheap in cost, i.e., only around 600 dollars. Therefore, the
proposed method could be further developed as an online service to instantly
offer mosaicking aerial images, even if users upload low quality sequences with
consumer level drones.

To evaluate the performance of the proposed system for mosaicking, we utilize
two popular methods, i.e., NIQE [12] and BRISQUE [11], to measure the quality
of generated aerial image, where both measurements are image quality estimation
algorithm without reference, NIQE refers to Natural Image Quality Evaluator,
and BRISQUE represents Blind/Referenceless Image Spatial Quality Evaluator.
The detail of these two measurements can be found in [12] and [11].

4.2 Performance Analysis

To evaluate the proposed mosaic method on Spark, we compare it on six sets of
collected drone images with the single process (not using Spark on a single node)
and using Spark Local mode. Spark Local mode refers to local operating mode
with the single node, which simulates Spark distributed computing environment
with multiple threads of a single node. Note that methods running on the single
process and Spark Local mode are the same as that on P[2] and P[5]. Table 1
gives the time comparison, where number in “Campus(540)” refers to the drone
image number, L[N] represents Spark Local Mode, N means that N threads are
used and each thread occupies a core, P[M] and P[M] refers to the proposed

A Parallel Drone Image Mosaic Method Based on Apache Spark 307

Table 1. Comparison of running time on collected dataset with the proposed method,
Spark Local mode and single process.

Sequence Order fly mode(s) Disorder fly mode(s)

P[2] P[5] Local[4] | Single P[2] P(5] P[5 Local[4] | Single
Campus(540) 5248.0 | 3913.3 7195.3 9496.4 | 5401.7 | 3845.2 5441.0 7392.2 9855.9
GMount(810) 4534.7 | 2766.2 5895.2 7841.2 | 4718.0 | 2810.1 | 11042.1 6128.7 8263.0
CMount(620) 3943.2 | 2029.4 4832.1 6185.5 | 4094.2 | 2058.9 6444.1 5022.7 6514.3
XBridge(1000) | 5294.8 | 2536.2 7140.8 9923.3 | 5544.4 | 2617.9 | 16723.1 7456.8 | 10485.7
JFactory(1540) | 7812.9 | 3554.7 | 10694.1 | 15017.3 | 8305.2 | 3803.4 | 39249.8 | 11309.8 | 16041.7
BLake (1330) 6762.9 | 3017.7 | 8735.0 | 12927.3 | 7130.4 | 3210.7 | 29523.0 | 9197.6 | 13717.8
Average 5599.4 | 2969.6 7415.4 | 10231.8 | 5865.7 | 3057.7 | 20817.7 7751.3 | 10813.1

method running with M computation nodes with and without parallel design,
respectively. Moreover, we utilize brute force to try matching drone images with
either left or right parts, which is the same as the proposed pair algorithm. The
reason to set N and M as 4 and 5 lies in the fact that each node owns 4 cores
and the spark cluster has 5 nodes, respectively. We also design two modes for
flying, i.e., orderly fly and disorderly fly. The former implies upload drones offer
images in consist orders, while the latter means drones have flown in a free way.
By comparing these two modes, we can notice how Spark platform and parallel
mosaicking algorithm help perform tasks with higher efficiency. To offer a more
intuitive sense on how Spark-based mosaic method help, we show a comparison
graph with ratio values on disorder fly mode in Fig. 6.

~45000
E 40000 10.32
g
E 35000
& 9.20
30000 = Single
25000 = Local[4]
20000 @ =rn
639 437 P[5]
15000 427
2.56 3.93 4.01 97 86 3.54 =PI
10000 2.94 18 .
.9240 " 18 3.16 “ 313 .85 22 -549%
. Ty 5
0

Campus GMount CMount XBridge JFactory BLake Average

Fig. 6. Comparison graph and ratio values of running time on collected dataset under
disorder fly mode. Note that numbers above refer to ratio values and the basis number
is running time achieved by P[5].

