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Abstract. Demand response has the potential to reduce end-users elec-
tricity costs by promoting judicious use of existing power system infras-
tructure. This is most often assumed to require the adoption of time-
varying electricity prices which can make load scheduling and energy
resource management difficult to carry out in a time-effective and com-
fortable way without computational assistance and automated control.
Automated home energy management systems can facilitate this pro-
cess including by providing users with optimised plans. Creating these
plans requires optimisation tools operating on mathematical models of
the underlying problem. Mixed-integer linear programming (MILP) has
been used extensively for this purpose though increasing complexity and
time resolution can render this approach impractical. In this paper, we
describe and compare MILP formulations of the same demand response
problems using alternative thermal load models. The results, obtained
using a state-of-the-art solver, can be summarised as follows: (1) the
elimination of continuous temperature variables in one thermal load sub-
model increased the computation time in 99% of cases and by 981%
on average; (2) two new discrete control formulations leading to a 40%
reduction in the number of binary variables relative to the standard for-
mulation were found to decrease the computation time in approximately
63% of cases and by 38–40% on average. Efforts are ongoing to evaluate
these techniques under more diverse scenarios.

Keywords: Demand response · Thermal load model · Mixed-integer
linear programming

1 Introduction

1.1 Context and Motivation

Demand response (DR) programs are often advanced as a way to ensure the
existing power system infrastructure is used rationally and efficiently, and also
to integrate increasing shares of variable renewable energy resources into power
grids [1,2]. This potential implies the dissemination of intelligible information
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about the power system for a given period – most often in the form of time-
differentiated electricity prices and ad-hoc demand reduction requests – so as to
indirectly influence end-users’ aggregate electricity consumption. Once in posses-
sion of this information, end-users are expected to decide when and how to adjust
their actions to meet their objectives. For residential end-users, this implies
scheduling and configuring domestic appliances as well managing local energy
resources, particularly storage units, if there are any. However, for end-users
to minimise their electricity bill under these circumstances while meeting their
needs requires a level of effort most if not all end-users will want to avoid with-
out computer assistance and control, arguably due to the task’s participative,
repetitive, schedule-constraining and computationally-demanding nature [3,4].
As such, automated home energy management systems have been proposed to
not only carry out part of these actions but also to support the decision-making
process by providing users with optimised reference plans [5].

Generating these plans requires the use of optimisation tools operating on
mathematical models of the underlying DR problem and should be sufficiently
time-effective to avoid protracted interactions with end-users. One common app-
roach is to model DR problems using mixed-integer linear programming (MILP)
and produce optimised solutions via MILP solvers. A wide range of DR prob-
lems have been modelled using MILP including those featuring thermal loads
with significant DR potential, such as domestic hot water (DHW) vessels and
air-conditioned spaces, since these allow loads to be deferred to an extent that
allows for significant flexibility and possibly lower costs. Modelling thermal loads
and respective actuators using MILP can thus be ascribed some importance. This
paper describes a study comparing the computational performance of MILP for-
mulations of DR problems using different yet equivalent thermal load models.

1.2 Literature Review

The thermal load MILP models surveyed in the literature cover loads such as hot
water vessels, air-conditioned spaces, radiators and refrigerated compartments,
and are mostly physical phenomena-inspired as opposed to physics-agnostic mod-
els. Most commonly, thermal loads are modelled as single-node temperature
models that can be derived from first order ordinary linear differential equa-
tions, and often rely on continuous decision variables to hold temperature values
[3,6–12]. One-dimensional multi-node models can also be found in the literature,
particularly to model thermal stratification in storage vessels [13,14] and heat
transfer across building envelopes [15,16]. In a few cases, thermal loads have also
been modelled as time-shiftable or interruptible loads [17,18].

