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Abstract. The rise in the accessibility of photovoltaic (PV) generators to con-
sumers increases the possibility of reverse power flow (RPF) in the electric distri-
bution system. RPF occurs when power flows to the design of the system. Over-
voltage, power losses and protection system coordination are among the problems
that could occur due to the presence of RPF. This paper describes an algorithm
to detect the presence of RPF using optimally-placed micro-phasor measurement
units (μPMUs) in the IEEE 34-Bus System with 5 PV generators. A machine
learning algorithm based on a feedforward artificial neural network (ANN) was
developed. The algorithmwas able to detect the presence of RPF using (1) voltage
and current and (2) polar- and (3) rectangular-impedancemethods for training. The
algorithm was also able to detect RPF under scenarios that were not used during
the training process. Sensitivity analyses were performed for cases such as PV
outage, PV relocation, PV addition, PV expansion and load increase. The suscep-
tibility of the algorithm to true value errors (TVEs) was tested by adding error
vectors on the μPMUmeasurements for both the training and testing populations.

Keywords: Reverse power flow (RPF) · μPMU · Machine learning

1 Introduction

Photovoltaic (PV) generators have been a great addition to the electric power system
(EPS) in terms of its supply of sustainable energy. The sun is a renewable energy source
that can be placed anywhere in the power system. As a solar farm, it can deliver bulk
amounts of power to the grid. As an additional source of power for commercial and
residential units, it can lower monthly electricity bills and export power to the network
when it produces excess energy.

But with PV generators installed more and more in distribution systems as price
drops, reverse power flow (RPF) becomes a problem. RPF occurs when power flows
opposite where the system designed for it to flow which could be a huge risk for the
distribution network as most of these systems are only designed to absorb power and
not deliver power. Problems associated with RPF include, overvoltage, distribution pro-
tection coordination and power quality. [1] has claimed that RPF is the major cause of
overvoltage in the distribution system. [2] has suggested that DGs could change short
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circuit levels in the systemcompromising the coordination of protection devices.Accord-
ing to [3], DGs may increase the power loss of the system depending on its network
configuration.

2 Related Works

2.1 Micro-Phasor Measurement Unit (µPMU)

Growth in DGs in distribution network presents variability and uncertainty. As such, a
more fast and precise measurement device needs to be developed to accurately assess
the state of the system. The researchers in [4] addressed the issues faced by traditional
supervisory control anddata acquisitionmonitoring systemsbydeveloping a phasormea-
surement unit (PMU) that provides real-time and synchronizedmeasurements. PMUs are
more commonly used in transmission systems. In [5], the researchers further improved
PMUs into micro-synchrophasors which can be used even in distribution systems. A
micro-phasor measurement unit (μPMU) is a high-precision measurement unit that uses
synchrophasor technology to observe the state of electric power systems. It can estimate
the magnitude and phase angle of voltages and currents in the distribution system.

Optimal µPMU Placement (OPP) Problem. Installing μPMU in each node of the
system would be ideal but not economical. But with the assumption that line data are
available an optimal number ofμPMU can be used to observe the systemwhile reducing
the cost. The fitness function that represents the OPP problem for an n-bus system is: [6]

∑n

i
wi xi (1)

where wi is the cost and xi is the binary decision variable of installing a PMU at bus i. A
significant number of studies [6–9] have solved the OPP problem in various bus systems
using different optimization algorithms.

2.2 Reverse Power Flow Detection

Directional relays have been in used to detect RPF in synchronous generators [10]. In
[11] a directional power relay was employed to protect a distribution system from RPF
caused by DG. The directional relays, however, are generally used to automate trippings
due to faults.

[12] used an electronics-based transformer called a smart transformer to control the
reverse power flows in the system.While this is a novel solution, the production of power
can be more economical when the energy source is generous thus limiting its production
is not the best option. With a proper analysis tool using the reverse power flow to the
advantage of the system could be better by diverting where power is needed. But in order
for such a tool to be used, an analysis to determine whether RPF is present in the system
or not is needed.
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Voltage Angle Difference Method. Consider two adjacent buses bus j and k. It can be
seen in Eq. 2 that the sign of Pk and therefore its direction is related by the value of the
angle inside the sine function. When θj is greater than θk the quantity inside the sine
function is negative making the value of Pk negative since sine is an odd function. For
the Reactive power on the other hand the direction of power of Qk is dictated by Vk and
Vj. When Vj is greater than Vk, the reactive power is negative.

