
Distributed Stochastic Alternating
Direction Method of Multipliers for Big

Data Classification

Huihui Wang1, Xinwen Li2, Xingguo Chen2, Lianyong Qi3,
and Xiaolong Xu1(B)

1 Key Laboratory of Intelligent Perception and Systems for High-Dimensional
Information of Ministry of Education, Nanjing University of Science and Technology,

Nanjing, China
huihuiwang@njust.edu.cn, xlxu@nuist.edu.cn

2 School of Computer Science and Technology, School of Software,
Nanjing University of Posts and Telecommunications, Nanjing, China

lxinwen31@gmail.com, chenxg@njupt.edu.cn
3 School of Information Science and Engineering, Qufu Normal University,

Jining, China
lianyongqi@gmail.com

Abstract. In recent years, classification with big data sets has become
one of the latest research topic in machine learning. Distributed classifica-
tion have received much attention from industry and academia. Recently,
the Alternating Direction Method of Multipliers (ADMM) is a widely-
used method to solve learning problems in a distributed manner due
to its simplicity and scalability. However, distributed ADMM usually
converges slowly and thus suffers from expensive time cost in practice.
To overcome this limitation, we propose a novel distributed stochastic
ADMM (DS-ADMM) algorithm for big data classification based on the
MPI framework. By formulating the original problem as a series of sub-
problems through a cluster of multiple computers (nodes). In particular,
we exploit a stochastic method for sub-problem optimization in parallel
to further improve time efficiency. The experimental results show that our
proposed distributed algorithm is suitable to enhance the performance
of ADMM, and can be effectively applied for big data classification.

Keywords: Big data · ADMM · Stochastic ADMM · Distributed
classification

1 Introduction

Linear classification has been widely applied in machine learning, such as med-
ical diagnosis, pattern recognition, and credit scoring [1]. Under the explosive
increase of global data, extreme-scale data requiring classification is a very chal-
lenging task. Formally, the size of big data challenges standard machine learning

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

X. Zhang et al. (Eds.): CloudComp 2019/SmartGift 2019, LNICST 322, pp. 141–153, 2020.

https://doi.org/10.1007/978-3-030-48513-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48513-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-48513-9_11

142 H. Wang et al.

algorithms those are not usually able to deal with huge data on a single machine
which the amount of data exceeds the capabilities of its system to process the
data [2]. Moreover, the data in many applications are usually generated and
collected in decentralized different machines. This is particularly natural for
processing the large data on a computer cluster. Nowadays, big data is attract-
ing much attention both from industry and academia in a wide variety of fields.
This is because of the availability of distributed optimization can deal with a
huge amount of data. Distributed classification is developed to take advantage
of the computational power of multi-machines to solve the original classification
problem in a decentralized environment. In these algorithms, the global classi-
fication problem is decomposed into as a series of small classification problems
(sub-problems), and then the computing nodes (different machines) solve sub-
problems in parallel, and then local results of sub-problems are aggregated to
obtain a global result [3].

Recently, distributed classification algorithms can be roughly divided into two
categories: (i) primal optimization [4], in these algorithms, stochastic gradient
descent (SGD) is an efficient method, which only computes the gradient of one
sample instead of all gradients of the whole samples in each iteration [5]. Because
of the variance in stochastic optimization, initial SGD suffers from a slow con-
vergence rate. Recently, some many accelerated versions of SGD are proposed
to efficiently solve large-scale learning problems, and obtain some better conver-
gence rate [6]. (ii) dual optimization [7], which introduces dual variables and
designs the dual problem of the primal problem, and then obtain the final result
by solving it. Specifically, alternating direction method of multipliers (ADMM)
is an efficient and widely-used optimization method in many application fields
[8]. Batch ADMM need to compute the empirical risk loss on all training sam-
ples in each iteration, which makes it unsuitable for the large-scale learning
problem. Thus, various versions of ADMM have been developed to improve the
convergence [9]. In recent years, ADMM has been widely-used for distributed
optimization because of its high decomposability property [3]. The main idea of
distributed ADMM is global consensus, it means that all the local models on
each machine need to be in consensus with the global model when finding the
global solution.

