
Anomalous Taxi Route Detection System
Based on Cloud Services

Yu Zi1, Yun Luo2(B), Zihao Guang1, Lianyong Qi3, Taoran Wu4,
and Xuyun Zhang1

1 Department of Electrical, Computer and Software Engineering,
University of Auckland, Auckland, New Zealand

{zgua779,zyu539}@aucklanduni.ac.nz, xuyun.zhang@auckland.ac.nz
2 Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia

Yun.Luo@student.uts.edu.au
3 Qufu Normal University, Jining, China

liangyongqi@gmail.com
4 Guizhou University of Finance and Economics, Guiyang, China

taoran.wu@mail.gufe.edu.cn

Abstract. Machine learning is very popular right now. We can apply the
knowledge of machine learning to deal with some problems in our daily
life. Taxi service provides a convenient way of transportation, especially
for those who travel to an unfamiliar place. But there can be a risk that
the passenger gets overcharged on the unnecessary mileages. To help the
passenger to determine whether the taxi driver has made a detour, we
propose a solution which is a cloud-based system and applies machine
learning algorithms to detect anomaly taxi trajectory for the passenger.
This paper briefly describes the research on several state-of-art detection
methods. It also demonstrates the system architecture design in detail
and gives the reader a big picture on what parts of the application have
been implemented.

Keywords: Anomaly detection · Taxi route · Cloud service · Machine
learning

1 Introduction

In the recent years, more and more organizations store, process, and extract value
from data of all forms and sizes. With a certain amount of information available,
it is inevitable that the big data will be continuously integrated into and influence
our daily life. For example, researchers can use mobile phone data to analyze how
people’s location and traffic pattern influence the urban planning. This can help
those urban planners to determine the best practices for stoplights, construction
and parking. This is also a good example of applying machine learning methods.
With the use of machine learning algorithm, we can learn patterns from given
information and make predictions on data using the trained model.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

X. Zhang et al. (Eds.): CloudComp 2019/SmartGift 2019, LNICST 322, pp. 240–254, 2020.

https://doi.org/10.1007/978-3-030-48513-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48513-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-48513-9_20


Anomalous Taxi Route Detection System Based on Cloud Services 241

In our daily life, taxi service plays a uniquely important role. It provides
a convenient door-to-door way of transportation. That makes it very helpful to
people who travel to an unfamiliar place. The taxi service usually charges passen-
gers based on the time or mileages they have taken. However, taxi passengers can
suffer from the risk of being overcharged on the unnecessary mileages incurred
by taxi drivers intentionally or unintentionally. Due to the lack of background
about the cities, most passengers cannot notice the subtle differences between
the normal route and the altered one.

Smart phones equipped with GPS can be viewed as sensors which track
the taxi trajectory. The advances in location-acquisition and mobile computing
techniques has generated massive taxi trajectory data from GPS devices on
taxis and mobile devices carried by the passengers. In this paper, we focus on
constructing a system which can collect the trajectory data of the taxi trips,
extract the temporal and spatial information, and analyse them using machine
learning methods. This anomaly analysis can help the passengers know if the taxi
has taken a normal route. It can also contribute to traffic management which
is one of the most important aspects of smart cities. For example, if the travel
distance of an anomalous trajectory is shorter than that of the normal routes,
this route can be considered as one of the recommended routes for missioncritical
drivers in emergency cases.

The rest of the paper is organised as follows. We review the related work in
the next section. Section 3 states and analyse the targeted problem and our goal.
We describe the system overview in Sect. 4 and the details of implementing the
system in Sect. 5, including development tools and frameworks involved, data pre-
processing, and anomalous taxi trajectory detection algorithm. In Sect. 6, we con-
duct a suite of experiments on real-life data to evaluate the proposed system.
Finally, Sect. 7 concludes our research work and points out the future work.

2 Related Work

2.1 Existing Solutions

We tried to find out mobile apps with the functionality of anomaly route detec-
tion, from the app store. Unfortunately, by now there does not exist such an app
in the market that provides the functionality we concern.

A map application like Google Maps can predict the directions to the desti-
nation for the user. The passenger may compare this predicted route with the
taxi route tracked by the GPS on the mobile device. However, the routes recom-
mended by the map application are quite limited. For example, even the route
taken by the taxi driver is not shown as one of the recommended directions
provided by Google Maps, this route may still be normal due to current traffic
condition. Another case is that if the road network on the digital map is not up-
to-date, the directions provided by the map application cannot be considered as
accurate. Hence this method is not strong enough for the passenger to determine
if the taxi has taken an anomaly route or not.



