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Abstract. A semi-supervised classification method for hyperspectral remote
sensing images based on convolutional neural network (CNN) and modified tri-
training is proposed. The abstract features are captured by training a CNN model
with the pixels’ vectors as inputs. Based on the extracted high-level features, dif-
ferent classifiers will perform different outputs under the same training set, due
to the different types of classifiers take on diverse characteristics. Thus, taking
multiple classifiers’ results into consideration can integrate different prediction
labels synthetically from a high level and can perform more credible results. At
the meantime, the number of training samples of hyperspectral images is limited,
which will hinder the classification effect. Illuminated by tri-training algorithm,
we utilize triple different classifiers to classify the hyperspectral images based on
the extracted high-level features in the semi-supervised mode. By utilizing triple
classifiers jointly to train and update the training samples set when the number of
labeled samples is limited. At the meantime, we pick the confident samples via
randomize and majority vote into the training set for data editing during the iter-
ative updating process. Experiments performed on two real hyperspectral images
reveal that our method performs very well in terms of classification accuracy and
effect.

Keywords: Deep learning · Hyperspectral images (HSI) classification ·
Tri-training · Data editing

1 Introduction

With the development of imaging spectrometry technology, hyperspectral remote sensing
application achieves more and more attention, due to the enormous ability of describ-
ing the detailed land covers, such as precision agriculture, anomaly detection, mineral
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resources, etc. For the hyperspectral remote sensing images, the goal of classification is
to assign each pixel with a unique type of land cover label.

Actually, the high dimensional hyperspectral data always lead to some challeng-
ing problems, such as Hughes phenomenon. The unbalance between the number of
labeled samples and the spectral dimensionality always decades the classification. Fea-
ture extraction (FE) is an effect way to tackle this ill-posed problem. Before 2013, the
available FE [1, 2] and diversifying methods were generally designed for the shallow
models. Lots of popular shallow learning models and algorithms have been developed in
hyperspectral images area and achieved great success, such asBayes [3], SVM[4], condi-
tional random fields [5] and multinomial logistic regression [6]. The shallow expression
method needs to rely on the prior knowledge of remote sensing professionals and mainly
relies on the manual design features, which is sensitive to parameters and only a few
parameters are usually allowed. Meanwhile, affected by external conditions such as the
imaging process, the image quality will be greatly different, so the rules of feature extrac-
tion/selection should be formulated according to the image’s characteristics. Therefore,
most feature extraction/selection methods have the problem of poor generalization. Usu-
ally, the shallow models is effective to the linear data, but their ability to deal with the
nonlinear data, take the hyperspectral images for example, is limited.

High-level representation and classification by deep learning can avoid the com-
plexity of manual design features and automatically learn high-level representation of
data through increasing network layers, which brings new development opportunities
for hyperspectral image classification. In this work, we propose a semi-supervised clas-
sification framework based on abstract features extracted by CNN. The key idea of the
semi-supervised model integrates the modified tri-training algorithm and the data edit-
ing strategy, to explore the information gain and positive effect among classifiers on
the classification task. Since the performance of different classifiers on the same fea-
ture is various, our proposed approach, could improve the final classification results by
integrating their predicted results.

The rest of this paper is arranged as follows. Section 2 reviews the previous related
work. Section 3 depicts the preliminary, and develops the proposed method named
DMTri-training, which modified Tri-training with data editing, based on the features
extracted by CNN. Section 4 evaluates the proposed method over two real-world
hyperspectral images. Finally, Sect. 5 summarizes our study.

2 Related Work

In hyperspectral images application, deep learning methods plays an important role.
Stack autoencoder [7] and sparse-constrained autoencoder [8] and deep belief network
[9] have been applied to the processing of hyperspectral images. In order to solve the
problem that automatic encoders and deep belief networks cannot directly extract spatial
features, the advantages of convolutional neural network in extracting image features are
utilized to extract spectral features through 1-dimensional CNN and 2-dimensional CNN
to extract spatial features [10]. The combination of CNN and other shallowmodels, such
as CRF [5], sparse dictionary learning [11], transfer strategy [12] have been successfully
used to provide more comprehensive spectral and spatial information for classification
to obtain better classification results.
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Semi-supervised sparse expression [13], semi-supervised logistic regression [14],
semi-supervised support vector machine (SVM) [15], graph-based method [16], gener-
ative model [17], EM [18] and divergence-based method [19] have been well applied
in hyperspectral images. Divergence-based methods utilize multiple learners to predict
samples and select unlabeled samples from the predicted results of multiple classifiers
to assist the classification process. When the number of learners is single, it is self-
training learning [20]. When the number of classifiers is two, it is the classic co-training
algorithm [21]. When the number of learners is 3, it is the famous tri-training learner
[22]. In this work, we take 1-dimensional CNN for consideration and treat each pixel
as a spectral vector to extract abstract features. We modified the tri-training algorithm
to adjust the hyperspectral data, and introduce data editing and majority voting at the
process of adding new samples into the training set at each iteration, which improves
the classification results compared with other methods.

