
Development of an Internet of Things System
for Smart Home HVAC Monitoring and Control

Aníbal A. Alves1, Vitor Monteiro2, J. G. Pinto2, Joao L. Afonso2,
and Jose A. Afonso1(B)

1 CMEMS-UMinho Center, University of Minho, Guimarães, Portugal
jose.afonso@dei.uminho.pt

2 ALGORITMI Research Centre, University of Minho, Guimarães, Portugal

Abstract. This paper presents the development and test of an Internet of Things
(IoT) system applied to the monitoring and control of an HVAC (Heating, Ventila-
tion and Air Conditioning) system that includes parameters such as temperature,
humidity, air quality, human presence and smoke detection. For this purpose,
a hybrid wireless network combining Bluetooth Low Energy (BLE) and IEEE
802.11/Wi-Fi was implemented inside a house. An online database for the syn-
chronization of the HVAC data, which was developed using the Amazon Web
Services (AWS) cloud platform, allows the user to access the data and control the
system parameters through the Internet using an Android mobile app. A smart
temperature control system was also developed in the BLE/Wi-Fi gateway to
keep the room temperature inside a user-defined range. The functionalities and
performance of the proposed system were both validated through experimental
tests.

Keywords: Internet of Things · Smart home · Bluetooth Low Energy ·Wireless
sensor networks

1 Introduction

Over the last fewdecades, technological advances have enabled a large part of theworld’s
population to have access to the Internet, and this access is increasingly being done
through mobile devices, using either cellular data networks or Wi-Fi. This trend, cou-
pled with the increasing incorporation of sensor devices in a variety of equipment, opens
a wide range of opportunities for the growing market of Internet of Things (IoT) appli-
cations, in areas such as transportation, healthcare, agriculture, industrial automation,
smart home, among others.

The IoT enables physical objects to interact with the surround environment without
requiring human intervention, and to communicate with each other to share information
and to coordinate decisions. The IoT allows connecting billions of objects through the
Internet, so there is the need to define a layered architecture to handle the complexity
associated to the different required tasks. In this sense, there has been an increasing
number of proposed architectures, but there is not a consensual reference model yet. In

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

J. L. Afonso et al. (Eds.): SESC 2019, LNICST 315, pp. 197–208, 2020.

https://doi.org/10.1007/978-3-030-45694-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45694-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-45694-8_15


198 A. A. Alves et al.

[1], the authors present a five-layer model, where the first one, Object’s layer, represents
the physical sensors and actuators of the IoT that aim to collect and process information.
The second layer, Object Abstraction, represents how the data is transferred from the
physical objects. The third layer, Service Management, pairs a service with its requester,
based on addresses and names. The fourth layer, Application, is responsible for providing
high-quality smart services to meet customer’s needs. Finally, the fifth layer, Business,
defines the steps to build a business model based on the developed IoT system.

In order to maximize the lifetime of battery-operated sensor devices, it is desirable
the use of low-power wireless sensor networks (WSN) technologies, such as Bluetooth
Low Energy (BLE) [2] or IEEE 802.15.4/ZigBee [3].WSNs enable new applications but
require non-conventional paradigms for protocol design [4].With characteristics such as
low cost, low energy consumption [5], low latency and high reliability, as well a native
hardware and software support provided by most current mobile devices, BLE takes a
leading position for the implementation of IoT sensor devices over ZigBee inmany areas
of application [6]. However, since both BLE and ZigBee devices do not implement the
TCP/IP (Transmission Control Protocol/Internet Protocol) protocol stack, they require
the introduction of a gateway device into the system to allow communication with other
IoT devices, such as an IoT server or a mobile client [7].

In order to store the data collected by the sensor devices, a database is required. The
successful implementation of an IoT system requires service provision with ubiquity,
reliability, high-performance, efficiency and scalability. A way to achieve all of these
goals is merging the IoT and the cloud computing concepts, as suggested in [8].

Concerning related work, in [9], the authors presented a networking solution for
connecting BLE devices with the IoT, enabling end-to-end IP connectivity to the BLE
devices in an efficient manner, especially in the aspect that are most critical for IoT
devices: energy consumption and memory footprint of the implementation. In [7], the
authors proposed a smartphone-based IoT gateway implemented as a software service
that provides universal and ubiquitous Internet access to BLE connected IoT devices
This approach uses the smartphone both as an IPv6 router for less resource-constrained
endpoints and as a BLE proxy, relaying profile data from the sensor device to the cloud.