Distributed ADMM is an iterative method which includes the computation
of sub-problem optimization that happens locally on each node, and the commu-
nication of information in each iteration. A lot of distributed ADMM algorithms
have been proposed for solving large-scale optimization problems [10,11]. In par-
ticularly, a distributed classification algorithms based on the ADMM framework
had been proposed to solve linear SVM problems in [12]. Moreover, distributed
ADMM was applied for specific tasks in [13]. Nevertheless, distributed ADMM
always converges slowly, and it needs much more iterations to obtain the final
solution, and thus it is always time-consuming [14]. Therefore, the development
of efficient distributed ADMM algorithms improve the convergence distributed
ADMM for big data classification is an important problem. However, this issue
has not been well studied in the previous works.

DS-ADMM for Big Data Classification 143

In this work, we focus on ADMM-based distributed classification problems,
and propose a novel distributed stochastic ADMM algorithms (DS-ADMM) for
big data classification that can improve the efficiency of local computation and
communication. In particular, we integrate a stochastic gradient descent method,
Pegasos [15], into ADMM for the sub-problem optimization in the distributed
ADMM framework compared with traditional distributed ADMM, and then we
utilize a symmetric dual update to further reduce the time cost. Finally, we
investigate the performance of our proposed algorithm. Experiments on various
datasets empirically validate that DS-ADMM outperforms distributed ADMM-
based classification algorithms. The main contributions of our work are briefly
outlined as follows:

– An efficient classification algorithm integrated with stochastic ADMM is pro-
posed for big data classification. Specifically, the accelerated strategy can
reduce local computation cost to improve efficiency.

– We implement our proposed DS-ADMM under message passing interface
(MPI), which can run on clusters with many different machines (nodes).
Moreover, stochastic ADMM can efficiently solve the sub-problems in parallel.
Hence, DS-ADMM can be efficiently used to handle big data classification.

– Experiments on several binary classification datasets show that DS-ADMM
outperforms other distributed ADMM-based algorithms, and converges faster
to reduce time cost. Therefore, it could be an effective algorithm for big data
classification.

The rest of this paper is organized as follows. The background of this work is
presented in Sect. 2, followed by the details of our proposed algorithms in Sect. 3.
And then, the experimental results are analyzed in Sect. 4. Finally, we present
the conclusion in Sect. 5.

2 Background

In this section, we briefly introduce the related background of our work, which
includes linear classification, ADMM and distributed ADMM.

2.1 Linear Classification

It has shown that the performance of linear classification is close to that of non-
linear classification when handling large-scale data, but with much less train-
ing time [1]. Support Vector Machine (SVM) is an widely-used tool for solving
data classification [16]. Moreover, The task of learning a support vector machine
can be transformed as a constrained quadratic programming problem. Formally,
given a dataset {(xi, yi)}l

i=1, where xi ∈ R
n and yj ∈ {−1,+1}. We use SVM

as the classification model, and the minimization problem can be reformed as:

min
w

1
2
‖w‖2 + C

l∑

i=1

ξ(w,xj , yj), (1)

144 H. Wang et al.

where C>0 is the penalty parameter, and ξ is the misclassification loss function
usually with two common forms:

max{0, 1 − yjwT xj},max{0, 1 − yjwT xj}2

Furthermore, the optimization method has been proved that it can obtain an
ε-accurate solution w∗, if it satisfies f(w∗) ≤ f(w) + ε [15,17].

