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Abstract. Water distribution networks (WDNs) are vital infrastruc-
ture which serve as a means for public utilities to deliver potable water
to consumers. Naturally, pipelines degrade over time, causing leakages
and pipe bursts. Damaged pipelines allow water to leak through, incur-
ring significant economic losses. Mitigating these losses are important,
especially in areas with water scarcity, to allow consumers to have ade-
quate water supply. Globally, as the population increases, there is a need
to make water distribution efficient, due to the rising demand. Thus,
leak detection is vital for reducing the system loss of the network and
improving efficiency.

Monitoring WDNs effectively for leakage is often a challenging task
due to the size of the area it covers, and due to the need to detect leaks
as early as possible. Traditionally, this is done via pipeline inspection or
physical modeling. However, such techniques are either time-consuming,
resource intensive, or both. An alternative is machine learning (ML),
which maps the relationship between pipeline data to detect leakages.
This allows for a faster, yet reasonably accurate model for detection and
localization. Machine learning techniques could be utilized together as
an ensemble, which allows these techniques to work in conjunction with
each other. Wavelet decomposition will be performed on the data to allow
for a smaller dataset, as well as utilizing possible hidden features for the
machine learning model.

Keywords: Water distribution networks · Leak detection · Machine
learning

1 Introduction

1.1 Water Distribution Networks

Water distribution networks (WDNs) are systems designed and implemented
to deliver potable water from a source to a consumer. However, pipeline
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infrastructure gradually experience deterioration, which could be due to natural
aging, environmental damage, or unauthorized human interference [1]. Damaged
pipelines allow water to leak through, which would cause significant economic
losses. As the world population grows, there is a need for distributing water
efficiently due to scarcity in water supply. Mitigating losses is key, especially in
areas with water scarcity, making leak detection an important part for improving
the efficiency of a network.

1.2 Leak Detection

Without using automated sensing or analytical methods, leakages are tradition-
ally reported via water utility personnel examining above-ground meters along
the WDN [2]. Due to the nature of human involvement, this is a time-consuming
method that could possibly incur significant losses before it is addressed.

As leakage events follow hydraulic principles, sensors could be used to moni-
tor characteristic changes within the pipeline. Pressure drops and flow imbalance
in certain areas could imply disruption in normal pipeline operations [1].

Data acquired from sensors in pipelines could be studied to develop analyt-
ical models. By combining known hydraulic equations and state analysis of the
pipeline, physical modeling could be performed for a network [3]. Further anal-
yses of data could be done by applying machine learning techniques to establish
correlation between different factors, and distinguish false positives from actual
leaks [4]. More often than not, a combination of certain aspects of these tech-
niques are used to improve accuracy of leak detection [5].

1.3 Data Analysis

Datasets containing real-world data could be used to model existing water dis-
tribution networks and possible leakage occurrences in conjunction with actual
demand patterns [6]. However, in the absence of real-world data, EPANET soft-
ware would be used to simulate leakage in water distribution networks [7]. Com-
ponents such as pipes and valves could be implemented in simulations to reflect
physical models. Datasets are constructed from such simulations, and could be
used for analysis. For this study, the datasets are generated with emphasis on
varying sensor density and topology. Datasets from these networks would then
be evaluated to test the machine learning model. Using machine learning, leakage
detection in these networks could be performed [8].

1.4 Overview

The main objective of this research is to perform simulations on different water
distribution networks, and develop a machine learning approach for leak detec-
tion. Factors affecting WDN operations such as water demand and physical
characteristics of the WDN will be taken into consideration. Performance of the
machine learning model will be evaluated on different network topologies and
sensor density.
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2 Related Work

2.1 Leak Detection Methods

Without the usage of other leak detection techniques, on-site inspections by
water utility personnel are relied upon [2]. Above-ground sensor reading equip-
ment must be deployed along the WDN for a technician or engineer to be able
to note sensor data. As the response highly involves human intervention, the
system could possibly undergo significant losses before the appropriate action is
implemented [1].

Acoustic sensors could be installed along the WDN to detect sound signals,
which could be used with signal processing techniques to detect and localize
leakages [2]. Signals would be higher in amplitude near the leaks, allowing for
localization. This method has the advantage of not needing a complex mathe-
matical model. However, acoustic sensing techniques are easily affected by the
physical environment around it; external noise might interfere with sensor read-
ings [9]. The cost of implementing the hardware for the system would be high
as well, especially for larger networks [1].