242 Y. Zi et al.

2.2 Trajectory Outlier Detection Methods

Some researchers have published papers which propose methods for anomalous
trajectories detection. iBoat is a real-time detection method and can also iden-
tify which parts of the trajectory are responsible for its anomalousness [3]. The
project team claims that the method has an excellent accuracy and overcomes
many shortcomings of other state-of-the-art methods. iBoat compares a test tra-
jectory against a set of sampled historical trajectories with the same SourceDes-
tination pair, rather than using time and distance to directly judge whether it
is anomalous or not. We also found another paper on anomaly taxi trajectory
detection. The method is named as iBAT [10]. iBAT exploits anomalous trajec-
tories intrinsic properties of being few and different, and applied the isolation
mechanism to detect anomalous trajectories. Another research group developed
a taxi driving fraud detection system [4]. They mainly considered two aspects
of evidence:travel route evidence and driving distance evidence. Based on the
Dempster-Shafer theory, those two aspects of evidence are combined to perform
the detection. Besides, on Fisher’s paper [9], they demonstrated a novel human
assisted learning/classification framework for identifying anomalous behaviour
on the basis of motion trajectories.

3 Problem Statement

Taxi passengers can suffer from the risk of being overcharged on unnecessary
detours. To ensure the quality of taxi services, it is crucial to detect such cases
and penalize the corresponding driver. Currently, the detection process is often
done by experienced staff via manually checking the geolocation trajectory of a
taxi trip. But this is costly and not effective because sometimes the passengers
cannot even notice the subtle differences between a normal route and the altered
one. And also the accuracy of manual detection is not quite reliable.

In this paper, we aim to develop an anomalous taxi route detection system
that helps the end user to know if the route the taxi driver has taken is normal or
not. The anomalous trajectories detection process should be done automatically
rather than manually. Thus, we need to apply a smart state-of-the-art machine
learning methods to achieve this purpose. In addition, the system should be
deployed on the cloud so that it can be easily scaled on demand. As the potential
end users of the system are the taxi passengers, a mobile application needs to
be developed as the interface between the users and the system, so that the
users can access the detection system remotely. As well, the mobile devices are
responsible for collecting geolocation points of each taxi ride.

4 System Overview

To achieve the goal mentioned above, we need to implement a client-server archi-
tecture which consists of a front end mobile application and a back end server.
The mobile application should provide functionality of recording and storing the



Anomalous Taxi Route Detection System Based on Cloud Services 243

location information during the taxi trip. A tunnel needs to be built up as well
so that the client and the server can communicate with each other. Mover, a
anomaly detection algorithm for trajectory data should be implemented using
machine learning methods. This algorithm will be integrated into the architec-
ture and can return meaningful results with a given route dataset. The back end
server will be deployed onto the cloud to achieve high scalability.

The system overview of our solution is shown in Fig. 1. The back-end server,
MapReduce data processing module and the database are deployed on the cloud.
To detect anomalous routes, we utilize a machine learning method. Thus a huge
amount of raw taxi traffic data is required as the training dataset. As the original
raw data does not meet the requirement for the detection algorithm, the raw data
firstly gets pre-processed by MapReduce module and then stored in the database.
The mobile application is responsible for route data collecting and acts as the
bridge connecting the end-users and the back-end detection system. Once the
taxi arrives at the destination, the application will send the recorded trajectories
data to the back-end servers. The anomalous detection algorithm runs on the
server will then take samples from database and use them to analyze the received
test trajectory. At last, the resulted score will be returned.

Fig. 1. System overview.

In general, the application is developed as a client-server architecture as
shown in Fig. 2. As MapReduce data processing module only relates to the func-



244 Y. Zi et al.

tionality of raw training data processing, it is not considered as one of the pri-
mary modules hence we omit it when we discuss the architecture.

Fig. 2. Architecture diagram.

The client side is split into three modules. App User Interface (UI) module
consists of two pages whose structures and styles are described by corresponding
HTML and CSS files. The Mapping API module should provide functionality
related to mapping service. It passes a map object to the App UI module when
the application loads the home page for the first time. This module can also



Anomalous Taxi Route Detection System Based on Cloud Services 245

predict the location based on the text entered by user, and return the geograph-
ical location back to the UI. Data Processing module is the core logic part of
the front end. It is responsible for route data recording, data transforming and
interacting with the back end side. The current position data is obtained from
the UI module using HTML Geolocation API and stored in Data Processing
module. Once the user reaches the destination, Data Processing module stops
recording the current position, and then transform the dataset into XML form
before sending it to the server. When the detected result is received, it will be
passed to the UI and shown to the user.