2.2 ADMM

ADMM is a powerful optimization algorithm and has recently get a lot of atten-
tion in many applications [9,12]. ADMM minimizes the sum of two local prob-
lems, and alternately solves them. Specifically, ADMM solves the optimization
problem in the following form:

min
x,z

f(x) + g(z),

s.t. Ax + Bz = C,
(2)

where x ∈ R
Nx and z ∈ R

Nz are the optimization variables, functions f(x)
and g(z) are convex. A ∈ R

Nc×Nx , B ∈ R
Nc×Nz and C ∈ R

Nc are the linear
constraints in the problem. Given a penalty parameter ρ > 0, the optimization
problem (2) can be efficiently solved by minimizing the augmented Lagrangian
as:

Lρ(x, z,λ) = f(x) + g(z) + λT (Ax + Bz − C)

+
ρ

2
‖Ax + Bz − C‖2, (3)

where λ is the Lagrangian multipliers. Furthermore, we can combine the linear
and quadratic terms in (3) into a slightly scaled form [3] as follows:

Lρ(x, z,u) = f(x) + g(z) +
ρ

2
‖Ax + Bz − C + u‖2, (4)

where u = 1
ρλ. We can find that the problem in (4) is clearly equivalent to the

problem in (3), but it is more convenient to solve. Hence, alternating minimiza-
tion steps of x and z can be performed as follows:

xk+1 = arg min
x

f(x) +
ρ

2
‖Ax + Bzk − C + uk‖2, (5)

zk+1 = arg min
z

g(z) +
ρ

2
‖Axk+1 + Bz − C + uk‖2, (6)

uk+1 = uk + (Axk+1 + Bzk+1 − C). (7)

ADMM is an iterative method and its objective is separable across the vari-
ables. The known theoretical study on ADMM has shown that it has a sublinear
convergence rate [3,18]. In recent years, ADMM has been applied to solve large-
scale machine learning problems. Moreover, many stochastic or online variants
of ADMM have been proposed to further improve the time efficiency [19,20].

DS-ADMM for Big Data Classification 145

2.3 Distributed ADMM

Recently, distributed ADMM has been widely-used for machine learning tasks
due to its simplicity and flexibility towards distributed computation [21]. Unlike
the method of multipliers, ADMM minimizes Lρ(x, z,λ) in terms of x and z
alternatively and then updates λ, which enables the problem to be easily decom-
posed for distributed optimization. Assume that the data are stored on N nodes
respectively, and the loss function f(x) can be decomposed into N components
with respect to x. Hence, the general optimization problem can be defined as:

f(x) =
N∑

i=1

fi(xi),

where x = (x1, . . . ,xN) and each fi the local function which involves only the
samples on node i. By formulating the original problem as a global optimization
problem, we reforms the minimization of (2) in the ADMM form as follow:

min
xi,...,xn,z

n∑

i=1

fi(xi) + g(z),

s.t. Axi + Bz = C, i = 1, 2, . . . , n.

(8)

In the problem (8), xi and z can be called ad the local and global variables,
respectively. Given the global consensus problem, the original optimization prob-
lem is decomposed into N sub-problems, and fi(xi) is the local objective of sub-
problem i. We want to find the global optimal variable z that minimizes the sum
of objective functions, and the constraint xi = z is used to force all the local
variables to reach a global result. In a distributed computing environment, the
global formulation is suitable for solving distributed optimization in machine
learning and computer vision areas [3,22]. Moreover, the global consensus prob-
lem can be solved equally by optimizing its augmented Lagrangian which can
be mathematically formulated in a scaled form as follow:

Lρ(x, z,u) =
N∑

i=1

fi(xi) + g(z) +
ρ

2

N∑

i=1

‖Axi + Bz − C + ui‖2, (9)

where u = λ
ρ and ui is the dual variable. As mentioned in the introduction,

although distributed ADMM and its convergence rate have been studied in recent
years, it usually converges slowly.

3 Distributed Stochastic ADMM for Big Data
Classification

In this section, we introduce our distributed stochastic ADMM (DS-ADMM)
in detail. We first present the proposed distributed ADMM framework to solve
sub-problems optimization in parallel. Then, we propose a stochastic learning
algorithm to speed up the convergence speed. Moreover, a symmetric dual update
is used to reduce the difference between local and global variables.