The smart home IoT system presented in this paper uses BLE to collect heating,
ventilation and air conditioning (HVAC) data from sensor devices and send the informa-
tion to an implemented BLE/Wi-Fi gateway, which also communicates with other local
devices, such as actuators. Regarding data storage, the developed system provides com-
municationwith a remote IoT server, in a cloud-based architecture, allowing the collected
data to be accessible through the Internet. A mobile app (client) was also developed in
order to allow access to the data for the user. The developed system is capable of a smart
temperature control on a desired room inside a configurable temperature range.

The rest of this paper is organized as follows. Section 2 presents an overview of the
developed system architecture and components. Section 3 describes the development of
the home network components, namely the BLE nodes and the gateway. Sections 4 and
5 describe the development of the IoT cloud services and the IoT client (mobile app),
respectively. Section 6 presents experimental results concerning functional and non-
functional aspects of the developed IoT system. Finally, Sect. 7 presents the conclusions.



Development of an Internet of Things System 199

2 System Overview

The developed IoT system is constituted by several components that exchange data with
each other, as shown in Fig. 1. Inside the smart home, the IoT devices communicate
using a local hybridBLE/Wi-Fiwireless network infrastructure,whosemain components
are the BLE sensor nodes, the BLE/Wi-Fi gateway, a wireless router (which provides
connection to the Internet and acts as the local Wi-Fi access point) and actuator nodes.
Besides the local components, the developed IoT systemalso includes anAndroidmobile
app (client) and an AWS (Amazon Web Service) cloud server.

Fig. 1. Architecture of the developed IoT system.

The proposed architecture supports several sensor nodes and actuator nodes. Each
BLE sensor node comprises two main components: a BLE device and a sensor, which
may send data to the BLE device using an analog-to-digital converter (ADC) or a digital
interface, such as UART (Universal Asynchronous Receiver-Transmitter), SPI (Serial
Peripheral Interface) or I2C (Inter-Integrated Circuit). Likewise, each actuator node is
composed by a wireless device (either Wi-Fi or BLE) attached to an actuator.

The HVAC system works under the control of the local gateway even in case of
failure of the Internet connection. When the Internet connection is available, the HVAC
data collected by the BLE devices (sensor nodes) is also forwarded through the gateway,
theWi-Fi wireless router and the Internet infrastructure, until it reaches the cloud server,
for storage. The Android client allows the user to access the data stored in the cloud



200 A. A. Alves et al.

server and send commands to configure and control the smart home devices (e.g., to
define the minimum and maximum temperature for a room).

The BLE devices used in the development and test of the system prototype were
PSoC 4 BLE modules [10], from Cypress Semiconductor. Each BLE module was
attached to a development board provided by the CY8CKIT-042-BLE-A kit, as shown
in Fig. 2. The BLE/Wi-Fi gateway was implemented using a Raspberry Pi 3 Model B
[11], whereas the HVAC sensors and actuators were emulated using personal computers
(PCs), which also acted as the actuator nodes’ Wi-Fi devices. The development of each
component of the IoT system is described in the next sections.

Fig. 2. Main hardware components used in the development of the IoT system.

3 BLE Network Development

This section describes the development of the firmware of the BLE sensor nodes. The
BLE network is mainly responsible for collecting data, which in the context of the
proposed application corresponds to HVAC parameters. In this sense, five representative
sensors were considered: smoke detection, temperature, humidity, air quality, and human
presence detection. The data generated by these sensors was emulated using a PC-based
Java application, which was developed using the IntelliJ IDEA IDE. The sensor data
was transferred to the BLE modules using a serial data interface.

BLE devices have different roles at different layers of the Bluetooth protocol stack
[12]. In this sense, the BLEmodules were configured as slaves at the link layer, peripher-
als devices at the GAP (Generic Access Profile) layer and servers at the GATT (Generic
Attribute Profile) layer, whereas the BLE/Wi-Fi gateway (Raspberry Pi) was configured
as master, central device and client, respectively.