The models reviewed encompass combinations of temperature, power, and
control constraints. Temperature constraints have generally been used to ensure
safety and comfort standards [3,8,12], either constant or changing over time due
to occupancy or demand, rather than the model’s own accuracy (e.g., due to
phase changes). Power constraints have been used to comply with individual
equipment’s power ratings [8,9,11,19] or those defined by fuses or the utility
grid [3,17,20]. Control constraints have been used to implement discrete part-
load operation, 2-level hysteresis control and minimum operation and inactivity
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cycle durations [20,21], and to ensure some modes are mutually-exclusive (e.g.,
heating or cooling) [8,22]. Accommodating these features may be a necessity
but these also increase the computational burden, particularly for short time
steps, due to the additional binary variables needed. Ultimately, models of a
strongly-combinatorial nature (due to the number of binary variables) can be
too difficult to solve within an acceptable time-frame (e.g., close to real-time)
using affordable and low power computational resources [6,8,12,18–22], which
limits the attractiveness of MILP models for in-house residential DR planning.

1.3 Objectives and Approach

The study described here set out to explore the effect of two modelling techniques
on the ability to efficiently solve MILP-formulated residential demand response
problems featuring thermal loads. The techniques evaluated sought to reduce the
number of continuous and binary variables necessary to reproduce the same DR
problem. The first technique concerns the elimination of continuous load temper-
ature variables. The second technique relates to modelling multi-level discrete
control of appliances interacting with thermal loads: three equivalent formula-
tions were compared, namely the traditional one relying on one binary variable
per level and time interval plus constraints to ensure that only one can be used
at any given time interval, and two others potentially relying on a reduced set of
binary variables and constraints. The main thrust was thus to understand how
these techniques influence the computational performance of MILP-formulated
DR problems involving thermal loads and under time-differentiated electricity
prices. For this purpose, a state-of-the-art solver was used to produce optimised
solutions to the same DR problem formulated differently and the computation
times compared. A diverse set of case studies was defined and employed to reduce
the possibility of bias influencing the conclusions. This effort is presented over
5 additional sections: Sect. 2 describes the DR problem under consideration;
Sect. 3 details the models used to reproduce the problem; Sect. 4 defines the case
studies considered; Sect. 5 presents and analyses the optimisation results; Sect. 6
summarises this endeavour’s main conclusions.

2 Problem Description

The DR problem addressed in this study is centred around a grid-connected
single-family household where the end-users’ electricity consumption during a
36-hour period is charged according to a discretely-increasing (power) demand
rate and time-differentiated energy prices. The automated home energy man-
agement system is tasked with preparing optimised plans and managing the
operation of domestic appliances and energy resources to maximize profits while
maintaining safety and comfort standards, and without interfering with the non-
controllable demand (NCD). The other demand component is due to an electric
water heater (EWH), a refrigerator (REF), a reversible speed-controlled heat
pump (HP) as well as single dishwasher (DW), laundry machine (LM) and tum-
ble dryer (TD) cycles observing user-designated appliance-specific comfort peri-
ods. Temperatures limits have to be observed in the refrigerated compartments,
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the air-conditioned room, and the water vessel. A photovoltaics-based behind-
the-meter local electricity generation system is also present to allow for reduced
energy costs via load matching and/or revenue by selling excess electricity to
the utility grid as long as utility-specified power limits are observed.

3 Mathematical Model

A customisable MILP formulation of the single-household DR problem described
in the previous chapter was developed to carry out this study. The MILP model
relies on generic submodels for time-shiftable and single-node thermal loads,
which were instantiated three times each to accommodate all appliances under
consideration: the dishwasher, laundry machine, tumble dryer cycles were mod-
elled as time-shiftable loads while the EWH, the refrigerator and the heat pump
were assumed to interact with uniform temperature thermal loads using three
different controls: on/off, proportional and multi-level discrete controls, respec-
tively. A demand rate submodel is also used to relate power needs into costs and
feed-in constraints. More information about the model is provided next.