146 H. Wang et al.

3.1 Framework of DS-ADMM

Based on the framework of ADMM over a computer cluster with a star topology
which has a master node and N slave nodes, the classification problem can be
formulated as a global optimization problem:

min
wi,...,wN ,z

N∑

i=1

li∑

j=1

C ∗ ξ(wi,xj , yj) + g(z),

s.t. wi = z, i = 1, 2, . . . , N,

(10)

where g(z) = 1
2‖z‖2, ∑li

j=1 C ∗ ξ(wi,xj , yj) is the loss function in slave node i,
and li is the number of samples on slave node i. For simplicity, we denote w =
{w1, . . . ,wN}, and λ = {λ1, . . . ,λN}. Basically, The augmented Lagrangian
function for distributed classification in (10) can be rewritten as:

Lρ(w, z,λ) = g(z) +
N∑

i=1

li∑

j=1

C ∗ ξ(wi,xj , yj)

+
N∑

i=1

(λi(wi − z) +
ρ

2
‖wi − z‖2).

(11)

where ρ > 0 is a penalty parameter, and λ > 0 is the dual variable. By scaling λ
with u = λ

ρ in (11), the distributed classification problem in (10) is formulated
as follows:

Lρ(w, z,u)=
1

2
‖z‖2 +

N∑

i=1

fi(wi) +
ρ

2

N∑

i=1

‖wi − z + ui‖2. (12)

where fi(wi) =
∑li

j=1 C ∗ ξ(wi,xj , yj). Therefore, the problem in (10) can be
solved by the minimization in terms of wi and z alternately:

wk+1
i = arg min

wi

Lρ(w, zk,uk), (13)

zk+1 = arg min
z

Lρ(wk+1, z,uk), (14)

uk+1
i = uk

i + wk+1
i − zk+1. (15)

Note that distributed ADMM updates wis and uis locally on different nodes.
Because distributed classification on big data can be decomposed into N sub-
problems solved in parallel. Actually, our proposed DS-ADMM is a distributed
ADMM framework. In the problem (10), each slave node optimizes its local
variable wi by oneself, and then sends wi to generate the global variable z on
the master node. Finally, the latest z is broadcasted to each slave node for ui-
updating in each ADMM iteration until the train process obtain the consensus
global variable.

DS-ADMM for Big Data Classification 147

3.2 Stochastic Learning for Sub-problem Optimization

In sub-problem optimization. it easy to find that Lρ(w, z,u) is separable with
respect to wi. Consider a particular worker i, the sub-problem optimization
problem can be formulated in a readable way:

min
wi

Fi(wi) = fi(wi) +
ρ

2
‖wi − v‖2, (16)

where v = zk − uk
i at the kth ADMM iteration. Although the sub-problem is

different from traditional machine learning problems in its regularization term,
ρ
2‖wi − v‖2 also is a L2 regularization function in the wi-update of sub-problem
i. Therefore, the sub-problem can be solved efficiently by widely used optimiza-
tion methods such as gradient descent method, dual coordinate descent method
and trust region Newton method [6,17,23]

In this paper, we utilize Pegasos in [15], a stochastic method, to solve L2-
regularized L1-loss SVM with the objective function as follows:

min
w

Fi(w, Ak) =
λ

2
‖w‖2 +

1
m

∑

(x,y)∈Ak

max{0, 1 − ywT x}, (17)

where subset Ak is the subset of size m chosen at iteration k. Pegasos is selected
owing to the following reasons: (i) Pegasos performs SGD on the primal objective
(16), which can be used to accelerate the convergence. (ii) A projection step is
incorporated in Pegasos, and it has been proved that Pegasos has an ε-accurate
solution after O(1/(ε)) iterations [1]. Hence, Pegasos can obtain a fast conver-
gence result. Given a training subset Dk of size m at each iteration, Pegasos
approximately solves the objective in Eq. (16) replaced as follows:

min
wi

Fi(wi,D) =
ρλ

2
‖wi − v‖2 +

C

m

∑

(xj ,yj)∈Dk

max{0, 1 − yjwT
i xj}, (18)