Another technique used for leak detection are balancing methods. Under
normal operation, input and output mass flow rate of each pipeline are equal
[2], which is supported by the law of conservation of mass. Thus, imbalances
of these metrics would imply leakage within the pipeline. The balance between
input and output flows could be represented by the equation

MI − MO = ΔMpipe (1)

where MI and MO represent mass in the inlet and outlet of the pipe, respectively,
while ΔMpipe represents the imbalance between the two. As mass is proportional
to the flow rates, input and output flows could also be represented by the equa-
tion

QI − QO = ΔQpipe (2)

where QI and QO similarly represent flow rates in the inlet and outlet of the
pipe, respectively, while ΔQpipe represents the imbalance between the two [1].
To be within range of possible errors in sensor readings, an alarm threshold is
implemented based on pressure or flow values. While rather simplistic in theory,
utilizing pressure and flow data is a fundamental basis for techniques that rely
on data processing of hydraulic models.

Transient analysis could also be utilized as a leak detection method [10].
Transient information generated by leakage scenarios could be extracted and
then evaluated accordingly. The main idea of transient analysis is to compare
signals received by a sensor in a leakage event to signals under normal operation.
Focusing on the transient signals can offer more information rather than simply
monitoring the WDN at its steady state [10,11].

Model-based methods could be assessed, to determine the state of subsections
of a WDN based on water hammer equations [3]. The underlying fundamental
principle relating flow and pressure could be summarized in equations
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where t and z represent coordinates in time and space, respectively, H rep-
resenting pressure, c representing wave speed, g representing Earth’s gravity,
Q representing flow rate, D representing the diameter of the pipeline, A rep-
resenting the cross-sectional area of the pipe, and f representing the friction
coefficient [3].

While model-based methods based on physical properties of a WDN yield
high accuracies in fault detection, it is not feasible to use in large-scale networks
due to the amount of parameters and data involved [12,13]. An alternative is to
use machine learning techniques, which generate similarly high accuracies, but
require less computational load [8,14]. Machine learning maps the dependent
and independent parameters of a given system, with little prior process knowl-
edge. Performance of machine learning techniques are based on the design of the
technique, which could be improved over time with data [13].

Machine learning techniques and their properties could be incorporated into a
single learning algorithm called an ensemble method [15]. Ensemble methods are
multiple machine learning techniques that are trained cooperatively to produce
better predictive performance. In the field of hydrology, there have been propos-
als to utilize ensemble methods to improve the performances of WDNs [14,16].
Pairing up single methods with each other could help decrease unwanted levels
in bias and variance, which could ultimately increase predictive performance.

2.2 EPANET

EPANET is a simulation software for modeling water distribution networks and
examine hydraulic behavior in pipe networks. It is able to simulate different
WDN entities, such as pipes, tanks, valves, and reservoirs. Factors such as water
pressure, water flow, and chemical concentrations could be monitored within the
system. EPANET also provides a visual simulator to help the user build pipe
networks and edit properties such as pipe diameter or valve function [7].

By simulating emissions within a water distribution network, EPANET is
able to model leakage events, and the properties of the network during such an
event could be studied. EPANET has been used in modeling and detecting leak-
ages in WDNs of real-life communities and small-scale testbeds [17,18] (Fig. 1).

EPANET takes advantage of combining demand patterns and leakage prop-
erties to model leaks within a specified time frame. This would help in detecting
the possibility of leakage within the WDN [18]. A relation used in EPANET to
model leakage is as follows [17]:

Q = Ec ∗ PPexp , (5)

where Q represents flow, Ec represents the emitter coefficient, P represents pres-
sure, and Pexp represents the pressure exponent, which is usually set to 0.5 for
water networks.
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Fig. 1. EPANET window simulation

3 Methodology

The methodology is composed of three major tasks: simulations, feature extrac-
tion, and classification. Simulation modeling includes the construction of a func-
tional and realistic water distribution network in simulation software. Simula-
tions involving leakage events are carried out afterwards, done on WDNs with
varying topology and sensor density.

The proposed solution is to apply wavelet series decomposition on pressure
data, and to use the energy of each wavelet as a feature for the machine learning
model. Specifically, a CNN ensemble is implemented as part of the machine
learning model to analyze the data. The CNN ensemble would effectively classify
the pressure profiles from the sensors as to whether or not they have a leak.
Instead of using each recording from each sensor node as a feature, the energy
of each wavelet is used, effectively reducing the size of the dataset. This allows
the machine learning model to learn from another feature, which could result in
better detection.

