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Abstract. With the advent of the information age in contemporary society, images
are everywhere, no matter in military use or in daily life. Therefore, as a medium
for people to obtain information, images have become more and more important.
With the fast development of deep convolution neural networks (DCNNs), Single-
Image Super-Resolution (SISR) becomes one of the techniques that have made
great breakthroughs in recent years. In this paper, we give a brief survey on the task
of SISR. In general, we introduce the SR problem, some recent SRmethods, public
benchmark datasets and evaluationmetrics. Finally,we conclude bydenoting some
points that could be further improved in the future.
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1 Introduction

As vital image processing class of image processing techniques in image processing and
computer vision, Single-Image Super-Resolution (SISR), whose basic goal is to recover
high-resolution (HR) images from low-resolution (LR) images, plays an important role
in our daily lives. It could be applied to various types of applications, for example,
surveillance and security [1–3], video noise removing, medical [4–6] and etc. Besides,
it could provide help to other computer vision tasks, because we could make a better
dataset with higher quality images. Generally speaking, SISR is quite challenging for
there is a one-to-many mapping between the LR images and HR images.

As deep convolution neural networks (DCNNs) appear to be able to handle tasks
related to images well, super-resolution (SR) models that based on deep network archi-
tectures have been explored and often result in the state-of-the-art (sota) performance on
various benchmarks. Date back to 2014, Dong et al. [7, 8] first introduced their model of
SRCNN which combined Convolutional Neural Networks (CNN) with the task of SISR
and made a huge breakthrough at that time. And as Goodfellow et al. [10] propose the
Generative Adversarial Networks (GAN) which contains a theory of adversarial, some
great methods, like SRGAN [9] introduce GAN into the field of SR and get satisfying
results. In general, different SR algorithms differ from each othermainly in the following
major aspects: different types of network architectures [11–13], loss functions [14–16],
learning strategies [14, 17, 18], etc.
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In this paper, a brief overview of recent methods of SISR with deep learning is
presented. While most of the existing surveys focus on traditional methods, our survey
will mainly focus on deep learning methods.

Our survey has the following contributions:

1) We give a brief review of SISR techniques based on deep learning, including problem
definitions, benchmark datasets, evaluation metrics, etc.

2) We provide a general overview of recent methods with techniques that are based on
deep learning hierarchically and explore the pros and cons of each component for
an effective SR method.

3) We analyze the challenges and future directions to provide an insightful guidance.

In the following sections, we will cover various aspects of recent advances in SISR
with deep learning. Section 2 gives the problem definition, reviews the benchmark
datasets and introduce some common evaluation metrics. Section 3 analyzes main com-
ponents of supervised SR. Section 4 gives an introduction to our experiments and Sect. 5
expresses conclusions and discusses future directions.

2 Problem, Datasets and Evaluation Metrics

2.1 Problem Definitions

Single-Image Super-Resolution problem aims at recovering a high-resolution (HR)
image from a single low-resolution (LR) image effectively. We could model the process
of the acquisition of LR image ILR with the degradation process as follows:

ILR = D(IH R; θD) (1)

Where ILR represents the LR image, D is a degradation mapping function, IH R

denotes the corresponding ground-truth HR image and θD corresponds to the parameters
of the degradation process, like some noise factors or scaling factors. The degradation
process is quite simple, however, inmost situations, the details of the degradation process
is unknown and only LR images are provided. Therefore, a requirement of recovering
a HR image ÎH R from the provided LR image ILR is raised up, so that ÎH R should be
identical to the ground-truth HR image IH R by the following formula:

ÎH R = F(ILR; θF ) (2)

Where F is the SR model and θF denotes the parameters of the model.
Most works directly model the degradation as a single downsampling operation as

follows:

D(IH R; θD) = (IH R) ↓s, s ∈ θD (3)

Where ↓s is a downsampling operation with the scaling factor s and bicubic
interpolation with antialiasing is the most commonly used downsampling operation.
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Finally, the objective of SR is given as follow:

θ
∧

= argminθ L
(
ÎH R, IH R

)
+ λφ(θ) (4)

Where L
(
ÎH R, IH R

)
represents the loss function between the generated HR image

ÎH R and the ground-truth image IH R , φ(θ) is the regularization term and λ is a trade-off
parameter.