Here, if D is the whole training set, Pegasos is a batch method with the deter-
ministic setting. Pegasos can take the subgradient direction of Fi(wi,D) because
that L1-loss is not differentiable:

�Fi(wk
i ,Dk) = ρλ(wk

i − vk) − C

m

∑

j∈Dk
+

yjxj , (19)

where Dk
+ = {xj |1 − yjwT

i xj > 0}, and update wi by

wk+ 1
2

i ← wk
i − η�Fi(wk

i ,Dk), (20)

where ηk = C/ρλk is the learning rate and k is the iteration number. Compared

with subgradient descent, Pegasos obtains wk+ 1
2

i , and then projects it onto the

ball set where {wi|‖wi‖ ≤ 1/
√

ρλ
C }. Therefore, the procedure of Pegasos can be

summarized in Algorithm 1.

148 H. Wang et al.

Algorithm 1. Pegasos for sub-problem optimization

Input: Choose w1
i such that ‖w1

i ‖ ≤ 1/
√

ρλ
C

}.

1: for k = 1, 2, 3, . . . , T do
2: Choose training subset Dk, where |Dk| = m, uniformly at random.
3: Compute the learning rate η = C/ρλk.
4: Compute the subgradient of Fi(w

k
i , Dk) by (19).

5: Update the latest w
k+ 1

2
i ← wk

i − η�Fi(w
k
i , Dk).

6: Project wk+1
i ← min{1,

1/
√

ρλ
C

‖wk+1
2

i ‖
}wk+ 1

2
i .

7: end for
Output: The local result wk+1

i

3.3 Update Procedures of Global and Dual Variables

Firstly, before y-update, a symmetric dual update similar as that in [24] is used

to update the dual variable uk+ 1
2

i as

uk+ 1
2

i ← uk
i + wk+1

i − zk. (21)

The update process in (21) can reduce the difference between wi and z, and
pull wi into global consensus when solving sub-problems. Then, the new wk+1

i ,

together with uk+ 1
2

i , are sent to the master for z-update which can be mathe-
matically formulated as

zk+1 =
1
2
‖z‖2 +

ρ

2

N∑

i=1

‖wi − z + ui‖2. (22)

Because of the right term in (22) is differentiable, thus the global variable zk+1

can be updated by the weighted average of xk+1
i s and uk+ 1

2
i s which are showed

as follows:

zk+1 =
ρ

1 + Nρ

N∑

i=1

(wk+1
i + uk+ 1

2
i). (23)

Finally, each worker waits for the new zk+1 which is broadcasted from the master
for the dual update which is same as that in distributed ADMM

uk+1
i ← uk+ 1

2
i + wk+1

i − zk+1. (24)

Hence, the update for z usually can be efficiently solved in many optimization
problems. Moreover, each worker can send wk+1

i and uk+ 1
2

i to the master for
z-update, and can reduce the communication at each iteration. In summary, the
overall procedure of our proposed DS-ADMM is showed in Algorithm 2.

DS-ADMM for Big Data Classification 149

Algorithm 2. DS-ADMM for Big Data Classification
Input: w0

i , u
0
i and z0, parameters (r0, s0), tolerances (εp, εd)

1: while ‖rk‖2 >εp or ‖sk‖2 >εd do
2: wk+1

i = minwi fi(wi) + ρ
2
‖wi − v‖2 solved by Pegasos in parallel.

3: u
k+ 1

2
i ← uk

i + wk+1
i − zk.

4: zk+1 = ρ
1+Nρ

∑N
i=1(w

k+1
i + u

k+ 1
2

i).

5: uk+1
i ← u

k+ 1
2

i + wk+1
i − zk+1.