3.1 Objective Function

The objective for this model is to maximise profits over the entire planning
period duration (PPD) by simultaneously minimising energy and power costs
and maximising revenue while meeting safety and comfort standards. Revenue is
obtained by selling locally-generated excess electricity to the utility whereas costs
are due to the NCD and L additional electrical loads, consisting of NSL time-
shiftable loads and NTL thermal load-related electrical loads, and cost penalties
prompted by excessive temperatures in selected thermal loads. Loads are iden-
tified through the set SL = {1, ..., L} and subsets SSL ⊆ SL and STL ⊆ SL for
time-shiftable and thermal load-related electrical loads, respectively, such that:
SSL ∩ STL = ∅;SSL ∪ STL = SL. Additional subsets include STL,Δt ⊆ STL

and STL,PPD ⊆ STL to identify thermal loads capable of inducing costs due
to excessive temperatures during each time interval and temperature reductions
between planning periods, respectively. The objective function is thus given by
(1), where PELEC

IMP,k and PELEC
EXP,k stand for the mean power drawn from and fed to

the utility grid, respectively, during time interval k of the planning period (out
of K ∈ N,Δt-long intervals: K = PPD/Δt), yU,p indicates whether the nonneg-
ative power level PU,p was exceeded during the planning period (PU,0 = 0 W, for
islanded operation), Δθl,PPD is thermal load l’s (∀l ∈ STL,PPD) temperature
decrease, if any, between planning periods, and ΔθUPPER

l,k represents thermal
load l’s (∀l ∈ STL,Δt) temperature increase, if any, above the reference temper-
ature (θUPPER

l,REF ) during time interval k. With regard to the objective function
coefficients, pELEC

IMP,k and pELEC
EXP,k are respectively the prices charged and offered

to the end-user for electricity consumed from and delivered to the grid during
time interval k, cU,p is the cost of exceeding the power level PU,p, cl,PPD is the
cost of increasing load l’s (∀l ∈ STL,PPD) temperature by one degree after the
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planning period, and cUPPER
l,k is the cost of load l’s (∀l ∈ STL,Δt) temperature

exceeding θUPPER
l,REF by one degree during time step k.

min
∑

l∈ST L,Δt

K∑

k=1

cUPPER
l,k ΔθUPPER

l,k +
∑

l∈ST L,P P D

cl,PPDΔθl,PPD +
P−1∑

p=0

cU,pyU,p

+ Δt
K∑

k=1

(pELEC
IMP,kPELEC

IMP,k − pELEC
EXP,kPELEC

EXP,k) (1)

PELEC
IMP,k ≥ 0, k = 1, ...,K; PELEC

EXP,k ≥ 0, k = 1, ...,K (2)

yU,p ∈ {0, 1} , p = 0, ..., P − 1 (3)

Δθl,PPD ≥ 0, l ∈ STL,PPD (4)

ΔθUPPER
l,k ≥ 0, k = 1, ...,K; l ∈ STL,Δt (5)

3.2 Power Balances

Both PELEC
IMP,k and PELEC

EXP,k are defined using the power balance equations in
(6), where Pl,k is the mean power demand due to load l (∀l ∈ SL) during time
interval k in accordance with (7), PNCD,k is the mean power for the NCD during
time interval k, and PLEG,k is the mean power supplied by the local electricity
generation system during time interval k.

∑

l∈SL

Pl,k + PNCD,k − PLEG,k = PELEC
IMP,k − PELEC

EXP,k, k = 1, ...,K (6)

Pl,k ≥ 0, l ∈ SL, k = 1, ...,K (7)

3.3 Demand Rate

The demand rate submodel consists of (8)–(11). The peak mean net power
demanded from the utility grid during the planning period (PPEAK) is con-
strained by (8) and (9), and used to determine which power levels have been
exceeded in (10), where PU,p is the peak power afforded by the demand rate
level p (for P positive levels: p = 0, ..., P ). Simultaneously, (11) ensures compli-
ance between PELEC

EXP,k and the maximum power the system is allowed to deliver
to the grid, defined as a fixed percentage (λEXP ) of the demand rate-defined
peak power.