3.1 BLE Nodes Design

As referred before, the CY8CKIT-042-BLE-A development kit [10] was used for the
implementation of the BLE slave/peripheral devices. Besides the PSoC 4 BLE module,



Development of an Internet of Things System 201

this kit includes a development board (BLE pioneer), which allows programming and
debugging the BLE module firmware through a PC. The C code for the BLE module
microcontroller was developed using PSoC Creator 4.2 Integrated Development Envi-
ronment (IDE). As referred before, all BLEmodules act as peripheral devices, therefore,
all of them include the same basic PSoC components.

In the PSoCCreator project environment, themain component included in the design
diagram of the sensor nodes is called BLE. This component is used to configure the
BLE protocol parameters, such as advertising packets, connection interval, and the BLE
notifications. It was necessary to create a GATT service and its characteristics. This
component allows the use of predefined services, for example, a heart rate monitor or a
proximity sensor, with its own characteristics; however, for this system, it was necessary
to create new characteristics for each sensor value to be sent over BLE. Each sensor is
connected to its respective BLE sensor node and has its own service. Of the five HVAC
sensor values, one (smoke detection) is sent to the central device usingBLE notifications,
while the other four (temperature, humidity, air quality, and presence detection) are read
by the central device (gateway) each 20 s (configurable). In order to allow the connection
between the peripheral and central devices to be made automatically, it was necessary
to include the Universally Unique Identifier (UUID) of the service in the advertisement
packet, which was achieved in the “GAP Settings” tab of the BLE component. Two
characteristics were created on the BLE component of each of the five sensor nodes:
one characteristic represents the corresponding HVAC sensor value, whereas the other
characteristic stores the ID (identifier) of the room where the sensor node was placed.

The second main component included in the design was a serial data interface, to
collect the data from the sensors. In this prototype, we used the UART component
provided by the PSoC Creator. For this component, it was only necessary to configure
the same UART parameters as the Java application that was used to generate the HVAC
data, such as the baud rate, which was set to 9600 bps.

A function called CustomEventHandler was used to detect and handle all events
associated with the BLE stack. These events can be triggered by the central device
when it connects or disconnects to the peripheral device or when the peripheral device
announces its presence to the central device. It is also responsible for managing writing
requests, made by the central device, to characteristics that have writing permission. On
the developed system, the only characteristic with write permission was the room ID,
which is configurable from the mobile app.

3.2 Gateway Development

A Raspberry Pi 3 Model B was used to implement the BLE/Wi-Fi gateway and act
as the central device for the BLE network. The development was made in Python and
using the Raspbian operating system. An external library called Pexpect was installed
to allow the BLE communication with the peripheral devices. This library can generate
processes related to certain applications, controlling them and handle the response based
on provided response patterns. On the developed gateway application software, it was
used to automate the command “hcitool lescan” for monitoring BLE devices that are in
an advertising state to central devices. JSON (JavaScript Object Notation) and Urllib2
libraries were also used, the former for converting data to JSON format and the latter



202 A. A. Alves et al.

for sending HTTP (HyperText Transfer Protocol) requests to store the collected data in
the cloud. It was also necessary the installation of BlueZ, an official Linux Bluetooth
protocol stack, to handle the communication with BLE devices.

The developed BLE/Wi-Fi gateway provides bidirectional communication between
the sensor nodes, the cloud server database and the actuator nodes (which were imple-
mented as mains powered Wi-Fi devices). For this purpose, the first task is to search and
connect to the desired BLE sensor nodes. Then, the central device needs to subscribe to
notifications from the smoke detector. After that, the central device application starts to
read the sensor values from the peripheral devices periodically and send the data to the
cloud database. Figure 3 shows a flowchart representing these tasks of the Raspberry Pi
gateway application.

Fig. 3. Flowchart for the data collection and storage tasks of the Raspberry Pi application.

The Raspberry Pi application is also responsible for the smart control of the temper-
ature, sending commands to turn on/off the actuator. Each time this application reads
a temperature value and room ID from a BLE peripheral device, it checks if the tem-
perature is inside the defined range for that room (stored in the gateway). If not, the
application sends a command via Wi-Fi socket to the corresponding actuator, changing
its state accordingly. This is possible because the gateway stores the IP addresses of the
actuators.