Pk = |Vk |
∣∣Vj

∣∣
X

sin
(
θk − θ j

)
(2)

Qk = |Vk |
X

[|Vk | − ∣∣Vj
∣∣ cos

(
θk − θ j

)]
(3)

Pk: real power injection through bus k
Qk: reactive power injection through bus k
Vk: voltage magnitude at bus k
Vj: voltage magnitude at bus j
θk: voltage angle at bus k
θj: voltage angle at bus j
X: line impedance from bus k to j

In this paper, only the fundamental frequency was considered due to the high
sampling rate of μPMUs.

Impedance Method. A relationship between power and impedance can also be drawn,
[1] uses this method to determine at what impedance level the reverse power flow occurs
from PV injections. Impedance as seen by bus k can be expressed as:

Zk = Vk
Ik

(4)

Zk = Vk(
Pk+Qk
Vk

)∗ (5)

Zk =
(
Pk + j Qk

P2
k + Q2

k

)
|Vk |2 (6)

Ik: current going through bus k to bus j

Equation 6 can be further decomposed to its resistance (Rk) and reactance (Xk)
components.

Rk =
(

Pk
P2
k + Q2

k

)
|Vk |2 (7)
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Xk =
(

Qk

P2
k + Q2

k

)
|Vk |2 (8)

As Pk flows to the opposite direction, the value of Rk and Xk will be negative.

2.3 Classification Algorithms in Machine Learning

There are several techniques in tackling classification problems such as support vector
machines (SVM), random tree and neural networks among others. For the purposes of
this study, the proponents will be focusing on neural networks.

Neural Networks. Neural Network or also known as artificial neural networks (ANN)
is a problem-solving technique developed to tackle non-linear and complex problems
[13]. For [14], ANN is one of the best techniques for data classification.

Primarily, the ANN is composed of two major components, the neurons and con-
nections [15]. To put it simply, neurons are the data processing units of the algorithm.
It analyzes inputs and its relation to the output in order to create a relationship between
the two. Connections, on the other hand, are the one that delivers this data from neuron
to neuron. It is the carrier of information.

While there are a number of topologies in the ANN architecture, the most popular is
the feedforward network [15] shown in Fig. 1. This topology consists of three or more
layers. The first layer is called the input layer, the next layers are called the hidden layer,
while the last layer is called the output layer. In this setup, data travels from one layer
to another without reversing. The bulk of the processing happens in the hidden layer.

Fig. 1. Feedforward topology

3 Methodology

3.1 Testbed Creation

To develop an algorithm that can detect the presence of RPF, a testbed is needed in order
to train and test it. This testbed was created using OpenDSS.
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Bus System Modelling. The proponents adapted the bus network used in [10] as shown
in the Fig. 2 while modifying the placement of μPMU in node 836 to node 860. μPMU
will be placed on primary lines just before buses 814, 852 and 860 to measure voltages
and currents of the lines and not the buses itself. A μPMU is also placed just after
reference bus 800. The system will have 5 3-phase PVs attached to buses, 808, 824, 830,
844 and 860. Capacities of these PVs can be seen in Table 1.

Fig. 2. Modified IEEE-34 bus network with optimally placed μPMUs

Table 1. 3-phase PV locations and capacities

PV location PV capacity per phase (kW)

Bus 808 180

Bus 824 100

Bus 830 200

Bus 860 100

Bus 844 140

Bus System Modeling. There were 3 different types of samples that were generated:
(1) average loading, (2) variable loading and (3) PV outage with variable loading.

For the first type of samples shown in Fig. 3, the percent loading of each bus will be
varied from each other while maintaining a mean percent loading for the whole system.
The mean percent loading will be swept from 20% to 100% with a 2% increment. With
this, percent loading for each bus will deviate by around 5% from the suggested mean
percent loading across the system. For each increment of the mean percent loading, the
5 PVs will be injecting real power to the system from 0% capacity to 100% capacity
incremented uniformly by 1%. 4100 samples will be generated from this method.
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Fig. 3. Process of generating the samples with average loading

Fig. 4. Process of generating the sample with variable loading

Fig. 5. Process of generating the samples for PV outage with variable loading

For the second type of samples, as shown in Fig. 4, percent loading for each bus in the
system will be varied from each other. This method will ensure that as the 5 PVs injects
power from 0% to 100%, each 1% increment of power injection will have a different
set of percent loading for each bus that will be varied from 20% to 100%. This method
will generate a batch of samples that will be as varied from each other as possible. 6000
samples will be generated from this method.