PELEC
IMP,k − PELEC

EXP,k − PPEAK ≤ 0, k = 1, ...,K (8)

0 ≤ PPEAK ≤ PU,P (9)
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PPEAK − PU,P yU,p ≤ PU,p, p = 0, ..., P − 1 (10)

PELEC
EXP,k − λEXP

P−1∑

p=0

yU,p(PU,p+1 − PU,p) ≤ 0, k = 1, ...,K (11)

3.4 Time-shiftable Loads

The behaviour of time-shiftable loads was reproduced using the model proposed
in [21,23]. This model assumes such loads are characterised by non-interruptible
cycles, each defined by an ordered sequence of stages with specific power demand
levels, whose scheduling must conform to predefined comfort periods.

3.5 Thermal Loads

Thermal loads were generically modelled after uniform temperature bodies con-
trolled through appliances in accordance with (12), where θl(t) is the effective
temperature for load l (∀l ∈ STL) at time t ∈ R, xl,m(t) is the actuator control
signal component m (∀m ∈ SM,l = {1, ...,Ml}) at time t, while al(t), bl(t), cl(t)
and dl,m(t) are potentially time-varying load- and context-specific coefficients.

al(t) · θ′
l(t) = bl(t) · θl(t) + cl(t) +

∑

m∈SM,l

dl,m(t)xl,m(t), l ∈ STL (12)

The solution to (12) was approximated by assuming the coefficients are con-
stant during one time step (zero-order hold). In doing so, a closed-form solution
can be produced and the process repeated for multiple time steps. The corre-
sponding MILP formulation is given in (13) for a given load l (∀l ∈ STL) and
time interval k, where θl,k is its temperature at the start of time interval k, xl,m,k

is the decision variable for mode m, and al,k, bl,k, cl,k and dl,m,k are coefficients.

θl,k+1 − θl,k exp(
bl,k

al,k
Δt) − b−1

l,k (cl,k +
∑

m∈SM,l

dl,m,kxl,m,k)(exp(
bl,k

al,k
Δt) − 1) = 0,

(13)

k = 1, ...,K, l ∈ STL

The load temperatures determined by (13) have to comply with minimum
(θMIN,l,k) and maximum (θMAX,l,k) temperature limits during each time interval
in accordance with (14)–(15) while separate ones constrain Δθl,Δt and ΔθUPPER

l,k

using (16) and (17), where θl,1 is the initial load temperature.

θl,k ≥ θMIN,l,k, k = 2, ...,K + 1, l ∈ STL (14)
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θl,k ≤ θMAX,l,k, k = 2, ...,K + 1, l ∈ STL (15)

θl,K+1 − θl,1 ≥ −Δθl,PPD, l ∈ STL,PPD (16)

θl,k − θUPPER
l,REF ≤ ΔθUPPER

l,k , k = 2, ...,K + 1, l ∈ STL,Δt (17)

Appliance Control. One of three actuator control types was considered for
each thermal load: on/off, proportional and multi-level discrete controls. Ther-
mal loads modelled using these controls can be respectively identified through
the subsets STL,ON−OFF , STL,PROP and STL,MULTI (⊆ STL) such that:

STL,ON−OFF ∩ STL,PROP ∩ STL,MULTI = ∅ (18)

STL,ON−OFF ∪ STL,PROP ∪ STL,MULTI = STL (19)

The choice of actuator control ultimately defines the number of signal com-
ponents (Ml) needed for each load, which can include one or two active heat
transfer directions (i.e., heating and cooling). Consequently, it also defines the
decision variable (xl,m,k) types and associated constraints. Among the choices,
on/off control is the simplest and requires one binary variable per time interval
and heat transfer direction (Ml = 1 or 2) in accordance with (20).