The server side is split into three modules as shown in the diagram. Service
module can deal with the request from the client and reformat the received raw
data. Anomalous route detection methods and the trajectory gridding algorithm
are packed into the Detection Module. It can process the data by map gridding
and then analyze the given test trajectory. The map gridded taxi trajectory
will be stored in the database as well. Every time a module tries to access the
database, a data access object will be used to perform create, read, update and
delete (CRUD) operations.

5 System Implementation

5.1 Implementation Environment

We develop the server side of the app using Java Enterprise Edition (Java EE) [8].
Java EE is the industry standard for developing portable, robust, scalable and
secure server-side Java applications. To support the web application develop-
ment, it provides web services, component model, management, and communica-
tions APIs. Thanks to the flexibility of Java, our solution can be deployed across
platforms. We implement web services on back end side following REST style [7].
REST refers to Representational State Transfer which is an architectural style
that specifies constraints, such as the uniform interface. It promotes scalability,
modifiability and good performance. In our implementation, HTTP is used as the
protocol and it provides API for the web service. The processed taxi trajectory
data for machine learning algorithms is stored in a MySQL database [6].

The mobile application is developed using HTML, CSS and TypeScript, as we
build the application with the hybrid mobile application approach. The mobile
application of our solution is designed to be run on not only a specific mobile
operation systems as the popular mobile OS like iOS and Android have certain
portions of market share. A good way is to develop mobile apps for different
mobile platform, which is a hybrid application. It is basically a web application
which is developed using HTML, CSS and JavaScript, and then wrapped in a
native application using platforms like Cordova, also known as write once and
run everywhere approach. Ionic Framework [1] which is an open source project
with a licence under MIT is used for front end development. It provides over 120
native plugins to utilize the native device features.

On the front end side, Google Maps JavaScript API [5] are integrated into
the mobile application. With the use of mapping API, the trajectory data can be



246 Y. Zi et al.

visualized by displaying location points on a map so that the user knows the route
the taxi goes through. Google Maps API provides auto-complete predictions
service which allows the text box to retrieve auto-complete results based on
the user input for the trip destination. It provides place service as well which
can retrieve the precise geographical location information of the destination set
by the user. It also meets all requirements related to map visualization of our
solution.

Raw taxi traffic data is required to be pre-processed before getting stored in
the database. However, due to the computing speed and memory size issues, it
is very time-consuming to process the data if the size of the data expands to a
certain amount. To overcome this computational bottleneck, We implement the
data pre-processing module with the use of Hadoop MapReduce [2]. MapReduce
is a framework that allows programmers write applications to process a huge
amount of data on large clusters of commodity hardware in parallel. It mainly
contains two tasks called Map and Reduce. Map task takes a set of data as input,
and converts it into another set of data. As the result, the individual elements are
broken down into tuples of key-value pairs. Reduce task takes the output from
a Map as an input and then combines those tuples into a smaller set of tuples.
The major advantage of MapReduce is the scalability. It is easy to scale the data
processing over multiple computing nodes. Once the data-processing module is
implemented in the MapReduce form, we can just make a configuration change
to scale the module to run on over hundreds, or even thousands of machines in a
cluster. Besides, we do not need to care about how the data-passing works during
a MapReduce job, as the framework can manage all the details of data-passing
around the cluster. The detail of MapReduce version of data pre-processing
module will be discussed subsequently.

5.2 Data Pre-processing

1) Trajectory Sorting and Splitting: A taxi trip trajectory record consists of
taxi id, a geolocation point represented by latitude-longitude pairs, gener-
ated by the GPS device on that taxi, time stamp and the service status
associated with that time stamp. A complete taxi trajectory can be obtained
by connecting those geolocation points in the order of time stamp. As the
taxi overcharging problems only occur when the taxi is in service, i.e. car-
rying the passenger, we need to split those taxi trajectories corresponding
to the taxi trips from the raw dataset. However, the order of the raw taxi
trajectory dataset cannot be guaranteed. That means the dataset needs to be
sorted before splitting. Since the anomalous trajectory detection algorithm
utilizes a machine learning method, a huge amount of taxi trajectories data
are needed for the better performance of detection. During the earlier devel-
opment of data pre-processing module, we encountered an issue related to
memory bottleneck, as the whole dataset needs to be loaded into memory in
order to sort the trajectory points for a taxi. Instead, in the current solution,
Hadoop MapReduce is used to achieve the trajectory sorting and splitting
tasks as mentioned in the Decision Making on Tool Selection sub-section.