For the third type of samples shown in Fig. 5, PV Outage will be simulated. Percent
loading of each bus will be acquired using the method for acquiring percent loading in
the second type of samples. PVs in operation will be decreased from 5 PVs up to 1 PV
while considering all 30 possible combinations for PV operation. For each combination
200 samples were generated which amounted to 6000 samples.

Each sample generated have a tag of 0 if RPF is not present in the system and 1 if
RPF is present. Impedance method was used to tag each sample. Since RPF will first
occur on buses where generators are present, impedances as seen on the buses where
PVs are placed were computed. Where resistance was seen as negative in a bus, there is
RPF in the system.
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Introduction of TVEs in the Training Population. Data from μPMU will deviate
from the true values of currents and voltages in the system by 0.1%. The proponents
added True Value Errors (TVEs) to the previously generated samples to make another set
of training population. Equation 9 shows how the errors were introduced to the original
voltage and current measurements gathered from the 4 μPMUs.

A∗ = A + [
e(|A|� δ)

]
(9)

Where,

A: phasor measurement
A*: phasor measurement with TVE
E: random value from −0.001 to 0.001
�: random angle value from 0o to 360o

3.2 Machine Learning Implementation

Algorithm Training and Testing. Three models for the RPF detection were used. One
model had 48 inputs which consists of 12 voltage magnitudes, 12 current magnitude and
18 phasor angles. The secondmodel used the impedances calculated, in polar form, from
μPMU measurements of which there will be 24 inputs - 12 magnitude measurements
and 12 angles measurements. The third model was derived from the polar form of the
impedance by converting it to its rectangular form. There will be 24 inputs from this
methodwith 12 resistance and 12 reactance. For all model there will only be two outputs,
1 which denotes the presence of RPF within the system and 0 which denotes otherwise.
The MATLAB’s Deep Learning Toolbox was used in training the algorithm with a
feedforward topology and 10 hidden nodes in the ANN architecture. 80% of the 16,100
samples were used for the training of the algorithm while the remaining 20% were used
for testing.

Performance Evaluation. The algorithms developed were subjected to another round
of testing using 1000 samples that were generated outside of the 16100 samples of the
training population. The results of the testing using these samples will serve as the base
case.

Sensitivity Analysis. The trained algorithms were tested using test samples that were
not included in the training population. Five scenarios were established to test the
robustness of the algorithm. For each case 1000 test samples were generated.

PV Outage. The system simulated eventswherein 1 ormore PVs are offline. The number
of functioning PVs was reduced decrementally from 5 to 1. PVs were relocated to the
adjacent 3-phase bus one at a time. Each of the 5 PVs, while retaining their capacity
output, were relocated twice, as there were two adjacent buses for each of the PVs.

PV Relocation. The PVs were relocated to their adjacent 3-phase bus one at a time.
Each of the 5 PVs were relocated twice, as there were two adjacent buses for each of
the PVs. The capacities of the PVS were retained.
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PV Addition. Another 3-phase PVGenerator was added to a random bus in the IEEE-34
bus system, making the total number of PVs to 6. The addition of 3-phase PV to the
system will be repeated 10 times amounting to 1000 test samples (Table 2).

Table 2. Sizing and placement of additional PV

Bus Capacity per phase (kW) Voltage (kV)

840 10 14.376

890 70 2.401

848 20 14.376

858 80 14.376

816 50 14.376

802 100 14.376

854 50 14.376

850 75 14.376

832 80 14.376

828 75 14.376

PV Expansion. The capacities of the 5 existing 3-phase PVs were increased while main-
taining the per-unit voltage of the system to 1.1 p.u. A total of 100 kW was added to the
total PV power output (Table 3).

Table 3. New PV capacity after expansion

PV location New PV capacity per phase (kW)

Bus 808 180

Bus 824 100

Bus 830 200

Bus 860 100

Bus 844 140

Load Increase. An increase in power consumption was simulated for this test case. The
base loads of each buswere increased to up to 150%while still retaining the old capacities
of the 5 PVs.