4 Cloud Services Development

This section describes the IoT services developed for the proposed systemusing theAWS
cloud services platform, namely the database structure defined and the implemented
functions. Instead of the traditional server-based approach where the developer needs
to handle the infrastructure management tasks, such as cluster provisioning, patching,
operating system maintenance and capacity provisioning, a serverless solution, which
shifts these operational responsibilities to the AWS, was used. This solution is based
on three individual services provided by the AWS: The Amazon Relational Database



Development of an Internet of Things System 203

Service (RDS), the AWS Lambda, and the AWS API Gateway service. The choice
of AWS over other cloud services providers was made based on an analysis of cost,
performance and security [13].

4.1 RDS Database

RDS is a free relational database service for new accounts during the first year, offering
750 h per month. An alternative to this service is the Dynamo DB service, which similar
to RDS, but implements non-relational databases. The first step in the development of
the database structure was to identify the data to be collected and to be shown to the
user, which includes: (i) User data, representing the information provided when the user
registers on the mobile app; (ii) Building data, containing the building address, name
and ID; (iii) HVAC data, containing temperature, humidity, air quality and presence
detection data, a timestamp and the room ID; (iv) Smoke detection data, containing the
room ID and a timestamp; (v) Configuration data, including themaximum andminimum
temperature values for the smart temperature control and other parameters.

For the implementation of the database on theAWSconsole, itwas necessary to create
an RDS instance, as well as making other configurations [14]. After that, the MySQL
Workbench software [15] was used to develop all the tables and fields necessary to store
the data. Even though smoke detection belongs to the HVAC parameters data, a separate
MySQL table was created because this data was sent using BLE notifications, so it
might have a different timestamp from the remaining parameters. It was also necessary
to create inbound and outbound rules and apply them to the created instance in order to
ensure access control to the data by other applications.

4.2 AWS Lambda

TheAWSLambda is a service that allows running codewithout provisioningormanaging
servers. This service executes the code when needed and scales automatically from a few
requests per day to thousands per second. The free year offers 1 million requests to the
created functions per month. The code can be run for any type of application or backend
service with zero administration. AWS Lambda can be used in response to events, such
as changes to data in the Amazon Dynamo DB or RDS tables, to run code in response
to HTTP requests using the Amazon API Gateway or simply to invoke code using API
calls made using AWS SDKs (Software Development Kit).

For the proposed system, various functions were developed in NodeJS language.
Each function is responsible for a functionality, as for example, getting the last HVAC
parameters values from its correspondent table from theRDSdatabase. TheAWSconsole
allows the development of the functions in two different ways: editing the code online
or uploading zip files with the code and necessary packages inside. In this work, the
second way was chosen. The AWS Lambda also allows testing the developed functions
by providing a test event with a JSON body. All the data sent to and received from
the AWS Lambda is in JSON format. Further configurations were necessary to give
permissions to the functions created to access to the RDS database.



204 A. A. Alves et al.

4.3 Amazon API Gateway

The Amazon API Gateway is a service that makes easy to create, publish, maintain,
monitor and secure APIs at any scale. It can create REST (Representational State Trans-
fer) and WebSocket APIs that allow applications to access data from backend services,
such as AWSLambda. In the proposed system, the API Gateway was used to connect the
functions developed in the AWS Lambda to a REST API. When creating the REST API
in the AWS console, it was necessary to create resources. In this system, a resource can
represent the HVAC data or the buildings and is used to build the path used on the HTTP
requests methods. Each resource has been assigned to all the necessary methods, accord-
ing to the needs by the different applications, such as GET, POST, DELETE or PUT.
For the type of data to be received, JSON, it was necessary to configure each method
and defining a body template for the GET methods in order to identify the parameters
received by the HTTP requests. After the creation of the API, it was necessary to make
it publicly accessible by creating a test stage. The Postman [16] software was used to
test the created API.

5 Mobile App Development

This section describes the implementation of the mobile app (IoT client). It was devel-
oped using the Android Studio IDE. This application communicates with the AWS
database using the API Gateway service.

