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Abstract. Aimed to reduce the excessive cost of neural network, this paper pro-
poses a lightweight neural network combining dilated convolution and depthwise
separable convolution. Firstly, the dilated convolution is used to expand the recep-
tive field during the convolution process while maintaining the number of convo-
lution parameters, which can extract more high-level global semantic features and
improve the classification accuracy of the network. Second, the use of the depth-
wise separable convolution reduces the network parameters and computational
complexity in convolution operations. The experimental results on the CIFAR-10
dataset show that the proposed method improves the classification accuracy of the
network while effectively compressing the network size.
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1 Introduction

In recent years, convolutional neural networks have been used as an effective model in
deep learning with significant progress in many fields, such as image processing, object
detection and semantic segmentation. In 2012, Krizhevsky, et al. [1] first adopted deep
learning algorithm and the AlexNet and won the champion of ImageNet Large Scale
Visual Recognition Challenge. Since then, various convolutional neural network models
have been proposed in the computer vision competition. In 2014, the Visual Geome-
try Group at the University of Oxford proposed the VGGNet [2], Google researchers
proposed the GooglLeNet [3], and He et al. proposed the ResNet [4, 5]in 2015. These net-
works improve the performance of the AlexNet [6] at the cost of deeper and more complex
networks to achieve higher accuracy. With the higher and higher precision for computer
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vision tasks, the model depth and parameters are also exponentially increasing, making
these models only run on GPUs with high computing power [3]. As a consequence,
existing deep neural network models cannot be deployed on these resource-constrained
devices [10, 18], such as mobile phones and in-vehicle embedded devices, due to their
limitations in computing power and storage capacity. The emerging cloud computing
has the potential to solve this challenge.

Cloud computing technology, which combines the characteristics of distributed com-
puting, parallel computing, and grid computing, provides users with scalable computing
resources and storage space by using massive computing clusters built by ordinary
servers and storage clusters built by a large number of low-cost devices. However, the
currently-existing high-performance cloud computing servers are too expensive to afford
for individuals and small companies.

To enhance the affordability of cloud computing, many studies propose various
lightweight neural networks. Some of them aim at reducing the size of neural network
through compressing model. For example, Landola et al. [3] proposed the SqueezeNet
that applies a convolution kernel to convolve and dimension the upper features and
a feature convolution to perform feature stacking, which greatly reduces the number
of parameters of convolution layers. Zhang et al. [14] proposed the ShuffleNet, which
groups multi-channel feature lines and performs convolution to avoid unsmooth infor-
mation flow. Howard et al. [15] proposed the depthwise separable convolution model,
named MobileNet, which convolves the features of each channel separately and uses
1 x 1 convolution to splice all features of different channels. These light-weight models
greatly reduce the number of network parameters and computational cost. However, the
classification accuracy of the compression process cannot be guaranteed because the
compression implementation only uses local information of the image.

In order to address these issues, this paper proposes a lightweight neural network
combining dilated convolution and depthwise separable convolution. The proposed
model divides the convolution process into two processes: expansion convolution and
depthwise separable convolution. Depthwise separable convolution is used to reduce
network computation. However, the use of the depthwise separation convolution can-
not guarantee the classification accuracy of the model [11]. To solve this problem, we
introduce dilated convolution to the depthwise separable convolution architecture. The
dilated convolution can increase the receptive field of the network in the convolution
process without increasing the number of convolution parameters, which help extract
more global features and higher-level semantic features, thus improving the classification
accuracy.

2 Approach

This paper uses dilated convolution as a filter to extract the feature of the image. Com-
pared with the traditional filters, the dilated convolution yields more full-image infor-
mation without increasing the number of network parameters, where the dilated rate
8 controls the size of each convolution dilation. Then, we apply depthwise separable
convolution to reduce the computational complexity and size of the model. This section
first presents the idea of building a joint module for dilated convolution and depthwise
separable convolution, which is used to build the deep convolution network.



212 W. Sun et al.

3*3 Dilated Conv

v

3*3 Depthwise Conv

.

1*1 Conv
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2.1 Joint Module

The joint module is the core of the proposed neural network. As shown in Fig. 1, the
proposed model dilates each filter to obtain more image information without increasing
the amount of calculation. The dilated filter is then used to convolve each input channel,
and the final filter combines the output of different convolution channels.