Introduction of TVEs in the Testing Population. TVEs were also introduced to the
5000 test samples generated for the sensitivity analysis. This will test the susceptibility
of the algorithms trained to errors in the measurements. All of the testing mentioned
above were repeated after adding TVEs.
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4 Results and Analysis

Algorithms developed have significantly high accuracies and are close to each other
whether trained using the standard training population set or the modified training popu-
lation with accuracies up to 99.7%. Upon evaluating the performance of the algorithms,
the accuracies scored near the 99% mark (Tables 4 and 5).

Table 4. Accuracy results of the algorithm training and testing

Algorithm method Algorithm accuracy with
standard training population

Algorithm accuracy with
modified training population

Voltage and current 99.7 99.7

Polar impedance 98.7 98.9

Rectangular impedance 98.5 98.6

Table 5. Accuracy results of the algorithm performance evaluation

Algorithm method Algorithm accuracy with
standard training population

Algorithm accuracy with
modified training population

Voltage and current 98.7 98.8

Polar impedance 99.2 98.9

Rectangular impedance 98.2 98.3

For the sensitivity analysis of the algorithms developed using the standard training
population using test samples with no TVE, accuracies are above 90%. PV outage,
PV relocation and PV expansion are the only scenarios where the algorithm only got
almost 93% as the rest scored above 95%. Upon the introduction of TVE in test samples
however, for the voltage and current method, accuracies are down to almost 50%. Both
the algorithms using impedance method scored the same accuracies as their counterpart
algorithm (Tables 6 and 7).

Table 6. Accuracy results for the sensitivity analysis of algorithms for standard training
population without TVE

Test case Voltage and current
method

Polar impedance method Rectangular impedance
method

Base case 98.7 99.2 98.2

PV outage 93.9 93.6 93.3

PV relocation 93.6 93.1 92.4

PV addition 98.5 98.8 98

PV expansion 98.6 99.1 98.5

Load increase 92.8 95.4 92.5
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Table 7. Accuracy results for the sensitivity analysis of algorithms for standard training
population with TVE

Test case Voltage and current
method

Polar impedance method Rectangular impedance
method

Base case 53.4 99.2 98.2

PV outage 52.3 93.6 93.3

PV relocation 52.6 93.1 92.4

PV addition 53.6 98.9 98

PV expansion 53.7 99.1 98.5

Load increase 54 95.4 92.5

The algorithms with a modified training population on the other hand had high accu-
racy results for the sensitivity analysis. The voltage and current method had also signif-
icantly improved accuracies for all test cases where test samples have been introduced
with TVE (Tables 8 and 9).

Table 8. Accuracy results for the sensitivity analysis of algorithms for modified training
population without TVE

Test case Voltage and current
method

Polar impedance method Rectangular impedance
method

Base case 98.8 98.9 98.3

PV outage 93.8 93.8 94.4

PV relocation 93.1 93.5 92.4

PV addition 98.7 98.7 97.6

PV expansion 98.7 98.7 98.8

Load increase 96.8 93.4 97.8

Table 9. Accuracy results for the sensitivity analysis of algorithms for modified training
population with TVE

Test case Voltage and current
method

Polar impedance method Rectangular impedance
method

Base case 98.6 98.9 98.4

PV outage 94.1 93.8 94.3

PV relocation 93 93.6 92.4

PV addition 98.8 98.7 97.6

PV expansion 98.7 98.7 98.8

Load increase 97.4 93.4 97.8
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5 Conclusion

This paper describes machine learning algorithms based on ANN that can detect reverse
power flow in distribution networks with PV generators. The algorithm uses measure-
ments gathered by optimally placed μPMU along the network and another μPMU in
the substation bus. Several algorithms were developed: one using the raw phasor voltage
and current measurements as inputs and two using the apparent downstream impedance
as inputs (first has the impedance in rectangular form, and other in polar form).

The IEEE 34-bus system with 5 PV generators and 3 optimally placed μPMUs was
used to demonstrate the performance of the system. The robustness of the algorithm was
also investigated by adding noise to the measurements and using the algorithm to detect
RPF on a network that is slightly different from the network where training data was
gathered. The algorithms were able to detect RPF with high accuracy except on cases
where the testing data contained measurement errors while the training population did
not. The performance improved when the algorithm was trained using measurements
that contained noise.
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