xl,m,k ∈ {0, 1}, k = 1, ...,K, m ∈ SM,l, l ∈ STL,ON−OFF (20)

Proportional control, defined as a semi-continuous monotonically-increasing
piecewise linear function above a minimum positive level, requires two control
signal components per time interval and heat transfer direction (Ml = 2 or 4) in
accordance with (21) and (22): one binary variable sets the minimum actuator
level and a continuous variable sets the actuator level above the mininum level.

xl,2n−1,k ∈ {0, 1}, xl,2n,k ∈ [ 0, 1], l ∈ STL,PROP (21)
k = 1, ...,K, n = 1, ...,Ml/2

xl,2n−1,k ≥ xl,2n,k, k = 1, ...,K, l ∈ STL,PROP , (22)
n = 1, ...,Ml/2

Multi-level discrete control is primarily intended to reproduce full- and part-
load operation of appliances controlling thermal load temperatures and can be
formulated in three alternative ways, all of which exclusively rely on binary
variables in accordance with (23). The standard one (STD) uses one binary
variable per positive load level and time interval for each heat transfer direction
and prevents more than one of those corresponding to the same time interval
(k) from being positive in accordance with (24).
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xl,m,k ∈ {0, 1}, k = 1, ...,K, m ∈ SM,l, l ∈ STL,MULTI (23)

∑

m∈SM,l

xl,m,k ≤ 1, k = 1, ...,K, l ∈ STL,MULTI (24)

If the appliances can be assumed to operate with power-invariant COPs and
the normalised load levels are separated at regular steps between 0 (no load)
and 1 (full load), then two other formulations can be used. Both reproduce a
specified set of load levels (Tl = {1, ..., Nl}) using combinations of those levels
to achieve the same outcome using a subset of the original levels (T ′

l ⊆ Tl),
in accordance with (25), where el,m,k and el,n,k are the surrogates for dl,m,k

needed to employ Tl and T ′
l , respectively, as surrogates for SM,l. In doing so,

these formulations have the potential to dispense with all the constraints and
a part of the variables needed using the standard formulation, depending on
the number of levels and heat transfer directions. For example, no reduction of
binary variables is possible if 2 levels per heat transfer direction are considered
but at 3, 5 and 10 levels, reductions of 33, 40 and 60% are possible. Additional
constraints are not necessary if only one heat transfer direction is considered –
otherwise (24) is necessary to prevent simultaneous heating and cooling modes
– and if any potential combination only reproduces the original levels.

el,m,k =
∑

n∈T ′
l

el,n,kwl,n,k, wl,n,k ∈ {0, 1}, k = 1, ...,K, m ∈ Tl, l ∈ STL,MULTI

(25)
The differences between the two non-standard formulations concern the app-

roach by which to rule out solutions reproducing load levels not found in the
original set, specifically those that exceed load ratings – since intermediate lev-
els are implicitly excluded. The first of these more specific formulations (SPC1)
does this by enforcing upper and lower load level limits for heating and cooling
modes, respectively, in accordance with (26)–(27), if applicable.

∑

n∈T ′
l

dl,n,kxl,n,k ≤ max
m∈Tl

dl,m,k, k = 1, ...,K, l ∈ STL,MULTI (26)

∑

n∈T ′
l

dl,n,kxl,n,k ≥ min
m∈Tl

dl,m,k, k = 1, ...,K, l ∈ STL,MULTI (27)

The second formulation (SPC2) uses the linearised 0–1 polynomial con-
straints given in (28)–(29) to rule out any binary decision variable combinations
that allow those limits to be exceeded, where V is the number of binary com-
binations to exclude and Sl,0,v and Sl,1,v are sets (∀v = 1, ..., V ; Sl,0,v, Sl,1,v ⊆
SM,l; Sl,0,v ∩ Sl,1,v = ∅) containing the indexes for the decision variables that
equal nought and one, respectively, in the binary combination v.
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∑

r∈Sl,1,v

xl,r,k −
∑

s∈Sl,0,v

xl,s,k ≤ |Sl,1,v| − 1, k = 1, ...,K, v = 1, ..., V, l ∈ STL,MULTI

(28)