As shown in Table1, P[5] achieves the lowest running time in all 6 drone
image sets. This is reasonable since P[5] utilizes the larger amount of computa-
tion resources than other comparative methods. By introducing parallel modifi-
cations, i.e., roughly pair and iterative parallel mosaicking, we could notice the

308 Y. Wu et al.

large amount of computation time is saved by comparing running time of P[5]
and P[5]" under disorder fly mode. It’s noted the times of saving time are unsta-
ble, since brute force adopted by P[5]’ is not stable in performance and running
time of P[5] is highly related to visual layout of scene. Moreover, we could find
consuming time in disorder fly and order fly modes are nearly same with parallel
modifications in all datasets. All these facts prove that parallel modifications are
robust, efficient and fit for parallel executing.

We pay special interest to running time values under disorder fly mode, since
it’s more suitable than order fly mode for situations of how users use consumer
drones. As shown in Fig. 6, we could notice that the running time of P[2] is nearly
twice as large as that of P[5]. However, the computation resources of P[5] is 2.5
times larger than that of P[2], which proves that there is a loss in computation
resources with more nodes. Drawing a map to analyze trends of computation
loss with nodes requires more computation resource and is included in our future
work. By comparing Local[4] and P[2], we could find a decrease in running time.
However, it’s not linearly related to the computation resource, which is due to
the computation loss as well. But the extendibility of P[2] is far larger than
Spark local mode, since we can easily involve more distributed computation
nodes in the Spark cluster. With Spark system to MapReduce tasks, we can
observe a quite large decrease in running time between Local[4] and Single using
the same computation resource, which proves that the Spark system is much
more appropriate for fast and parallel computation than multithread scheme.

Sample qualitative results of the proposed method are shown in Fig. 7, where
original images of (a) are captured under order fly mode, and images of (b)
and (c) are captured under disorder fly mode. From Fig. 7, we can see the pro-
posed method could successfully mosaic whole aerial images with desirable visual
effects. However, we can still view some artifacts, especially for regions with no
obvious objects, such as trees, grass and so on. This is due to the reason that
such objects are lack robust PCA-SIFT features to mosaic and quality of aerial
images captured by consumer drones is not good enough.

LT =4
il S0

JLETCE e 1 S8 ~2 i h
(@) (b) (©

Fig. 7. Mosaic Results of Drone aerial images with the proposed method on (a) Cam-
pus, (b) CowheadMount and (¢) GeneralMount dataset.

A Parallel Drone Image Mosaic Method Based on Apache Spark 309

Finally, we use two measurements, i.e., NIQE and BRISQUE, to evaluate
quality of generated aerial image, where we show exact results on three sets
of self-collected data in Table2. From the table, we can notice the decrease in
calculation values before and after mosaic processing, which helps to verify the
accuracy and robustness of the proposed mosaicking algorithm for drone images.

Table 2. The quality measures before and after the mosaic.

Data Metric Before process | After process
Campus | BRISQUE | 42.86 41.51

NIQE 16.38 15.85
GMount | BRISQUE | 42.75 42.20

NIQE 16.37 15.13
CMount | BRISQUE | 43.24 42.77

NIQE 16.62 16.18

5 Conclusions

In this paper, we propose a parallel drone image mosaic method to assure its
high performance in a Spark-based cloud computing environment. The proposed
method makes its steps to be fit for fast and parallel running to run efficiently
on Spark-based system. The proposed method is implemented and tested on six
self-collected dataset. Comparative results show that the proposed method is of
great efficiency and could achieve visual desirable images even with low-quality
input images. Our future work includes applying the proposed mosaic method
on a large spark-based cluster to offer instant on-line mosaicking service and
improve traditional image processing methods by transforming them to be fit
for the Spark-based system.

References

1. Distributed, versioned, image-oriented dataservice (dvid). http://github.com/
janelia-flyem /dvid

2. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant fea-
tures. Int. J. Comput. Vision 74(1), 59-73 (2007). https://doi.org/10.1007/s11263-
006-0002-3

3. Capel, D.: Image mosaicing and super resolution. Ph.D. thesis, University of Oxford
(2004)

4. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun.
ACM 53(1), 72-77 (2010)

http://github.com/janelia-flyem/dvid
http://github.com/janelia-flyem/dvid
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1007/s11263-006-0002-3

310

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Y. Wu et al.