Anomalous Taxi Route Detection System Based on Cloud Services 247

As shown in Fig. 2, at the first step, the raw taxi trajectory dataset is fed into
mappers, which will form keyvalue pairs from single geolocation points. In our
case, the taxi id is defined as key and all other information is defined as value
so that the whole dataset can be effectively separated into small pieces. Then
the shuffler will group pairs with the same key (i.e. same taxi id) together and
send them to the reducer. The next step is to extract taxi routes from the set
with specific taxi id. As mappers and reducers do not interfere with each other
as shown in Fig. 3, the map and reduce tasks could be parallelized easily. That
means it will take much shorter time to extract routes from the raw dataset than
using the earlier implementation theoretically.

Fig. 3. The work flow of MapReduce program.

2) Map Gridding and Trajectory Augmenting: As a preparation of anomalous
trajectory analysis, the city map is split into grid-cell with equal size. Then
each taxi trajectory is mapped to grid cells and can be represented by a
sequence of traversed cells. However, the GPS devices on taxi record a geolo-
cation at a low frequency in practice. Therefore a map-gridded taxi trajectory
may consist of some sequences of geolocation points which are not adjacent
to each other, i.e. there exists a gap between some of the GPS points. Thus,
we need to fill up those gaps by inserting pseudo cells to ensure that the same
taxi trajectories can be represented equally in the system. This operation is
called trajectory augmenting. Once the route information is extracted from



248 Y. Zi et al.

the raw dataset and gets map-gridded, it can then be stored in the back-end
database.

During the map gridding process, the size of the grid cell is an important
parameter we need to care about. It affects the performance of the anomalous
trajectory detection algorithm. If the size is too small, the city map will be sep-
arated into a huge number of grid cells. This results in a sparse sample set when
sampling from the training data. This makes it difficult to perform evaluation
and testing. Also, routes with similar shapes and location points may be con-
sidered as different which is not what we expect. If the size is too large, the
sequence of gridded points cannot reflect the shape and trend information of the
original trajectory.

5.3 Anomalous Trajectories Detection Algorithm

In our research work, we address the problem of anomalous trajectory detec-
tion by using iBAT (isolation based anomalous trajectories detection) method
which is described in [10]. Instead of comparing trajectories based on distance or
density measure, iBAT method detects anomalous route based on the following
properties of anomalous trajectories:

– anomalous trajectories are few in number;
– they are different from the majority, in particular, they pass different loca-

tions, or pass similar locations in different orders.

Here we briefly describe the workflow of iBAT method. It is a lazy learning
algorithm, which does not train a model until a test sample is given. iBAT
method tries to separate the given test trajectory from the rest of trajectories
with the same source and destination, by randomly picking cells solely from the
test trajectory. For example, if t is a test route and the rest form the sample
set, we randomly select one cell from t and remove the trajectories that do
not pass the selected cell from the sample set. This process is repeated until
no trajectory is left or all the trajectories left contain all the cell t has. Since
anomalous trajectories are few and different, most grids contained by anomalous
trajectories are not contained by normal ones. Therefore, the anomalous routes
can be easier to be isolated, i.e. the expected number of used grid cells to isolate
an anomalous route should be much smaller.

5.4 Back End Web Service

On back end side, a runnable web service is implemented. It provides an API
so that the front end client can get the time interval parameter from the server
and send the route dataset for a taxi ride to the server. Once received the raw
route data, this service re-formats the trajectory first. The Detection module
performs map gridding and trajectory augmenting on this test trajectory and
then retrieves those routes with the same source and destination grid as the test



Anomalous Taxi Route Detection System Based on Cloud Services 249

trajectory, from the database. And these route information will then be used
to analyze the test trajectory by iBAT method. Currently, the back end web
service is deployed and being tested on the cloud computing platform provided
by Unitec Institute of Technology.