3 Methods

3.1 Preliminary

Hyperspectral remote sensing image integrates the spectrum standing for the radiance of
the land cover with images on behalf of the spatial and geometric relationships. Usually,
a hyperspectral image can be taken as a data cube, X ∈ R

m×n×L , where m, n and
L denote the number of samples (width), lines (height) and bands (depth) of the HSI
respectively. Generally, there are hundreds of bands in the hyperspectral images, that
is, the spectral resolution of is very high, which make it possible to describe the land
cover in detail. In order to facilitate the following processing for HSI images, the image
cubes are often transformed into 2D matrices, X ∈ R

mn×L . The column L denotes the
number of samples in total of the image, and the row mn represents the radiance of each
pixel. Feature extraction or representation can remove the redundant data and perform
a better representation, at the meantime, reduce the data dimension. In this work, we
take a CNN model to learn the high-level feature representation of HSI. Thus, the 2D
data, X ∈ R

mn×L can be simplified into another formula, X ∈ R
mn×d , d < T . In a

HSI classification task, given the training data set T ∈ R
mn×d and the corresponding

labels set y ∈ {y1, . . . , ym},m ∈ (1, . . . ,C), C is the number of categories. The goal of
classification is to assign a class label to each sample in the hyperspectral image.

3.2 Feature Extraction Based on CNN

CNN is a kind of feedforward neural networks, it includes input layer, convolution layer,
pooling layer and full connection layer. The CNN structure is shown in Fig. 1.
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Fig. 1. CNN network structure.

As for hyperspectral images, each pixel can be regarded as a two-dimensional image
with the size of 1 × n1, which serves as input layer of the network, and n1 is the number
of spectral bands. The size of the input layer is (n1,1). Suppose the convolution layer
C1 contains twenty kernels with size of k1 × 1. After the convolution operation on the
input data by layer C1, we can obtain 20 × n2 × 1 nodes, where n2 = n1-k1 + 1. The
kernel size of the maximum pool layerM2 is (k2,1), and theM2 layer contains 20 × n3
× 1 nodes, where n3 = n2/k2. Full link layer F3 has n4 nodes, which is the number of
extracted features. The output layer has n5 nodes, which is the number of categories of
data to be classified. In this work, we only utilize the training samples to construct CNN
feature extraction model. Each hidden layer hi is multiplied by the input node V and
the weight W, and the neuron nodes in each layer share the weight W, which reduces
the complexity of network parameter number and parameter selection. In most cases,
training samples are randomly selected, and it is generally assumed that training samples
have the same feature distribution as test samples. In our work, we take the relu function
as the activation function of CNN model, and some neurons are randomly discarded by
Dropout to prevent overfitting.

3.3 DMTri-Training Algorithm

During the iterative learning process, the semi-supervised classification algorithm usu-
ally needs to evaluate the predicted confidence of unlabeled samples, which is always
time consuming. Whereas tri-training omits this process, which eliminates the computa-
tional complexity to some extent and gives the final prediction via majority voting from
the classifiers. Based on the characteristics of hyperspectral image data, we proposes the
DMTri-training algorithm, which improves the tri-training algorithm as follows:

1) Tri-training utilizes a single supervised learning algorithm, and the diversity of the
initial three classifiers is obtained by training the labeled data via bootstrap sampling
from the pool of original labeled samples set. Whereas, DMTri-training trains three
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different supervised learning algorithms based on the same data sets generated via
randomized sampling from the original labeled samples set.

2) DMTri-training takes the predicted results of labeled and unlabeled samples into
account synthetically. Then computes the classification error rate of labeled samples
err1 and the inconsistent predicted results between two classifiers to the total sample
in unlabeled sample set err2. The total error rate err is calculated as follows: err =
ERR_WEIGHT*err1 + (1-ERR_WEIGHT)*err2.

3) l
′
i is the number of new labeled samples added into training set at i-th iteration. In

tri-training algorithm, l
′
i is very small, that is, the new added training samples are

limited at the first time. The predicted error rate of labeled samples maybe do not
meet the condition ei < e

′
i , which will result in the semi-supervised process cannot

continue and a low classification accuracy result. Our algorithm verified the initial
value of l

′
i to (|Li | ∗ei )/e′

i +1, in order to satisfy the iterative condition and increase
more samples at each iteration.