2.2 Datasets

Currently, there are some popular used benchmarks for testing the performance of SR
models including Set5 [19], Set14 [20], BSD100 [21], Urban100 [22], DIV2K [23] and
Manga109 [24]. More details of these datasets are presented in Table 1 and some images
from these datasets are shown in Fig. 1.

Table 1. Public image datasets for SR benchmarks

Dataset Amount Format Categories

Set5 [19] 5 PNG Baby, bird, butterfly, head, woman

Set14 [20] 14 PNG Humans, animals, insects, flowers, vegetables, comic,
slides, etc.

BSD100 [21] 100 JPG Animal, building, food, landscape, people, plant, etc.

Urban100 [22] 100 PNG Architecture, city, structure, urban, etc.

Manga109 [23] 109 PNG Manga volume

DIV2K [24] 1000 PNG Environment, flora, fauna, handmade object, scenery, etc.

Fig. 1. Image samples from benchmark datasets
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Set5 [19] is a classical dataset and only contains five test images of a baby, bird,
butterfly, head, and a woman. Set14 [20] consists of more categories compared to Set5.
However, the number of images are still low, with only 14 test images. BSD100 [21] is
another classical dataset having 100 test images proposed by Martin et al. The dataset is
composed of a large variety of images ranging fromnatural images to object-specific such
as plants, people, food etc. Urban100 [22] is a relatively more recent dataset introduced
byHuang et al. The number of images is the same as BSD100. However, the composition
is entirely different. The focus of the photographs is on human-made structures, such
as urban scenes. Manga109 [23] is the latest addition for evaluating super-resolution
algorithms. The dataset is a collection of 109 test images of a manga volume. The manga
was professionally drawn by Japanese artists and were available only for commercial
use between the 1970s and 2010s. DIV2K [24] is a dataset used for NITRE challenge.
The image quality is of 2K resolution and is composed of 800 images for training while
100 images each for testing and validation. As the test set is not publicly available, the
results are only reported on validation images for all the algorithms.

2.3 Evaluation Metrics

In the task of SR, evaluation metrics are used to assess the quality of the recovered
HR image, not only refers to the differences between the recovered pixel and the cor-
responded pixel in the ground-truth HR image, but also focus on the perceptual assess-
ments of human viewers. In this section, we’ll introduce two types of themost commonly
used Evaluation metrics, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM).

2.3.1 Peak Signal-to-Noise Ratio

PeakSignal-to-NoiseRatio (PSNR) is one of themost commonly used evaluationmetrics
in SR. Its main goal is to measure the reconstruction quality of lossy transformation.
The MSE and the PSNR between the ground-truth image I and the generated image Î
are defined as follows:

MSE = 1

HWC

∑W

i

∑H

j

∑C

k

(
I i, j,k − Î i, j,k

)2
(5)

PSNR = 10 ∗ log10

(
L2

MSE

)

(6)

Where H, W, C denote the height, width and channels of the image, respectively,
I i, j,k denotes the pixel in the ground-truth HR image with the coordinates of (i, j, k) in
the dimensions of width, height and channels, respectively, Î i, j,k is defined similarly, L
is the maximum possible pixel value(usually 255 for 8-bit image). As L is always fixed,
MSE becomes the only factor influencing PSNR, only caring about the differences
between the pixel values at the same positions instead of human visual perception. In
this way, the generated image might be much better in the perspective of pixel values,
but can’t be considered as good by human visual systems (HVS). However, due to the
necessity to compare performance with literature works and the lack of completely
accurate perceptual metrics, PSNR is currently the most widely used evaluation metric
for SR models.
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2.3.2 Structural Similarity