6: rk+1 ← ∑N
i=1(w

k+1
i − zk+1)

7: sk+1 ← ρ(zk+1 − zk)
8: k ← k + 1
9: end while
Output: The global variable zk+1

4 Experiments

4.1 Experimental Datasets and Settings

In this paper, we perform binary classification tasks on three benchmark
datasets: webspam, rcv1 and epsilon whose detailed information can be found
from LibSVM website1 for performance evaluation. Furthermore, The details of
experimental datasets are showed in Table 1. For parameter settings, we choose
the hyperparameter C is consistent with distributed ADMM in [12] for fair com-
parison. Also, it has been studied that its relaxation form of local variable wk+1

i

can facilitate the solution, which is defined as followes:

wk+1
i ← αwk+1

i + (1 − α)zk
i ,

where α ∈ (0, 2) is a relaxation parameter, and it had been analyzed and sug-
gested that α ∈ (1.5, 1.8) can improve the convergence in [3]. In this paper, we
define M as the number of inner iterations of sub-problem optimization in each
ADMM iteration. For ρ, α and M , we set them as 1, 1.6, 50 which is same
with [12] for comparative tests. Moreover, we empirically choose the parameter
in Pegasos which is guided by [15] for sub-problem optimization. All the algo-
rithms are implemented under an MPI-cluster with ten nodes, each of which has
a 2.6 GHz Intel(R) Xeon(R) processor and 64 GB RAM.

4.2 Comparison with Other Distributed ADMM-Based Algorithms

To validate the effectiveness of our proposed algorithm, CS-ADMM is compared
with distributed ADMM-based algorithms. In sub-problem optimization, we use
DCD [17] and a trust region newton method (TRN) [23] as the baseline for sub-
problem optimization, and Pegasos as acceleration to evaluate the local com-
putation. To evaluate the performance, we use the number of outer iterations
1 The datasets are available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

datasets/binary.html.

http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/datasets/binary.html

150 H. Wang et al.

Table 1. Experimental datasets. d and l are the dimension and the number of examples
respectively, C is the hyperparameter.

Dataset l d C

Webspam 350,000 16,609,143 32

Epsilon 500,000 2,000 1

rcv1 6,797,641 7,236 1

((Iter), total time (Ttime), communication time (Ctime), running time (Rtime)
and accuracy (Acc(%)) as evaluation metrics. The details of comparison algo-
rithms are described as follows:

– D-ADMM.D: D-ADMM is distributed ADMM based the original frame-
work of ADMM [12], and DCD is used for sub-problem optimization.

– D-ADMM.N : In the distributed ADMM framework, TRN is used to solve
the SVM model with L2-regularized squared hinge loss.

– DS-ADMM: Ttis based on the framework of distributed ADMM. Pegasos
is utilized to solve sub-problems, and a symmetric dual update is used to
update dual variables before z-update.

Table 2. Performance comparisons on dataset webspam

Iter Ttime(s) Ctime(s) Rtime(s) Acc(%)

DS-ADMM 8.9 565.4 498.1 67.3 98.83

D-ADMM.D 25.2 872.4 704.2 168.2 99.26

D-ADMM.N 7.8 1405.3 789.6 615.7 99.34

Table 3. Performance comparisons on dataset epsilon

Iter Ttime(s) Ctime(s) Rtime(s) Acc(%)

DS-ADMM 56.3 45.7 6.5 39.2 89.08

D-ADMM.D 76.4 86.4 10.6 75.8 89.81

D-ADMM.N 65.4 164.5 72.2 92.3 89.86

Time Cost of Local Computation. We study the performance of our
proposed algorithm with stochastic optimization. Table 2, 3 and 4 show that
distributed stochastic ADMM integrated with Pegasos converges faster and
improves time efficiency than these algorithms only with DCD and TRN meth-
ods, respectively. In the experimental results, we can find that Pegasos signifi-
cantly reduces the running time of local computation with the acceptable accu-
racy loss on all datasets. In particular, compared with D-ADMM.D, DS-ADMM