−
∑

r∈Sl,1,v

xl,r,k +
∑

s∈Sl,0,v

xl,s,k ≤ |Sl,0,v|, k = 1, ...,K, v = 1, ..., V, l ∈ STL,MULTI

(29)

Elimination of Load Temperature Variables. Employing continuous load
temperature variables θl = [θl,2, ..., θl,K+1] in the thermal load submodel is not
strictly required since their use can be replaced by equivalent functions of actu-
ator variables, specifically (30), where xl is given by (31). To do this, a con-
straint i (∀i ∈ {1, ..., I}) whose left- and right-hand sides can be represented by
[φi, ψi] [ θl, xl] T and ξi would have to be converted into one with fi · xT

l and gi,
respectively, which can be shown to require adopting (32) and (33), where fi,j

is the element at column j of the vector fi and similarly for αl,k,j , φi,k and ψi,j .

θl,k+1 = αl,k · xT
l − βl,k, k = 1, ...,K, l ∈ STL (30)

xl = [xl,1, ..., xl,Ml
] , xl,m = [xl,m,1, ..., xl,m,K ] , m ∈ SM,l, l ∈ STL (31)

fi,j = ψi,j +
K∑

k=1

φi,kαl,k,j , i = 1, ..., I, j = 1, ..., J = Ml · K, l ∈ STL (32)

gi = ξi +
K∑

k=1

φi,kβl,k, i = 1, ..., I, l ∈ STL (33)

4 Case Studies

The modelling techniques addressed in this study were evaluated using a set
of case studies. These consist of 108 DR problems defined by different data and
time interval duration combinations. Time interval durations of 300, 600, 900 and
1800 s were considered as well as 3 indoor heat gain profiles, 3 DHW demand
profiles and 3 NCD profiles – each of which resampled using the appropriate
time interval duration. For each of these case studies, one problem was created
per combination of the two modelling techniques considered: multi-level discrete
control formulation and load temperature variable elimination. In total, 648
problems were created and optimised to provide 324 and 216 sets of comparisons
to explore the effect of variable elimination and the different control formulations,
respectively.
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The two modelling techniques under consideration were applied solely to the
thermal load submodel for the air-conditioned room. This model assumes a heat
pump can be off or cooling the room using 20, 40, 60, 80 or 100% of its rated
power capacity. These 5 levels were reproduced using the various discrete control
formulations. In the case of the SPC1 and SPC2 formulations, 3 levels, namely
20, 40 and 60%, were used to reproduce the 5 original ones thus enabling a 40%
reduction in the number of binary variables. On the other hand, the SPC1 and
SPC2 formulations required additional constraints to prevent the heat pump’s
rated capacity from being exceeded. The two remaining thermal loads, namely
the EWH and the refrigerator, were modelled as using on/off and proportional
control, respectively. In the latter case, the type of control selected was meant
to represent on/off operation during less than one full time step to facilitate
obtaining feasible solutions to problems defined using a comparatively-long Δt.

4.1 Problem Data

The case studies were defined primarily using data from [24]. This included
the shiftable load operation cycles and comfort periods, the demand rates and
respective power levels, the electricity prices, the local electricity generation pro-
file, the indoor heat gain profile, the NCD profile, the outdoor temperature pro-
file, the indoor temperature profile (for the EWH and refrigerator models), the
utility water temperature profile, and most thermal load data. The exceptions
concerned: the air-conditioned room’s lumped capacity, which was doubled; the
heat pump’s specifications [25]; the refrigerator’s COP temperature dependence
[26]; the EWH lower and upper reference temperatures (60 and 70 ◦C); cUPPER

l,k ,
defined as the ratio between the maximum cost prompted by not shifting the
EWH load and the difference between the maximum and upper reference tem-
peratures; the refrigerator’s minimum cycle duration (3 min); the daily DHW
volume (200 L at 45 ◦C); the DHW profile, instead based on the RAND pro-
file [27]; the occupancy vector, defined as the sign function of the DHW profile.
Finally, the indoor heat gain, DHW demand and NCD profiles were created
using stochastic functions of the reference ones.