HVS is more likely to extract the structural information from the viewing field [25],
therefore, an evaluation metric named structural similarity index (SSIM) [26] is pro-
posed to measure the structural similarity between images, and there are three relatively
independent comparisons: luminance, contrast, and structure comparisons. For an image
I with the shape H∗W∗C, its mean and the standard deviation value are given as follows:

μI = 1

HWC

∑W

i

∑H

j

∑C

k
I i, j,k (7)

σI = (
1

HWC − 1

∑W

i

∑H

j

∑C

k
(I i, j,k − μI )

2)
1
2 (8)

Where μI indicates the mean value of image I, σI denotes the standard deviation of the
image intensity. And the comparison functions on luminance and contrast, denoted as

Cl
(
I, Î

)
and Cc

(
I, Î

)
, respectively, are given as follows:

Cl
(
I, Î

)
= 2μIμ Î + C1

μ2
I + μ2

Î
+ C1

(9)

Cc
(
I, Î

)
= 2σIσ Î + C2

σ 2
I + σ 2

Î
+ C2

(10)

Where C1 = (k1L)2 and C2 = (k2L)2 are constants for avoiding instability, in which
k1 � 1 and k2 � 1 are small constants.

The image structure is represented by the normalized pixel values (i.e., I−μI
σI

), whose
correlations (i.e., inner product) measure the structural similarity. Then, the structure

comparison function Cs
(
I, Î

)
is defined as follows:

σI Î = 1

HWC − 1

∑W

i

∑H

j

∑C

k
(I i, j,k − μI )( Î

i, j,k − μ Î ) (11)

Cs
(
I, Î

)
= σI Î + C3

σIσ Î + C3
(12)

Where σI Î is the covariance between I and Î , C3 is a constant to assure stability.
At last, the formula of calculating SSIM is given by:

SSIM
(
I, Î

)
=

[
Cl

(
I, Î

)]α[
Cc

(
I, Î

)]β[
Cs

(
I, Î

)]γ

(13)

Where α, β, γ are constants for adjusting the relative importance. In practice, researcher
often set α = β = γ = 1 and C3 = C2

2 , then SSIM is calculated as:

SSIM
(
I, Î

)
=

(
2μIμ Î + C1

)(
σI Î + C2

)

(
μ2
I + μ2

Î
+ C1

)(
σ 2
I + σ 2

Î
+ C2

) (14)

As its aim shows, the SSIM evaluates the quality of the generated images from the
perspective of the HVS, it better meets the requirements of perceptual assessment [27,
28] compared to PSNR. Therefore, it is also widely used by researchers.
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3 Supervised Super-Resolution

Supervised SR models are trained with both LR images and the corresponding ground-
truth HR images. The essential components of SR models include: model frame-
works, upsamplingmethods, network architecture and strategies for learning. Therefore,
although these models differ from each other greatly, they are all exactly a combination
of the components above. In this section, we will focus on the basic components of
SR models, analyze their pros and cons, and in Sect. 4, we will choose some classical
models to do the experiments.

3.1 Super-Resolution Frameworks

A key problem of SISR is the way of performing upsampling. Although the network
architectures of SR models vary greatly, they can be corresponded to four categories:
pre-upsampling SR, post-upsampling SR, progressive upsampling SR and iterative up-
and-down sampling SR, as Fig. 2 shows.

3.1.1 Pre-upsampling Super-Resolution

As Dong et al. [7, 8] show in their work SRCNN, they first introduce a straightforward
method that upsamples the LR images using a traditional method, then refine them using
DCNNs in an end-to-endway.This framework (Fig. 2a) is considered the pre-upsampling
SR framework. More specifically, the network first uses traditional upsampling method,
like bicubic interpolation, to upsample the LR images to coarse HR images, thenDCNNs
are applied to construct concrete details.