The Android app requires permissions to use the Internet. In order to accomplish
that, it is necessary to add dependencies to the AndroidManifest.xml file generated by the
IDE when the application is created. The build.gradle file was also modified to allow the
use of some required classes and layouts. Every layout implemented follows the Android
guidelines by using the ConstraintLayout, which allows the application to run on any
device, regardless its size. One of the most important classes used was the AsyncTask.
This class allows that short asynchronous operations to run in the background, and it is
usually used to perform network operations that do not require the download of much
data. In the proposed system, it is used to do HTTP requests to the REST API.

The application allows the users to register or login using the classic email password
combination. For registration, the user only needs his email, name and password. After
the login, the user is presented with a list of buildings that he/she has access and can
eliminate or add new ones. A long click on a building allows the user to go to the
building rooms and a list of rooms is presented to the user. The user can add new rooms
by simply introducing the room name or delete those already created. When the user
adds a new room, a table is automatically created that contains a default maximum and
minimum temperature values for that room. Clicking on a room opens the information
panel related to its HVAC parameter values. The user can see the most recent values
collected or change the temperature interval and room ID.

6 Experimental Results

This section presents results based on experimental tests performed for the overall
system, and involves the evaluation of both functional features (data collection and
presentation) and non-functional features (communication delay and reliability).



Development of an Internet of Things System 205

6.1 Data Collection and Presentation

The gateway is responsible for receiving the HVAC data from the BLE sensor nodes,
process and send it to the AWS database and/or the actuators and handle the smart tem-
perature control process. Themobile app, on the other hand, is responsible for presenting
the collected data to the user and allowing manual control of the system.

The application has a bottom navigation menu that makes easy to change between
functionalities. The default choice of the bottom navigation menu is the HVAC screen
(Fig. 4), which shows the timestamp of the collected data, the temperature, humidity
and air quality reading, as well as the state of the heating (on or off). The second
option (Detectors) shows the data regarding the smoke and presence detectors and their
corresponding timestamps. The last option (Configurations) allows the user to check and
change the desired maximum and minimum temperature values and change the ID of
the room where a sensor is located.

Fig. 4. Example of values presented on the HVAC screen of the developed mobile app.



206 A. A. Alves et al.

6.2 Communication Delay and Reliability

The communication delay, from the moment that the sensor data is generated until the
control information is delivered to the respective actuator, is an important parameter,
since it affects the performance of the system, namely the response time of the smart
temperature control system. Therefore, a test setup was conceived and implemented in
order to evaluate the performance associated to the temperature data sensing/actuation
process, as shown in Fig. 5. The total delay is the sum of several partial delays in the path
through different devices from the source to the destination, including data transmission
times in the different data interfaces (UART, BLE andWi-Fi), as well as medium access
delays and processing delays. The measured total delay corresponds to the time elapsed
since the data is sent by the source (start time) until it is received in the destination
(end time). The same device (a PC running a Java application) was used as source and
destination in order to provide a common clock, which is necessary for the calculation
of the delay.

Fig. 5. Test structure for measuring the communication delay.

During the test, 1000 data packets were generated at the source and the same amount
was received at the destination; therefore, the communication reliability was 100%. The
test was replicated a second time, with similar results. Table 1 shows the main represen-
tative measures for the delay obtained in the two performed tests, minimum, maximum,
mean and standard deviation (SD), where the maximum values are well below the typi-
cal HVAC deadline requirements. Figure 6 shows the distribution of the communication
delay for the samples obtained during test 1, where it can be seen that 97% of the delay
samples are in the range from 100 to 300 ms. These results are satisfactory, given the
slow evolution of the HVAC parameters along the time.



Development of an Internet of Things System 207

Table 1. Main statistics concerning the measured communication delay.

Tests Min. (ms) Max. (ms) Mean (ms) SD (ms)

Test 1 110 563 194 57.6

Test 2 109 320 186 43.6

Fig. 6. Distribution of the communication delay for test 1.

7 Conclusions

This paper described the development of a smart IoT system that allows the user to
monitor and controlHVACparameters in a smart home using amobile app. The proposed
system is composed by multiple data processing and communication components that
work together to perform the desired functions. The BLE/Wi-Fi gateway plays a central
role in this system, with relevance to both the data communication and the processing
algorithms of the HVAC application, such as the smart temperature control algorithm.
An online database was also developed using the AWS cloud platform, in a serverless
approach, and a mobile app (IoT client) was developed for the Android mobile operating
system.