4.2 Computational Resources and Solver Settings

The MILP problems were optimised using IBM’s CPLEX 12.8.0.0 which ran
on a shared machine featuring an Intel Xeon Gold 6138 CPU and 320 GB of
RAM. The solver was invoked from MATLAB using the official CPLEX class
API. Standard solver settings were used except the termination criteria which
included optimality, a 1% relative gap and a 15-min computational budget.

4.3 Methodology

The methodology adopted relied on comparisons between the optimisation
results obtained for the same problem but formulated using different models.
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As such, investigating the effect of load temperature variables required compar-
ing solutions to problems whose models differ only on whether those variables
are used or not. The same holds for the effect of different multi-level discrete
control formulations but in that case three comparisons are possible per prob-
lem: SPC1 vs STD; SPC2 vs STD; SCP1 vs SCP2. For reasons of brevity, this
study mainly focuses on performance variations relative to the standard formu-
lation. Finally, computational performance was measured via the deterministic
computation time, as returned by CPLEX, which is a repeatable measure of
effort involved in solving each problem rather than the actual time to obtain a
solution.

5 Results and Analysis

Optimised solutions and best bounds were determined for the 648 MILP prob-
lems created. The optimised solution to one of these is represented in Fig. 1.
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Fig. 1. Optimisation results for one DR problem (900 s time interval; reference input
data) using load temperature variables and the STD formulation: power demand from
scheduled loads and electrical energy price (EEP) versus planning period time.

5.1 Model Equivalence

Objective function differences were used to examine whether the formulations
can be regarded as equivalent or not. In general, the differences due to the effect
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of load temperature variables and the multi-level discrete control formulations
were lower than 0.075 e, relative to objective function values in the range of 4.6–
5.3 e (<1.5%). More importantly, the best bound differences obtained do not
exceed 0.025 e (<0.5%) and the objective function differences reached with the
best solutions do not exceed 0.029 e (<0.7%). In light of the errors observed and
the potential for improvement (via a higher computational budget and a lower
relative MIP gap), the formulations compared can be regarded as equivalent.
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Fig. 2. Absolute value of and relative deterministic computation time variation (posi-
tive for increases) caused by the elimination of load temperature variables, for each set
of equivalent problems. The circles point to the cases of computation time decreases.

5.2 Effect of Eliminating Load Temperature Variables

The comparisons undertaken show that eliminating the continuous load tem-
perature variables led to computation time increases in almost all cases. More
precisely, computation time increases were detected in 321 out of 324 cases (99%)
and by as much as 29,292% (about 294 times higher) and 981% (11 times higher)
on average, as illustrated in Fig. 2. In turn, the computation time decreased by as
much as 32% (and 22% on average) in three cases – highlighted in Fig. 2 – none
of which for the two shortest time intervals. These results show that inessential
continuous variables can reduce the time needed to obtain practical solutions
though a different inquiry is necessary to understand why this happens.
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5.3 Effect of the Multi-level Discrete Control Formulation

The effect of the multi-level discrete control formulations on the computation
time is summarised in Table 1. According to the results, in most cases (63%) the
SPC1 and SPC2-based models required less time to be solved than the STD-
based model. This advantage was also observed when considering each time
interval duration separately, and found to be inversely correlated – to some
extent. On the other hand, the differences between the SPC1- and SPC2-based
models were far less significant, with the former outperforming the latter in 52%
of cases though not for each time interval duration separately. The other factors
(i.e., input data) did not produce recognisable patterns on the results.