Figure 2 illustrates the dilation process of 3 x 3 filter for the dilated convolution
process in Fig. 1. The position of the dot mark in Fig. 2 indicates that there is a non-
zero weight, and the node without the dot mark represents zero weight to that position.
In Fig. 2(a), (b), and (c) represent filters with different dilated rates, respectively. The
parameters of the convolution layer remain the same, and the amount of convolution
process is the same too. The receptive fields of the filters (a), (b), and (c) are defined as
3x3=9,7x7=49and 11 x 11 = 121, respectively. The increase of the receptive
field means that each node contains higher semantic features, which can improve the
classification accuracy. To factor the influence of different dilated convolution on model
accuracy, we apply hyperparameter § to control the size of each dilated convolution. As
illustrated by Fig. 2, the relationship between the receptive field and the original filter
size can be represented as:
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Fig. 2. Dilated convolution process
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where C denotes the size of the receptive field, S the size of the initial filter, and §
the expansion rate.

Separable convolution operation is carried out on the obtained dilated convolution
filter. The size of the dilation filteris Ly x L with Ly = +/C. Figure 3 shows the process
of constructing a L; x L; x H feature map and a L; x L; x N feature map. This process
clearly shows how to reduce the number of parameters in the model.

Ly L L Ly
Ly Ly Ly

LA LL LA .o L*

(b) Depthwise convolution filters

(c) Pointwise convolution filters

Fig. 3. Depthwise separable convolution process for dilated filters
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Figure 3(a), (b) and (c) represent the traditional convolution filter, depthwise convo-
lution filter, and pointwise convolution filter, respectively. Figure 3(b) and (c) together
represent a separable convolution process, where L; x L; is the width and height of the
input feature map, N is the number of filters, Ly x Ly is the width and height of the
dilated filter, and H is the number of channels. For example, a single dilated filter of
L x Ly is firstly used to carry out convolution operations on each channel. If the number
of the feature map channels is H, there are H filters with the same size to participate in
the convolution operation, and the number of channels of each filter is 1. The image is
then convolved by N filters with 1 x 1 size and H convolution channels. Figure 3 shows
that a traditional convolution layer receives a L; x L; x H feature map and produces a
L; x L; x N feature map. The amount of computation of traditional convolution is:

G=LpyxLyxHxXxNXxL;xL; 2)
The amount of computation of depthwise separable convolution is:
G=LyxLyxHxL;jxLi+HxN xL; xL; 3)

Therefore, the ratio of separable convolution to the standard convolution can be
represented by:

kakaHxL,-xLi—i—HxNxLixL,-_1 1

— 4 — 4
Ly xLyx HxNxL;xL; N+L§ @

Equation (4) quantifies the computational reduction of separable convolution as
% + le compared to the conventional convolution process.

2.2 Network Architecture

To avoid the vanishing gradient problem and accelerate the network training, we apply
the BN layer (Batch Normalization) and the ReLU layer to make the gradient larger [16,
17] after the joint module introduced in Sect. 2.1. This paper labels the process presented
in Fig. 4 as a basic network structure.

3*3 Dilated Conv

v

3*3 Depthwise Conv ReLu
BatchNormalization BatchNormalization
ReLu — 1*1 Conv

Fig. 4. Basic structure
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Using only one basic structure is often not enough to form a usable neural network.
Because the network is too shallow, we won’t get the deep information of the image.
Therefore, applying the basic structure repetitively to construct a lightweight neural net-
work can improve the neural network performance, as shown in Fig. 5. This lightweight
neural network complements the joint module to form the basic structure. Several basic
network structures are combined with the average pooling layer, the full connection layer,
and the Softmax layer to form the overall neural network structure. In total, the model
consists of 30 layers, including one average pooling layer and one fully connected layer,
9 dilated convolution layers, 9 depthwise separable convolution layers, 9 BN layers, and
one Softmax layer.

2.3 Loss Function and Optimization

We adopt cross-entropy as the loss function of neural network, using Adam as the network
optimizer. The formula for cross-entropy is as follows:

1
Wi(p, = 1) % log(—— 5
(P q) ijp(z)*og(gW (5)

where W (p, q) represents cross-entropy of the distribution of the true mark, g is
the predicted mark distribution of the trained model, and cross-entropy loss function
measures the similarity between p and q.

Adam is considered to be robust in selecting hyperparameters. Therefore, this paper
adopts adaptive Adam learning rate to optimize the proposed model.

3 Experiments

In order to verify the effectiveness of the proposed model, we constructed an experimental
platform and selected a typical dataset. Then, the proposed network model was compared
with other models to verify the effectiveness of the proposed model. Furthermore, we
investigated the influence of the dilated convolution size on the classification accuracy
of the model and verified that the classification accuracy of the proposed model.

All experiments were carried out on a computer with Intel Core i7-7700k CPU,
4.20 GHz x 8 frequency, and GTX 1080Ti graphics card. CUDA version 9.0 and cuDNN
version 7.3.1 were installed. To configure the environment required for the training
model. The proposed model and algorithms were compiled and operated on TensorFlow
1.12.2.