5.5 Mobile Application

On front end side, the mobile application has been implemented. The application
basically has a simple user interface with two pages, map page and search page as
shown in Fig. 4. Here we briefly describe the work flow of the mobile application.
When the mobile application is launched, the map page will show up, and mark
the user’s current location as shown on the left screen in Fig. 4. To set up the taxi
trip destination, the user needs to navigate to the search page by pressing the
round floating button at the bottom right corner first then pressing the pop-up
button with a search icon to navigate to the search page. Initially, the search
page only shows a header bar and a text box which allows the user to enter
the address of the destination. A result list will show up and display predicted
locations based on the text entered. Once the user pressed one of the location,
it will navigate back to the home page. Then a marker is pinned at the centre of
the map showing the selected destination on the map. If the user is satisfied with
the set destination and wants to start to record the taxi ride trajectory, the user
needs to press the start button to trigger the geolocation record logic. Before
reaching the destination, the route points are recorded at a pre-set interval which
is 2 s by default. The system manager can change this interval by setting the
corresponding parameter at the back-end server.

Fig. 4. Mobile application screen shots-initial screen and search page.



250 Y. Zi et al.

Meanwhile, the map page displays the route the taxi has passed, the current
speed of the taxi and the accumulated duration of the taxi ride as shown in Fig. 5.
Once the taxi gets close enough to the pre-set destination point, a dialog will pop
up to inform the user. The user can then confirm to stop the record logic or press
“keep going” button to keep record the taxi trajectory until the user presses the
stop button. Once record logic is stopped, the complete trajectory will be sent
to the back-end server for anomaly analysis. The result of the detection will be
returned in the form of a score scaled from 0 to 1. The higher the score, the more
abnormal the taxi trajectory. The route will be marked by a specific color based
on the resulted score. As shown in Fig. 5, we assume that the resulted score is
at a high rank, thus the route and the status are marked as red.

Fig. 5. Mobile application screen shots-status screen and result screen. (Color figure
online)

5.6 Data Transfer Between Client and Server

The mobile application can communicate with the back end server using HTTP
protocol. When the recording is triggered, the mobile app firstly sends a request
with GET to the server to acquire the number of record interval. Once the
recording is stopped, the mobile app sends a POST request to the server with the
location information dataset in XML form. As respond, the resulted anomalous
score will then be returned to the front end mobile app.

6 Evaluation

6.1 Experimental Setup

For evaluation purpose, we use a real-world taxi geolocation dataset, which is
collected from taxis served in Chengdu, China for about half a month. The total



Anomalous Taxi Route Detection System Based on Cloud Services 251

number of records is over 1.4 billion. Each record consists of the taxi id, service
status, geolocation point and the corresponding time stamp. This is consistent
with the format requirement for data pre-processing. For the sake of simplicity
in computation and visualization, we restrict our interest within the city center
of Chengdu with longitude [103.9E, 104.2E] and latitude [30.5N, 30.8N]. The size
of each grid cell is set to be 250 m × 250 m and the map is split into 75 × 75
grid cells. To ensure the accuracy and stability of the anomalous route detection
algorithm, two parameters (the number of trial m and sub-sample size) need to
be adjusted properly. We use m = 40 and s = 250 in our experiments which is
quite reasonable based on a 10-fold evaluation.

6.2 Trajectory Visualization

With the assist of visualization, we can compare the sample trajectories with the
corresponding anomalous score to check if the resulted score is reasonable. To
visualize a gridded trajectory, we calculate the geolocation of the center of each
grid cell and connect the geolocation points in a proper order to reshape the
trajectory. Then the processed trajectories set will be transformed into a file in
GPX format in order to be displayed on Google Maps. During the experiment,
we found that there are some cases where a part of the trajectory keeps looping
in a region consists of a few grid cells. This can be caused by the unstable GPS
signal during the taxi ride. Thus, we mesh such geolocation point sequences
before visualizing the trajectories.

Here we show an example of trajectory visualization on a relatively small
dataset. As shown in Fig. 6, it is quite obvious that route A and route B behave
differently from the others. We checked the corresponding results and found that
the anomalous score of route A is 0.874 and route B is 0.732, while the scores for
85% of the rest trajectories are below 0.5. We can say that route A and B can
be successfully marked out as anomalous routes by the implemented detection
algorithm. But we don not have enough evidence to say that all of the anomalous
routes can be successfully classified as abnormal.

6.3 Anomalous Statistics

We conducted another 5 groups of experiments on the Chengdu taxi trajectory
dataset. Specifically, we tried 5 differents pairs of origin and destination, labelled
from A to E. Here we show five of the visualization results from Figs. 7, 8, 9,
10 and 11. Since it is impossible for us to mark all the anomalous routes and
compare with the corresponding score, we only calculate the ratio of anomalous
trajectories based on the resulted scores. The corresponding ratio is shown in
Table 1.