Table 1. Number of times a formulation (SPC1, SPC2 or STD) was solved in less
(deterministic computation) time by formulation pair and time interval duration.

Comparison Formulation
Time interval duration

Total
300 600 900 1800

SPC1 vs STD
SPC1 40 (74%) 34 (63%) 29 (54%) 33 (61%) 136 (63%)

STD 14 (26%) 20 (37%) 25 (46%) 21 (39%) 80 (37%)

SPC2 vs STD
SPC2 36 (67%) 33 (61%) 33 (61%) 35 (65%) 137 (63%)

STD 18 (33%) 21 (39%) 21 (39%) 19 (35%) 79 (37%)

SPC1 vs SPC2
SPC1 27 (50%) 31 (57%) 25 (46%) 30 (56%) 113 (52%)

SPC2 27 (50%) 23 (43%) 29 (54%) 24 (44%) 103 (48%)

Magnitude-wise, no formulation appears to have a meaningful or consistent
advantage. On average, the SPC1 and SPC2 formulations were unable to reduce
the computation time by more than half or increase it by more than twice (38–
40% reductions vs 80–97% increases). However, the computation time reductions
afforded by the SPC1 and SPC2 formulations over the STD formulation were,
on average, one order of magnitude higher than the computation time increases.
These results can be partially explained by the correlation between time interval
duration and computation time (i.e., finer time-discretisation contributes to a
more strongly-combinatorial model) and the fact that SPC1- and SPC2-based
models tended to fare better at lower time interval durations – cf. Table 1.

6 Conclusions

The efforts described in this paper concern an investigation into the effect of two
modelling techniques on the computational performance of MILP-formulated
residential DR problems. The techniques concern new multi-level discrete con-
trol formulations and the elimination of continuous load temperature decision
variables. These techniques were compared using a state-of-the-art solver to opti-
mise a set of equivalent single-household DR problems.

This endeavour’s main conclusions can be summarised as follows: (1) the elim-
ination of load temperature variables was found to increase the computation time
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in 99% of cases and by 981% on average; (2) the new multi-level discrete control
formulations required less time to be solved than the standard formulation in most
cases (63%), achieving computation time reductions of 38–40% on average for a
40% reduction in the number of binary variables. These results indicate that addi-
tional continuous decision variables can be desirable to reduce computation times
whereas using less binary variables does not necessarily lower the computation
time. Future work will focus on causality, namely by reproducing more diverse
conditions and examining the formulation strength and size [28].
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25. Gomes, Á., Antunes, C.H., Martinho, J.: A physically-based model for simulating
inverter type air conditioners/heat pumps. Energy 50, 110–119 (2013)

26. Harrington, L., Aye, L., Fuller, B.: Impact of room temperature on energy con-
sumption of household refrigerators: lessons from analysis of field and laboratory
data. Appl. Energy 211, 346–357 (2018)

27. Mutch, J.: Residential water heating: fuel conservation, economics, and public pol-
icy. R-1498-NSF. RAND Corporation (1974)

28. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Rev. 57(1), 3–57 (2015)

https://doi.org/10.1007/978-3-319-31204-0_30

	Comparison of Thermal Load Models for MILP-Based Demand Response Planning
	1 Introduction
	1.1 Context and Motivation
	1.2 Literature Review
	1.3 Objectives and Approach

	2 Problem Description
	3 Mathematical Model
	3.1 Objective Function
	3.2 Power Balances
	3.3 Demand Rate
	3.4 Time-shiftable Loads
	3.5 Thermal Loads

	4 Case Studies
	4.1 Problem Data
	4.2 Computational Resources and Solver Settings
	4.3 Methodology

	5 Results and Analysis
	5.1 Model Equivalence
	5.2 Effect of Eliminating Load Temperature Variables
	5.3 Effect of the Multi-level Discrete Control Formulation

	6 Conclusions
	References