3.1 Hydraulic Simulations

In the absence of datasets for real-life water distribution networks, simulations
are performed in EPANET to produce data from networks with similar char-
acteristics. Water distribution networks are constructed in EPANET by imple-
menting elements such as pipes, junctions, and reservoirs. These networks in the
EPANET program reflect certain parts, if not the whole, of actual WDNs.

For the analysis, three distinct EPANET networks are used: the Cherry
Hills/Brushy Plains network, the New York City Tunnel network, and the
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Fossolo network. These networks are derived from actual implementations of
existing water distribution networks [19,20], and are distributed with EPANET
releases [7].

The simulations would incorporate hourly water demand profiles used by
households [18]. A profile could be constructed via analysis of previous con-
sumption data [21], or sociological analysis [22]. For example, usage in residential
areas is typically at lowest after midnight, and would peak during early mornings
or early evenings [23]. Accuracy of leak detection would depend on how much
volume of water is taken into consideration within pipelines.

Pipes, junctions, and other elements close to the emitter nodes are monitored
for changes. The model for the water distribution networks is able to capture key
characteristics, and these will be the basis for leak detection. Such characteristics
include pressure, water flow, water head, and water quality. Out of these, pressure
changes are most reflective of leakage scenarios [4], making it the ideal data
input for the proposed solution. Pressure data are recorded accordingly based
on EPANET’s time reporting step, which was set to every 30 s. Changes in the
pressure profile is then analyzed to determine and localize leaks.

Changes on leak sizes and leak locations are then performed. These combina-
tions of changes are used to create datasets for machine learning. To introduce
leakage events, the emitter coefficients of the nodes within the network are be
increased. Shown in Fig. 2 are the differences between the pressure profile of
a node in the Cherry Hills/Brushy Plains network within a 24-h period upon
increasing the emitter coefficient. The drop in pressure is found to be consistent
with hydraulic principles.

To facilitate leak detection, sensor nodes are implemented into every
EPANET simulation of a water distribution network. These are assigned out
of existing junction nodes, and the placement of these would have an impact
in detecting leaks. This allows for a mechanism to monitor and record pressure
profiles within the network, which would then be analyzed accordingly [18].

Fig. 2. Pressure profile of the same node at Ec = 0 and at Ec = 5
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To test the effect of sensor density, sensor placement is done differently on
each simulation. Specifically, different simulations have sensors that are placed
on locations that are 1-, 2-, and 3-hop distances from non-sensor junction nodes,
without overlap.

3.2 Feature Extraction and Wavelet Decomposition

The data streams that will be observed are pressure streams coming from sen-
sor nodes. Intuitively, pressure data observed from components away from the
leakage event would be inversely proportional to the distance from the leak. Gen-
erally, leakage within the vicinity would result in more drastic pressure drops.

Furthermore, wavelet transforms could be applied to these signals, where
they would be decomposed into their respective approximation coefficients and
detail coefficients [4,24]. The approximation coefficient corresponds to the lower
frequency of the original signal, while the detail coefficients correspond to the
higher frequency of the original signal. Different levels of the detail coefficient
could possibly detect transients in the signal, which could be correlated with
detecting leakages in the pipeline, as leakage events come with changes of pres-
sure. The detail coefficients also capture the noise element of the signal, while
the approximation coefficient resemble the original signal (Fig. 3).

The energy of the coefficients would be computed, and used as the fea-
ture vectors for each sensor, effectively reduceing the input size of the dataset.
Utilizing the energy of the pressure signals instead of raw pressure data allow
for minimizing energy consumption of the sensors in sending data over a net-
work [18], as well as allowing the CNN ensemble to possibly find more hidden
features [4].

These data would then be analyzed via machine learning by a CNN ensemble.
It is expected that the different networks would provide different pressure profiles
for the CNN ensemble to learn.

Fig. 3. Wavelet Decomposition
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3.3 Classification via Machine Learning Ensemble

The main concern of the study is to identify the occurrence of leakage scenarios
given a profile of a water distribution network. The study also aims to compare
the effectiveness of the proposed solution on different network topologies and
different sensor densities.