Since this framework does the upsampling with traditional algorithms first, CNNs
only need to refine the coarse HR images, therefore, one of the advantages is that the
learning difficulty is reduced. Then, this framework appears to be more flexible because
it could take arbitrary images and scale factors as input and gives output with the same
model [11]. The main differences between models with this framework are the design
of the network model and the learning strategies. However, there are also some draw-
backs. Firstly, the traditional upsamplingmethods like bicubic interpolation, would often
cause something like noise, blurring, etc. Further, compared with models using other
frameworks, the temporal and spatial cost is always much higher [29, 30].

3.1.2 Post-upsampling Super-Resolution

As using pre-upsampling framework would result in much efficiency cost, the post-
upsampling framework is then proposed by researchers. Similar to the pre-upsampling
framework and just as its name illustrates, the post-framework does the complex map-
pings in the low-dimensional space and after that, it performs a learnable upsampling at
the end (Fig. 2b).

It’s obvious that this framework cost less because the operations of convolutions are
performed in the low-dimensional space and this could also providewith faster speed. As
a result, this framework also occupies one position in the SR field [9, 16]. However, there
are also some shortcomings. The first one is that the upsampling is only performed in one
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Fig. 2. SR model frameworks based on deep learning. The blue boxes indicate convolutional
layers, the gray boxes represent predefined upsampling operations, the green and yellow boxes
denote learnable upsampling and downsampling layers, respectively. (Color figure online)

step and this might fail to learn when the scale factors are large. Another disadvantage
is that it lacks some flexibility, for it can’t handle the work using a single model well
when the scale factors vary.

Generally speaking, models using this type of framework differ to each other mainly
in aspects of network design, learnable upsample layers and strategies for learning.
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3.1.3 Progressive Upsampling Super-Resolution

To address the drawbacks of post-upsampling framework, a progressive upsampling
SR framework is come into use (Fig. 2c). A typical example of this framework is the
Laplacian pyramid SR network (LapSRN) [12]. It is based on a cascade of CNNs and
progressively reconstruct the HR images. At each stage, the images are upsampled to
higher resolution and refined by CNNs.

The main feature of progress upsampling framework is that it decomposes a difficult
task into several simple tasks, models with this framework could both become much
easier to learn to obtain better performance and could handle the conditions of different
scale factors well without much extra cost. Furthermore, this kind of framework requires
a multi-stage design, so, some strategies for learning can be further considered to reduce
the learning difficulty to enhance the performance. However, one problem is that the
network designing task is quite difficult and therefore, we need more guidance and
instructions.

3.1.4 Iterative Up-and-Down Sampling Super-Resolution

Iterative up-and-down sampling framework is proposed tomake the relationship between
the LR and HR images pairs become more tightly. Back-projection is a new efficient
iterative procedure within this framework, it is used to better refine the relationship
between the LR and HR images [31]. Haris et al. [26] propose a deep back-projection
network (DBPN) using blocks of connected upsampling and downsampling layers and
reconstruct the final HR image by using the concatenation of all the reconstructed HR
featuremaps during the process of forward propagation. Combine with other techniques,
like dense connections [32], DBPN became the champion algorithm in the competition
of NTIRE 2018 [33].

The models under this framework can better mine the deep relationships between
LR-HR image pairs and thus provide higher-quality reconstruction results. Nevertheless,
the design criteria of the back-projection modules are still unclear. In fact, the back-
projection units used in DBPN have a very complicated structure and require heavy
manual design. Since this mechanism has just been introduced into super-resolution
based on deep learning, the framework has great potential and needs further exploration.

3.2 Upsampling Methods

As the above section shows, there are mainly four frameworks to deal with the upsam-
pling layers. Besides, it’s also important to know how to implement the upsampling
operations. Although there has already been various of traditional upsampling algo-
rithms, like nearest-neighbor interpolation, bilinear interpolation, bicubic interpolation,
etc. Using CNNs to learn upsampling operators has become more and more popular.
In this section, we’ll discuss about some classical interpolation-based algorithms and
upsampling layers that are based on deep learning.
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3.2.1 Interpolation-Based Upsampling

Traditional interpolation methods include nearest-neighbor, bilinear, bicubic interpola-
tion and etc. Although upsampling layers that are based on deep learning perform quite
well, some of the traditional interpolation-based upsampling methods are still in use in
some networks.