4) When adding newsamples into training set,we utilize randomization anddata editing
strategy, and integrate the samples predicted by the three classifiers to filtrate the
misclassified ones. The rules are as follows: first, we adopt random sampling strategy
to pick some labeled samples into training set, which can reduce the quantity of
training samples and speedup the learning process.Meanwhile, the randomsampling
ensure more information gain. Second, these samples are filtrated by data editing.
According to the rules of neighborhood consistency, if the two classifiers, take h1
and h2 as example, do not consider the sample i need to be filtrated, which means i is
a high confident sample. Then sample i should be put into the classifier h3, otherwise
the sample i will be removed as a noisy example.

5) If one sample’s labels predicted by the three classifiers are not consistent with each
other, this sample always brings high information gain, and should be added into
training set after manual correction.

6) Furthermore, we take secondary data editing during the training process. After each
iteration, rectify the mislabeled samples automatically by nearest neighbor voting
rule, then execute data editing to obtain high confident samples, and put them into
the training set for next iteration and prediction.

L denotes the initial training set. In each iteration, the classifiers h1 and h2 select
some samples and predict their labels, then put them into the training set of classifier h3.
Lt−1 and Lt represent the new added labeled samples into classifier h3 at the (t-1)-th and
t-th iteration respectively, the corresponding training set of h3 is L∪Lt−1 and L∪Lt . ηL

denotes the classification error rate of the training set L, and the number of misclassified
samples isηL |L|. et1 represents the upper boundof classification error rate at t-th iteration.
Suppose that the number of consistent samples predicted by h1 and h2 is z, in which the
number of samples with correct predicted labels is z′, then we can infer et1 = (z− z′)/z.
The number of mislabeled samples in set Lt is et1

∣
∣Lt

∣
∣. At the t-th iteration, the error

classification rate is:

ηt = ηL |L| + et1|Lt |
|L ∪ Lt | (1)
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4 Experimental Results and Comparisons

4.1 Data Set

a. Indian Pines

Indian Pines located in northwest Indiana, the data was acquired by an airborne
visible/infrared imaging spectrometer (AVIRIS) in 1992. The wavelength range from
0.4–2.5 µm, 220 bands in total, each pixel (with 145 × 145 pixels) has 30 m spatial res-
olution. After removing bad bands and water absorption band, 200 bands were available
for experiment. Figure 2 (a) shows the RGB image of the Indian Pines, with red, green
and blue bands of 70, 45 and 9 respectively. Figure 2 (b) is the corresponding ground
truth map, with 10,249 samples from 16 different categories of land cover.

b. Pavia University
Pavia University located in Pavia, Italy, the data was acquired by ROSIS sensor. The

spectral range from 0.43 to 0.86 µm, and 115 bands in total, each pixel (with 610 ×
340 pixels) has 1.3 m spatial resolution. After removing 12 bad bands, 103 bands were

(a) color image          (b) ground truth

Fig. 2. Indian Pines data and ground truth.

(a) color image        (b) ground truth 

Fig. 3. Pavia University data and ground truth.
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available. Figure 3(a) shows the RGB image of Pavia University, with red, green and
blue bands of 170, 95 and 9 respectively. Figure 3(b) is the corresponding ground truth
map, with a total of 42776 samples from 9 different categories of land cover.

4.2 Experimental Analysis for Feature Extraction Based on CNN

In the feature extraction experiment, the size of input samples is 1 × n1, where n1 is the
number of bands. The CNN architecture consists of five layers, as listed in Sect. 3.

From the experimental results in Table 1 andTable 2,we can see that the classification
accuracy based on CNN with only 20 features performs best compared with PCA, LDA
feature extraction methods and raw data. At the meantime, the classification accuracy
generally presents a linear increase trend with the increase of the number of features,
as shown in Fig. 4. Feature extraction based on deep network is more consistent with
the characteristics of hierarchical abstraction and layer-by-layer cognition of human
vision, and performs better class discrimination. Experimental results in this section
demonstrate that the features extracted by CNN can be used for the classification task,
and the obtained classification results are competitive with other shallow models.