The developed systemwas validated through experimental tests comprising the eval-
uation of its main functionalities, ranging from data collection at the BLE sensor nodes
to the presentation at the mobile app, as well as the evaluation of its performance in
the path between the sensors and actuators. The communication reliability was 100%
and the obtained delay results are adequate, since the variation of the HVAC parameters
along the time occurs in a much slower way.



208 A. A. Alves et al.

Acknowledgments. This work is supported by FCT with the reference project
UID/EEA/04436/2019.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things:
a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor.
17(4), 2347–2376 (2015)

2. Afonso, J.A., Maio, A.J.F., Simoes, R.: Performance evaluation of Bluetooth Low Energy for
high data rate body area networks. Wirel. Pers. Commun. 90(1), 121–141 (2016). https://doi.
org/10.1007/s11277-016-3335-4

3. Castro, P., Afonso, João L., Afonso, José A.: A low-cost ZigBee-based wireless industrial
automation system. In: Garrido, P., Soares, F.,Moreira, A.P. (eds.) CONTROLO2016. LNEE,
vol. 402, pp. 739–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43671-
5_62

4. Buratti, C., Conti, A., Dardari, D., Verdone, R.: An overview on wireless sensor networks
technology and evolution. Sensors 9(9), 6869–6896 (2009)

5. Kamath, S., Lindh, J.: Measuring Bluetooth Low Energy power consumption. In: Application
Note AN092, Texas Instruments, pp. 1–24 (2012)

6. Siekkinen, M., Hiienkari, M., Nurminen, J.K., Nieminen, J.: How low energy is bluetooth
low energy? comparative measurements with ZigBee/802.15.4. In: IEEE WCNCWWireless
Communications and Networking Conference Workshops, pp. 232–237, April 2012

7. Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., Dutta, P.: The internet
of things has a gateway problem. In: 16th International Workshop on Mobile Computing
Systems and Applications, pp. 27–32 (2015)

8. Biswas, A., Giaffreda, R.: IoT and cloud convergence: opportunities and challenges. In: IEEE
World Forum on Internet of Things (WF-IoT), Seoul, South Korea (2014)

9. Nieminem, J., et al.: Networking solutions for connecting bluetooth low energy enabled
machines to the internet of things. IEEE Netw. 28(3), 83–90 (2014)

10. Cypress Semiconductor: CY8CKIT-042-BLE-A Bluetooth Low Energy 4.2 Compliant Pio-
neer Kit. https://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-
bluetooth-low-energy-42-compliant-pioneer-kit

11. Raspberry Pi Foundation: Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/

12. Bluetooth Special Interest Group: Specification of the Bluetooth System, Covered Core
Package Version: 5.0, Kirkland, WA, USA, December 2014

13. Amazon: Amazon Web Services (AWS) - Cloud Computing Services. https://aws.amazon.
com/pt/

14. Amazon: 10-Minute Tutorials with Amazon Web Services (AWS). https://aws.amazon.com/
getting-started/tutorials/

15. Oracle Corporation: MySQL: MySQL Workbench. https://www.mysql.com/products/
workbench/

16. Postman, Inc.: POSTMAN | API Development Environment. https://www.getpostman.com/

https://doi.org/10.1007/s11277-016-3335-4
https://doi.org/10.1007/978-3-319-43671-5_62
https://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-bluetooth-low-energy-42-compliant-pioneer-kit
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://aws.amazon.com/pt/
https://aws.amazon.com/getting-started/tutorials/
https://www.mysql.com/products/workbench/
https://www.getpostman.com/

	Development of an Internet of Things System for Smart Home HVAC Monitoring and Control
	1 Introduction
	2 System Overview
	3 BLE Network Development
	3.1 BLE Nodes Design
	3.2 Gateway Development

	4 Cloud Services Development
	4.1 RDS Database
	4.2 AWS Lambda
	4.3 Amazon API Gateway

	5 Mobile App Development
	6 Experimental Results
	6.1 Data Collection and Presentation
	6.2 Communication Delay and Reliability

	7 Conclusions
	References