Nearest-Neighbor Interpolation. The nearest-neighbor interpolation is simple. Its
basic idea is to select the value of the nearest pixel for each interpolating position.
On the one hand, this method is very fast to execute. On the other hand, it would usually
produce blocky results.

Bilinear Interpolation. Just as the name denotes, bilinear interpolation would first do
linear interpolation once on one axis, after that, it would do it again on another axis.
Compared with nearest-neighbor interpolation, bilinear interpolation not only results in
better performance, but also run fast.

Bicubic Interpolation. Similar to bilinear interpolation, the bicubic interpolation does
cubic interpolation once on each of the two dimensions of the image. The bicubic inter-
polation could generate smoother results with fewer interpolation artefacts and lower
speed compared to bilinear interpolation. As a matter of fact, the bicubic interpolation
with anti-aliasing is now widely used to degrade the HR image to generate the corre-
sponding LR image to make a dataset and is also widely accepted by researchers to use
a pre-upsampling framework.

The interpolation-based upsampling methods don’t provide any new information,
just focus on its content and as a result, there would always be some side effects.

3.2.2 Learning-Based Upsampling

CNNs could handle the task of “understanding” the images well and therefore,
researchers tried to use CNNs to force the network to understand the image and do
a better upsampling. Two popular methods of learning-based upsampling are transposed
convolution layer and sub-pixel layer.

Transposed Convolution Layer. While a normal convolutional operator with a stride
greater than one, the output of the operation would result in smaller width and height,
a transposed convolution layer, also known as deconvolution layer [34], behaves just
as the opposite, it tries to get bigger width and height, so they could be used to do the
upsampling task [26, 35]. More concretely, it could enlarge the resolution of images by
inserting zero values and then doing convolution.

Although transposed convolution layer can be used in the field of SR to perform
learnable upsampling, it could also cause “uneven overlapping” on each axis [36] and
would easily generate chessboard-like patterns to reduce the SR performance.

Sub-pixel Layer. Another learnable upsampling layer is the sub-pixel layer [30], it
performs upsampling by generating feature maps with the shape of H ∗ W ∗ s2C by
convolution and then reshaping them into a shape of sH ∗ sW ∗C, where s is the upscale
factor.
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One of the advantages of using sub-pixel layer is that we could obtain larger receptive
field, which could provide more contextual information to generate better HR images.
However, blocky regions actually share the same receptive field and therefore it may
result in some artefacts near the boundaries of different blocks.

These two learnable upsampling layers are widely used in post-upsampling frame-
work and are always set in the final upsampling stage.

3.3 Network Architecture

The network design is currently one of the most important part in deep learn-
ing, researchers would always use some technologies, like residual learning, dense
connection, etc. to improve their design.

3.3.1 Residual Learning

He et al. [37] propose a kind of DCNN named ResNet in 2016 and from then on, residual
blocks are widely used in the design of networks. But before the proposal of ResNet,
in the field of SR, researchers have already employed the technique of residual learning
to their SR models. The residual learning can be roughly divided into two types: global
residual learning and local residual learning.

Global Residual Learning. First of all, global residual learning is widely used espe-
cially in the pre-upsampling framework, because it only learns the residuals between
the coarse HR image and the ground-truth HR image. Instead of learning the compli-
cate information an image need, global residual learning only learns a residual map to
restore the missing high-frequency details, and therefore reduce the learning difficulty
and complexity.

Local Residual Learning. Both of the local residual learning and residual blocks in
ResNet are used to improve the problem of degradation and gradient vanishing due to
the learning difficulty caused by the network depths.

With the structure of shortcut connection and element-wise addition operations,
global residual learning directly connects the input and output images, while local
residual learning usually sets several this kind of structure between the layers.