Table 1. Overall classification accuracy based on different FE methods of Indian Pines

OA (%) SVM GBM RF

PCA/(30 D) 72.34 71.71 70.65

LDA/(15 D) 83.6 76.45 76.74

Raw/(200 D) 78.12 74.28 75.35

CNN/(20 D) 82.54 73.16 80.00

CNN/(30 D) 83.73 79.97 81.95

Table 2. Overall classification accuracy based on different FE methods of Pavia University

OA (%) SVM GBM RF

PCA/(30 D) 85.21 82.82 79.38

LDA/(8 D) 86.95 87.36 87.36

Raw/(103 D) 89.77 81.89 82.21

CNN/(20 D) 89.91 86.89 89.12

CNN/(30 D) 90.19 87.76 89.17
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(a) Indian Pines

(b) Pavia University
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Fig. 4. The relationship between the classification accuracy of CNN feature extraction and the
feature dimension (D) for Indian Pines and Pavia University data

4.3 DMTri-Trainning Experimental Results

In order to verify the classification accuracy of the proposed method, we compared and
analyzed the results of three classifiers, SVM, GBM and RF, which are taken as initial
three classification models in DMTri-training algorithm. As for Indian pines data, we
select randomly 1000 samples as training set, the rest of samples as test set. As for Pavia
University data, we select randomly 500 samples as training samples and the remaining
42276 samples as test set.



A Semi-supervised Classification Method for Hyperspectral Images 179

Table 3. The classification accuracy of different classifiers of Indian Pines data

Category SVM GBM RF DMTri-training

Alfalfa 76.09 52.17 47.83 42.50

Corn-notill 80.46 81.79 82.98 90.27

Corn-mintill 78.31 70.48 72.89 93.72

Corn 65.40 46.84 46.41 97.86

Grass-pasture 88.82 87.58 87.78 98.96

Grass-trees 97.67 96.44 98.08 100.00

Grass-pasture-mowed 89.29 67.86 50.00 100.00

Hay-windrowed 98.95 98.33 99.79 100.00

Oats 55.00 15.00 25.00 30.77

Soybean-notill 79.12 72.12 74.07 89.44

Soybean-mintill 82.97 84.81 83.75 98.61

Soybean-clean 80.61 78.75 80.78 100.00

Wheat 96.10 85.37 90.24 100.00

Woods 95.34 95.49 96.68 100.00

Buildings-Grass-Trees-Drives 62.18 60.88 63.21 83.38

Stone-Steel-Towers 93.55 97.85 97.85 100.00

OA(%) 84.44 82.60 83.48 95.79

κ 0.82 0.80 0.81 0.94

In Table 3 and Table 4, we list the overall classification accuracy and class-specific
classification accuracy corresponding to different algorithms based on CNN features for
the two data sets. As for Indian Pines data, the overall accuracy is 84.44%, 82.60% and

Table 4. The classification accuracy of different classifiers of Pavia University data

Category SVM GBM RF DMTri-training

Asphalt 88.10 91.39 92.50 90.09

Meadows 95.57 96.44 96.37 99.68

Gravel 75.04 67.46 70.75 83.09

Trees 88.87 93.93 93.60 97.88

Painted metal sheet 99.18 99.33 99.26 100.00

Bare Soil 89.56 86.90 88.27 98.13

Bitumen 80.83 71.13 75.11 99.62

Self-Blocking Bricks 84.90 85.36 86.56 97.85

Shadows 99.79 99.58 99.89 100.00

OA(%) 91.05 91.36 92.03 96.93

κ 0.89 0.90 0.91 0.97
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83.48% based on SVM, GBM and RF classifier. The corresponding kappa coefficient
is 0.82, 0.80 and 0.81. The overall accuracy and kappa coefficient of DMTri-training
is 95.79% and 0.94 respectively, improve 11.35% and 12.2% respectively compared
to SVM classification, the best results among the three classifiers. Four classification
maps are illustrated in Fig. 5. As for Pavia University data set, we can see that RF
classification accuracy is the highest one. The overall classification accuracy is 91.05%,
91.36% and 92.03% based on SVM, GBM and RF respectively, and the corresponding
kappa coefficients are 0.89, 0.90 and 0.91. The classification accuracy of DMTri-training
algorithm is 96.93%, and the kappa coefficient is 0.97. Compared with the best RF
classification result, the overall accuracy is improved by 4.9%, and the kappa coefficient
is improved by 6.38%. The classification maps of different classification methods are
listed in Fig. 6.

(a) SVM                                            (b) GBM 

   (c) RF                                               (d) DMTri-training 

Fig. 5. The classification maps of Indian pines data based on different classifiers.
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(a) SVM                              (b) GBM

(c) RF (d) DMTri-training

Fig. 6. The classification maps of Pavia University data based on different classifiers

5 Conclusion

In this paper, we proposed a semi-supervised classification method named DMTri-
training for hyperspectral images classification. The proposed framework is composed
of two parts, the abstracted feature exaction are based on CNN model and DMTri-
training classification is based on modified tri-training algorithm and data editing. The
experimental results show that our method can perform better classification results.
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