3.1 Comparison of the Proposed Network with Other Networks

To demonstrate the performance of the proposed model in network compression while
ensuring accuracy of classification, we compare the proposed network with other main-
stream networks and illustrate their classification accuracy based on the dataset CIFAR
— 10. The comparisons are shown in Table 1.

Table 1 shows that, compared with some mainstream networks, the proposed network
model achieves high accuracy on CIFAR-10 dataset. The proposed network provides
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Table 1. The proposed network vs popular networks

Model CIFAR-10 accuracy | Million parameters
This paper 84.25% 3.1

1.0 MobileNet 224 | 83.91% 4.2

GoogleNet 83.84% 6.8

SqueezeNet 69.83% 1.25

VGG 16 86.17% 138

accurate results while greatly reducing the number of network parameters compared
with MobileNet and GoogleNet. The SqueezeNet typically acquires fewer parameters,
however, at the cost of low accuracy. Although the proposed network requires more
parameters than SqueezeNet, it is much better in terms of classification accuracy. Because
SqueezeNet sacrifices classification accuracy, it cannot meet the high-accuracy need in
practical applications. Therefore, the proposed network is superior to SqueezeNet. In
addition, although the VGG16 network has slightly higher accuracy in classification
results than the proposed network, its model size is dozens more than the proposed
model, resulting in computational difficulty when computing power is limited. Due to
much fewer network parameters, the proposed network can be easily implemented on
mobile devices with less storage capacity while having good classification accuracy.

3.2 Different Dilated Rate

This study applies the dilated rate to control the size of the dilated convolution, which
affects the size of the receptive field, leading to the change of classification accuracy.
Therefore, we compare the network classification accuracy under different dilated rates
to verify the effect of the dilation rate, as summarized in Table 2.

Table 2. Classification accuracy of different dilated rates

Dilated rate | CIFAR-10 accuracy
0 82.04%
1 83.32%
2 84.25%
83.56%

Applying different dilated rates to the dilated convolution using the CIFAR-10
dataset, Table 2 shows that the joint dilated convolution and the depthwise separable
convolution improve classification accuracy by two percent compared to those networks
without joint dilated convolution. It also shows that the maximum classification accu-
racy is achieved when the dilated rate is 2. As the dilated rate continues to increase,



218 W. Sun et al.

the classification accuracy decreases slightly. This is because the dilated rate increases
the receptive field, while the larger the receptive field, which means it may contain
more global and semantic features. This observation warns us that blindly expanding
the receptive field can lose a lot of local and detailed information during the convolution
process, affecting the classification accuracy of small targets and distant objects.

3.3 Generalization Capability

The results in previous sections show that the proposed network performs well on the
CIFAR-10 dataset. To investigate the proposed model’s performance stability on other
datasets, we conducted training and testing on Tiny ImageNet. The result is as follows.

Table 3. This paper network in Tiny ImageNet

Model Tiny ImageNet accuracy
This paper 85.01%
1.0 MobileNet 224 | 83.81%
GoogleNet 82.94%

Table 3 shows that the proposed network has good accuracy on Tiny ImageNet.
Compared with the MobileNet of Width Multiplier = 1 and Resolution Multiplier =
224, the proposed network improves the accuracy on both datasets. Compared with
GoogleNet, the proposed network enhances the accuracy rate on Tiny ImageNet from
82.94% to 85.01%. Based on these comparisons, we can conclude that the proposed
network can consistently improve classification accuracy, indicating a good generaliza-
tion ability. The proposed model also reduces the size under the premise of ensuring
accuracy, which makes it possible to achieve better classification accuracy on mobile
devices.

Although the proposed network is a classification network, the proposed network
can be used as the basic network of SSD or YOLO models, or transplanted to different
devices, to realize real-time pedestrian detection. However, the model of pedestrian
detection requires higher computational cost, which will affect the accuracy of pedestrian
detection on the equipment.

4 Conclusion

This paper proposes a lightweight neural network model for joint dilated convolution
and depthwise separable convolution. The joint model can reduce the computational
burden with depthwise separable convolution, making it possible to apply the network
to computationally-constrained devices. Meanwhile, the dilated convolution is used to
increase the receptive field in the process of convolution without increasing the number
of convolution parameters. It supplies global features, and higher semantic-level features
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can be extracted in the process of convolution. The joint model can also improve clas-
sification accuracy. Experimental results demonstrate that the proposed model makes
a good compromise between the classification accuracy and the model size, while the
classification accuracy of the network is guaranteed when the network is compressed.
Article puts forward the lightweight of neural network can reduce the cost of cloud
computing. In addition, the proposed network can be combined with Internet-of-things.
For example, the depth network can be further optimized and transplanted in Android
mobile devices, embedded devices such as MCU or FPGA. Such applications will con-
vey significant impacts on human life, work, health, and many other areas of our society
[21, 22].
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