3.3.2 Dense Connection

Huang et al. [32] come up with a network named DenseNet in CVPR 2017, the main
components of this network are dense blocks, then more and more people use dense
blocks to design their networks. Inside the dense blocks, the inputs consist of all former
layers, which results inC2

l connections in a dense block with l layers. Similar to residual
learning, the dense connections could effectively help avoid gradient vanishing, enhance
signal propagation and encourage feature reuse.Besides it could also substantially reduce
the number of parameters by reducing the number of channels in dense blocks and
squeezing channels after concatenation.

Dense connections are widely used, some famous networks like, ESRGAN [38] and
DBPN [26], adopt dense connections and get good results.
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3.4 Strategies for Learning

There are various of strategies that are useful to promote the performance, like running
time, the quality of the generated HR images, etc. The most commonly used strategies
can be roughly divided into three categories: the loss functions, batch normalization and
others.

3.4.1 Loss Functions

In the area of SR, loss functions are used to measure the difference between ground-truth
HR images and the generated HR images it could help to optimize the model greatly. In
the early stage of this task, researchers usually used pixel-wise L2 loss for optimization,
but found it couldn’t measure the reconstruction quality well. Since then, many other loss
functions showed up for solving the problem. Despite of the loss functions combined
with GAN, e.g., adversarial loss, cycle consistency loss, etc., there are four commonly
used loss functions: Pixel Loss, Content Loss, Texture Loss and Total Variation Loss.
The formulas are shown in Table 2.

Table 2. Common loss functions

Loss function Formula

Pixel loss
Lpixel_l1

(
I, Î

)
= 1

HWC

W∑

i

H∑

j

C∑

k

∣
∣
∣ Î i, j,k − I i, j,k

∣
∣
∣

Lpixell2

(
I, Î

)
= 1

HWC

W∑

i

H∑

j

C∑

k

(
Î i, j,k − I i, j,k

)2

Content loss

Lcontent

(
I, Î ;φ, l

)
= 1

HlWlCl

{
Wl∑

i

Hl∑

j

Cl∑

k

[
φ
i, j,k
(l)

(
Î
)

− φ
i, j,k
(l) (I )

]2
} 1

2

Texture loss Gi j
(l)(I) = vec

(
φi(l)(I)

)
· vec

(
φ
j
(l)(I)

)

Ltexture

(
I, Î ; φ, l

)
= 1

c2l

⎧
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⎩
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i

H∑

j

[
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(l)

(
Î
)

− Gi, j
(l) (I )
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⎫
⎬

⎭

1
2

Total variation loss LT V

(
Î
)

=

1
HWC

W∑

i

H∑

j

C∑

k

[(
Î i, j+1,k − Î i, j,k

)2 +
(
Î i+1, j,k − Î i, j,k

)2
] 1

2

Pixel Loss. Pixel loss is used to measure the pixel-wise difference between I and Î
which includes L1 loss (mean absolute error) and L2 loss (mean square error). By using
pixel loss as the loss function, it could guide the network to generate Î to be close to
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the ground-truth I. L1 loss tends to have better performance and convergence compared
to L2 loss [13, 17]. As the definition of PSNR illustrates, it is highly correlated with
pixel-wise difference andminimizing pixel loss could directlymaximize PSNR, the pixel
loss appears to be the most popular choice. But the generated image would often lack
high-frequency details and result in perceptually unpleasant results with over smooth
textures [9, 15].

Content Loss. In order to solve the perceptual problem in pixel loss, the content loss
is then introduced into SR [15]. By extracting feature maps by using a pre-trained
image classification network, it couldmeasure the semantic differences between images.
Denote this pre-trained network asφ and the extracted featuremaps on lth layer asφ(l)(I ),
the content loss is the Euclidean distance between high-level representations between
two images. Content loss encourages the output image Î to be perceptually similar to
the ground-truth image I instead of forcing them to match pixels exactly.

Texture Loss. Inspired by Gatys et al. [39], the style of an image is considered to
be an important factor influencing the quality of the generated image, Gram matrix
G(l) ∈ Rcl∗cl is then introduced into SR, where Gi j

(l) is the inner product between the
vectorized feature maps i and j on layer l.