Huang, W., Meng, L., Zhang, D., Zhang, W.: In-memory parallel processing of
massive remotely sensed data using an Apache Spark on Hadoop YARN model.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(1), 3—19 (2017)

Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local
image descriptors. In: Proceedings of Computer Vision and Pattern Recognition,
vol. 2, p. II. IEEE (2004)

Lee, J.N., Kwak, K.C.: A trends analysis of image processing in unmanned aerial
vehicle. Int. J. Comput. Inf. Sci. Eng. 8(2), 2-5 (2014)

Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91-110 (2004). https://doi.org/10.1023/B:VISI.0000029664.
99615.94

Lyu, M.R., Song, J., Cai, M.: A comprehensive method for multilingual video text
detection, localization, and extraction. IEEE Trans. Circuits Syst. Video Techn.
15(2), 243-255 (2005)

Ma, Y., et al.: Remote sensing big data computing: challenges and opportunities.
Future Gener. Comput. Syst. 51, 47-60 (2015)

Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in
the spatial domain. IEEE Trans. Image Process. 21(12), 4695-4708 (2012)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image
quality analyzer. IEEE Signal Process. Lett. 20(3), 209-212 (2013)

Moravec, H.P.: Rover visual obstacle avoidance. In: Proceedings of the 7th Inter-
national Joint Conference on Artificial Intelligence, pp. 785-790 (1981)

Plaza, S.M., Berg, S.E.: Large-scale electron microscopy image segmentation in
spark. arXiv preprint arXiv:1604.00385 (2016)

Rodriguez, A., Boddeti, V.N., Kumar, B.V.K.V., Mahalanobis, A.: Maximum mar-
gin correlation filter: a new approach for localization and classification. IEEE
Trans. Image Process. 22(2), 631-643 (2013)

Taylor, G.W., Spiro, 1., Bregler, C., Fergus, R.: Learning invariance through imita-
tion. In: Proceedings of Conference on Computer Vision and Pattern Recognition,
pp. 2729-2736 (2011)

Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator.
In: Proceedings of ACM Symposium on Cloud Computing, pp. 5:1-5:16 (2013)
Wang, F.B., Tu, P., Wu, C., Chen, L., Feng, D.: Multi-image mosaic with SIFT
and vision measurement for microscale structures processed by femtosecond laser.
Opt. Lasers Eng. 100, 124-130 (2018)

Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In:
Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 1386—
1393 (2014)

Wang, L.M., Wu, Y., Tian, Z., Sun, Z., Lu, T.: A novel approach for robust surveil-
lance video content abstraction. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo,
C.-C.J., Lew, M.S. (eds.) PCM 2010. LNCS, vol. 6298, pp. 660-671. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15696-0_61

Xin, R., Deyhim, P., Ghodsi, A., Meng, X., Zaharia, M.: Graysort on apache spark
by databricks. GraySort Competition (2014)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of 2nd USENIX Workshop on Hot
Topics in Cloud Computing (2010)

Zhang, W., Li, X., Yu, J., Kumar, M., Mao, Y.: Remote sensing image mosaic
technology based on SURF algorithm in agriculture. EURASIP J. Image Video
Process. 2018(1), 1-9 (2018). https://doi.org/10.1186/s13640-018-0323-5

https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://arxiv.org/abs/1604.00385
https://doi.org/10.1007/978-3-642-15696-0_61
https://doi.org/10.1186/s13640-018-0323-5

A Parallel Drone Image Mosaic Method Based on Apache Spark 311

24. Zhou, G., et al.: Paper infrared image retrieval of power equipment based on per-
ceptual hash and surf. In: Proceedings of International Conference on Advanced
Infocomm Technology (ICAIT), pp. 387-392. IEEE (2017)

25. Zhou, Z., Wang, Y., Wu, Q.J., Yang, C.N., Sun, X.: Effective and efficient global
context verification for image copy detection. IEEE Trans. Inf. Forensics Secur.
12(1), 48-63 (2017)

	A Parallel Drone Image Mosaic Method Based on Apache Spark
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preprocessing
	3.2 Drone Images Pairing Based on Similarity
	3.3 Iterative Parallel Mosaicking with PCA-SIFT
	3.4 Implementation Details

	4 Experiments
	4.1 Dataset and Measurement
	4.2 Performance Analysis

	5 Conclusions
	References