6.4 Abnormality Rank

After visualizing the sampled trajectories, following are the findings determining
the abnormality rank of trajectories based on our observation:



252 Y. Zi et al.

Fig. 6. An example of trajectory visualization on a relatively small dataset.

Fig. 7. Trajectory visual-
ization A.

Fig. 8. Trajectory visual-
ization B.

Fig. 9. Trajectory visual-
ization C.

Fig. 10. Trajectory visualization D. Fig. 11. Trajectory visualization E.



Anomalous Taxi Route Detection System Based on Cloud Services 253

Table 1. Anomalous statistics.

Routes Anomalous Ratio

A 567 42 7.4%

B 327 43 13.15%

C 1596 73 4.57%

D 150 18 12%

E 631 68 10.8%

– 0–0.5: normal. This means many taxi drivers take the similar route.
– 0.5–0.7: possibly anomalous. They are usually similar to normal routes in

most segments while only a few are different.
– 0.7–1: anomalous. They have few identical segments with the normal.

7 Conclusions and Future Work

In this paper, we have implemented an anomaly route detection system which
can help users, the passengers who take a taxi, to know if the taxi has taken an
anomaly route or not. The core part of the system have been implemented based
on an anomalous route detection algorithm named iBAT. The backend server has
been deployed and validated on a cloud computing platform. The implemented
detection algorithm has been evaluated on a real-life taxi trajectory dataset
collected from Chengdu, China. In the future, we will consider working on real
time data transfer and detection and implementing the MapReduce version of
anomalous route detection algorithm.

Acknowledgement. This work was supported in part by the New Zealand Mars-
den Fund under Grant No. 17-UOA-248, and the UoA FRDF fund under Grant No.
3714668.

References

1. Build amazing native apps and progressive web apps with ionic
2. Welcome to apache hadoop. https://hadoop.apache.org/old/
3. Chen, C., et al.: iBOAT: isolation-based online anomalous trajectory detection.

IEEE Trans. Intell. Transp. Syst. 14(2), 806–818 (2013)
4. Ge, Y., Xiong, H., Liu, C., Zhou, Z.H.: A taxi driving fraud detection system. In:

IEEE 11th International Conference on Data Mining, pp. 181–190 (2011)
5. Google: [9] google maps APIs - google developers. https://developers.google.com/

maps/documentation/
6. MySQL: Why MySQL? https://www.mysql.com/why-mysql/
7. Oracle: The Java EE 6 tutorial. https://docs.oracle.com/javaee/6/tutorial/doc/
8. Oracle: Java EE at a glance. https://www.oracle.com/technetwork/java/javaee/

overview/javaee-135128.html

https://hadoop.apache.org/old/
https://developers.google.com/maps/documentation/
https://developers.google.com/maps/documentation/
https://www.mysql.com/why-mysql/
https://docs.oracle.com/javaee/6/tutorial/doc/
https://www.oracle.com/technetwork/java/javaee/overview/javaee-135128.html
https://www.oracle.com/technetwork/java/javaee/overview/javaee-135128.html


254 Y. Zi et al.

9. Sillito, R.R., Fisher, R.B.: Semi-supervised learning for anomalous trajectory detec-
tion. In: BMVC, vol. 1, pp. 035–1 (2008)

10. Zhang, D., Li, N., Zhou, Z.H., Chen, C., Sun, L., Li, S.: iBAT: detecting anoma-
lous taxi trajectories from GPS traces. In: ACM 13th International Conference on
Ubiquitous Computing, pp. 99–108 (2011)


	Anomalous Taxi Route Detection System Based on Cloud Services
	1 Introduction
	2 Related Work
	2.1 Existing Solutions
	2.2 Trajectory Outlier Detection Methods

	3 Problem Statement
	4 System Overview
	5 System Implementation
	5.1 Implementation Environment
	5.2 Data Pre-processing
	5.3 Anomalous Trajectories Detection Algorithm
	5.4 Back End Web Service
	5.5 Mobile Application
	5.6 Data Transfer Between Client and Server

	6 Evaluation
	6.1 Experimental Setup
	6.2 Trajectory Visualization
	6.3 Anomalous Statistics
	6.4 Abnormality Rank

	7 Conclusions and Future Work
	References