Total Variation Loss. The total variation loss is introduced into the SR field by Aly
et al. [40] to suppress the noise. The sum of the absolute differences between neighboring
pixels consists of the total variation loss and it could measure the amount of noise is in
the image.

3.4.2 Batch Normalization

Batch normalization (BN) is proposed by Sergey et al. [41] to reduce internal covariate
shift of networks. BN enables us to use much higher learning rates and initialization is
not a big problem any more. BN results in accelerating the speed of convergence and
improve the accuracy, therefore, it is widely adopted by researchers. However, Lim et al.
[17] argue that using BN would lose the scale information of each image and the range
flexibility. There is a trade-off whether using BN or not.

4 The Experiment Result and Performance Analysis

In this section, we mainly focus on the experiments, we select some of the classical
models and some of the benchmark datasets, then apply PSNR and SSIM on them to
make some comparisons. For SR models, we choose bicubic, SRCNN, EDSR, SRGAN
and ESRGAN to recover HR images with a scale factor of 4. And use all benchmark
datasets above to evaluate the PSNR and SSIM values of these models.

We evaluate each SR algorithm selected on the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM) on the benchmark datasets in Sect. 2.2. Table 3
presents the results for 4x for the SR algorithms. In Fig. 3, we present the visual compari-
son between the selected SR algorithms and Fig. 4 shows a detailed comparison between
a pair of images of the ground truth image and an image recovered by ESRGAN.
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Table 3. Evaluation on PSNR and SSIM on recovered images with a upscale factor of 4

Methods Set5 Set14 BSD100 Urban100 Manga109 DIV2K

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 28.43 0.8109 26.00 0.7023 25.96 0.6678 23.14 0.6574 25.15 0.789 28.11 0.775

SRCNN 30.48 0.8628 27.50 0.7513 26.90 0.7103 24.52 0.7226 27.66 0.858 29.33 0.809

EDSR 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.914 29.25 0.9017

SRGAN 32.05 0.8910 28.53 0.7804 27.57 0.7351 26.07 0.7839 – – 28.92 0.896

ESRGAN 32.73 0.9011 28.99 0.7917 27.85 0.7455 27.03 0.8153 31.66 0.9196 – –

Fig. 3. Comparison between images, the images of each column are the ground-truth image,
image recovered by bicubic, image recovered by SRCNN, image recovered by EDSR, image
recovered by SRGAN and image recovered by ESRGAN, respectively.
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Fig. 4. 0002.jpg of DIV2K, the left one is the ground-truth image and the right one is the image
recovered by ESRGAN.

5 Conclusion

SISRmethods based on deep learning have achieved great success recently. In this paper,
we give a brief survey on recent SISR methods and mainly discussed the improvement
of supervised SR methods. However, there still exists something that we could improve
to get a better result and, in this section, we will talk about this.

Network Design. Current sota SR methods tend to mainly focus on the final results
of the recovered HR images while ignoring the complexity of their models and result
in low inference speed. With a high-performance GPU, i.e. Titan GTX, current SR
methods would take over 10 s for 4x SR per image of DIV2K, which is unacceptable
in daily usage, therefore, we need to come up with some lightweight architectures to
improve this problem. In addition, an important component of SR is the upsampling
layers, the current upsampling methods, i.e. interpolation-based methods would result
in expensive computation and couldn’t be end-to-end learned, the transposed convolution
would probably cause checkerboard artefacts. So, improving the upsampling methods
could probably improve the recovering effects and inference time.

Learning Strategies. Loss function plays a critical part in the training of SR models
which would build up constraints among LR and HR images and guide the network to
optimize. In practice, some loss functions like L1 loss, L2 loss, perceptual loss arewidely
used. However, if there is any better loss function for SR is still unclear. Another factor
is normalization, current sota SR methods prefer not to use normalization for some side
effects, so other effective normalization techniques should be studied.
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