DS-ADMM for Big Data Classification 151

Table 4. Performance comparisons on dataset rcv1

Iter Ttime(s) Ctime(s) Rtime(s) Acc(%)

DS-ADMM 34.5 6.2 3.4 2.8 97.48

D-ADMM.D 53.2 12.6 3.8 8.8 97.82

DS-ADMM.N 30.4 18.9 4.3 14.6 97.80

can save up about 2 times of the total time with about 0.4% accuracy loss on
dataset rcv1. The main possible reason may be that in large-scale data, the num-
ber of training samples are very huge, and the local models would be well trained
in inner iterations. Therefore, stochastic ADMM can improve the convergence
speed of sub-problem optimization.

Accuracy and Efficiency. We find that DS-ADMM integrated with Pegasos
can obviously save up the training time with acceptive accuracy loss, which is
less than 0.8%, on all datasets in Table 2, 3 and 4. The main reason is that
DCD is a batch optimization method, in which all examples should be trained
to learn the classification model in each inner iteration. TRN uses a conjugate
gradient method to find the Newton-like direction and use the trust region New-
ton method to iterate. While Pegasos is a min-batch method, which will may
introduce the noise in the learning process. Hence, stochastic ADMM with Pega-
sos reduces the time cost with a little accuracy loss. Moreover, we can find that
TRN is more time-consuming compared with DCD and Pegasos when dealing
with high-dimensional data, such as webspam and rcv1 datasets. To sum up,
DS-ADMM converges faster, and can obviously reduce the time cost with the
competitive accuracy compared with D-ADMM.D and D-ADMM.N. Hence, DS-
ADMM is can be applied for large-scale machine learning, could be an effective
algorithm for big data classification.

5 Conclusion

In this paper, we propose a novel distributed stochastic ADMM algorithm called
as DS-ADMM, for big data classification. Specifically, we explore a distributed
framework based on ADMM, and divide the global problem into small sub-
problems. And then, we integrate a stochastic method, Pegasos with ADMM in
the distributed framework for sub-problem optimization. Furthermore, we utilize
a symmetric dual update to reduce the difference between local variables and the
global variable, which can force to reach global consensus. Finally, experiments
on binary classification datasets show that DS-ADMM outperforms distributed
ADMM-based classification algorithms. Therefore, it could be used for big data
classification.

Acknowledgement. This work is partially supported by the Fundamental Research
Funds for the Central Universities, No. 30918014108, and the National Science Foun-
dation of China No. 61806096.

152 H. Wang et al.

References

1. Yuan, G.-X., Ho, C.-H., Lin, C.-J.: Recent advances of large-scale linear classifica-
tion. Proc. IEEE 100(9), 2584–2603 (2012)

2. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends R© Mach. Learn. 3(1), 1–122 (2011)

4. Agarwal, N., Suresh, A.T., Yu, F.X.X., Kumar, S., McMahan, B.: cpSGD:
Communication-efficient and differentially-private distributed SGD. In: Advances
in Neural Information Processing Systems, pp. 7564–7575 (2018)

5. Haddadpour F., Kamani, M.M., Mahdavi M., Cadambe V.: Trading redundancy
for communication: speeding up distributed SGD for non-convex optimization. In:
International Conference on Machine Learning, pp. 2545–2554 (2019)

6. Reddi, S.J., Hefny, A., Sra, S., Poczos, B., Smola, A.J.: On variance reduction in
stochastic gradient descent and its asynchronous variants. In: Advances in Neural
Information Processing Systems, pp. 2647–2655 (2015)

7. Suzuki, T.: Stochastic dual coordinate ascent with alternating direction method
of multipliers. In: Proceedings of the 31st International Conference on Machine
Learning, pp. 736–744 (2014)

8. Wang, H., Gao, Y., Shi, Y., Wang, R.: Group-based alternating direction method
of multipliers for distributed linear classification. IEEE Trans. Cybern. 47(11),
3568–3582 (2017)

9. Zheng, S., Kwok, J.T.: Stochastic variance-reduced admm. arXiv preprint
arXiv:1604.07070 (2016)

10. Dajun, D., Xue, L., Wenting, L., Rui, C., Minrui, F., Lei, W.: Admm-based dis-
tributed state estimation of smart grid under data deception and denial of service
attacks. IEEE Trans. Syst. Man Cybern. Syst. 49(8), 1698–1711 (2019)

11. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vec-
tor machines. J. Mach. Learn. Res. 11, 1663–1707 (2010)

12. Zhang, C., Lee, H., Shin, K.: Efficient distributed linear classification algorithms
via the alternating direction method of multipliers. In: Artificial Intelligence and
Statistics, pages 1398–1406 (2012)

13. Lee, C.P., Chang, K.W., Upadhyay, S., Roth, D.: Distributed training of structured
SVM. arXiv preprint arXiv:1506.02620 (2015)

14. Lee, C.P., Roth, D.: Distributed box-constrained quadratic optimization for dual
linear SVM. In: International Conference on Machine Learning, pp. 987–996 (2015)

15. Shai, S.-S., Yoram, S., Nathan, S., Andrew, C.: Pegasos: primal estimated sub-
gradient solver for SVM. Math. Program. 127(1), 3–30 (2011). https://doi.org/10.
1007/s10107-010-0420-4

16. Xiaohe, W., Wangmeng, Z., Liang, L., Wei, J., Zhang, D.: F-SVM: Combination
of feature transformation and SVM learning via convex relaxation. IEEE Trans.
Neural Netw. Learn. Syst. 29(11), 5185–5199 (2018)

17. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coor-
dinate descent method for large-scale linear SVM. In: Proceedings of the 25th
international conference on Machine learning, pp. 408–415 (2008)

18. He, B., Yuan, X.: On the o(1/n) convergence rate of the douglas-rachford alternat-
ing direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

http://arxiv.org/abs/1604.07070
http://arxiv.org/abs/1506.02620
https://doi.org/10.1007/s10107-010-0420-4
https://doi.org/10.1007/s10107-010-0420-4

DS-ADMM for Big Data Classification 153

19. Liu Y., Shang F., Cheng J.: Accelerated variance reduced stochastic ADMM. In:
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp.
2287–2293 (2017)

20. Yu Y., Huang L.: Fast stochastic variance reduced ADMM for stochastic composi-
tion optimization. In: Proceedings of International Joint Conferences on Artifical
Intelligence, pp. 3364–3370 (2017)

21. Shi, W., Ling, Q., Yuan, K., Gang, W., Yin, W.: On the linear convergence of
the ADMM in decentralized consensus optimization. IEEE Trans. Signal Process.
62(7), 1750–1761 (2014)

22. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of admm for multi-
block convex minimization problems is not necessarily convergent. Math. Program.
155(1–2), 57–79 (2016)

23. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region newton method for logistic regres-
sion. J. Mach. Learn. Res. 9, 627–650 (2008)

24. He, B., Ma, F., Yuan, X.: On the step size of symmetric alternating directions
method of multipliers (2015). http://www.optimization-online.org

http://www.optimization-online.org

	Distributed Stochastic Alternating Direction Method of Multipliers for Big Data Classification
	1 Introduction
	2 Background
	2.1 Linear Classification
	2.2 ADMM
	2.3 Distributed ADMM

	3 Distributed Stochastic ADMM for Big Data Classification
	3.1 Framework of DS-ADMM
	3.2 Stochastic Learning for Sub-problem Optimization
	3.3 Update Procedures of Global and Dual Variables

	4 Experiments
	4.1 Experimental Datasets and Settings
	4.2 Comparison with Other Distributed ADMM-Based Algorithms

	5 Conclusion
	References