A machine learning ensemble is implemented by training multiple machine
learning sub-models then stacking them together to form an ensemble. Specifi-
cally, an ensemble consisting of a stacked convolutional neural network (CNN)
sub-models is used to classify leakage events by learning patterns from the gen-
erated wavelets. A CNN is a machine learning implementation used for feature
extraction [25] and has been used extensively in the field of hydrology [8,26].
This could be utilized to reveal hidden features relevant for leak detection. The
CNN ensemble would act as a binary classifier for leak detection, where its out-
put would be to determine whether or not a leak exists within the network.
Adjustments in configurations are made to maximize performance for a specific
network model.

Data generated from EPANET simulations are used as input for the machine
learning model. The models are implemented in Python using Keras and Ten-
sorflow as framework, with a 70/30 split of the dataset for the training and test
set.

3.4 Evaluation Metrics

The techniques above will be evaluated with respect to certain metrics: classifi-
cation accuracy, true positive rate (TPR), false positive rate (FPR), and the area
under the curve (AUC) of the receiver operating characteristic (ROC) [17,27].
A summary of these metrics is as follows:

Accuracy =
correct

total
∗ 100 (6)

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

where TP, TN, FP, and FN represent the total amount of true positives, true
negatives, false positives, and false negatives respectively. A true positive (TP)
is defined as correctly identifying a leakage scenario occurring in the WDN,
while a true negative (TN) is defined as correctly identifying that the WDN is
operational without leaks. A false positive (FP) is defined as incorrectly noting
a leak in the WDN.

The AUC-ROC is an often used evaluation metric for machine learning [27],
which is generally characterized by plotting the true positive rate against the
false positive rate. The area is a measure of how much the model is able to
distinguish between classes. A higher AUC corresponds to a better classifier.
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4 Results and Discussion

Shown in Table 1 are the physical attributes of the tested networks. These serve
as a baseline on how network topologies physically differ from one another.

Table 1. Physical characteristics of different network topologies

Metric New York tunnel Cherry plains Fossolo

Nodes 19 34 36

Avg. Node Connections 2.105263 2.294118 3.194444

Tables 2, 3, 4 present the performance of the proposed leak detection method.
The ensemble CNN method was able to reach accuracies of more than 90% in
each topology, even when considering the differences in sensor density. While
this is the case, the accuracy of the model is dependent on how complex or
large the network; leak detection on networks with more connections between
nodes tend to be slightly less accurate than networks with fewer connections.
Similarly, the true positive rate for all topologies and sensor densities reach an
adequate percentage for leak detection. This metric is relevant as there is a need
to correctly determine the presence of leaks in the event of one occurring. In all
region sizes, it is seen that the Fossolo network has the lowest true negative rate,
while the Cherry Plains network has the highest. The true negative rate of the
Fossolo network is at its lowest when using data from the 3-hop node distance
region. This may be due to the fact that the dataset is mostly comprised of
leakage scenarios, with non-leakage scenarios only taking up roughly 14% of the
datasets, and compounded further by having generated less data from a network
configuration with less sensors. It is likely that the CNN ensemble fails to find
more hidden features in these networks, where the pressure profiles are comprised
of more nodal connections; hence the low true negative rate. Generally, this is
more acceptable than the opposite, where there is a low true positive rate, and
a high negative rate, as inaction for an existing leak would entail more economic
losses than routinely checking on pipe operations.

Table 2. Performance of the model for leak detection of different network topologies,
with the sensor density based on 1-Hop node distances

Sensor density based on 1-Hop node distances

Metric New York tunnel Cherry plains Fossolo

Regions 8 14 10

Accuracy 0.987737584 0.98560658 0.96956944

TPR 0.994318182 0.98458498 0.990661188

TNR 0.946188340 0.992268041 0.832524272
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Table 3. Performance of the model for leak detection of different network topologies,
with the sensor density based on 2-Hop node distances

Sensor density based on 2-Hop node distances

Metric New York tunnel Cherry plains Fossolo

Regions 4 6 4

Accuracy 0.984671980 0.977039068 0.966655876

TPR 0.994318182 0.973913043 0.988793425

TNR 0.923766816 0.99742268 0.822815534

While there is not much difference in the accuracy and true positive rate
metrics between sensor densities, a noticeable trend is seen in the true negative
rate. As the sub-regions of the network become larger, a decline in the true
negative rate can be noticed. This is corroborated by the decrease in the AUC-
ROC for the Fossolo network, as shown from Figs. 4, 5, 6, as it is affected by the
increase in false negatives. It is possible that covering a large area within the

Table 4. Performance of the model for leak detection of different network topologies,
with the sensor density based on 3-Hop node distances

Sensor density based on 3-Hop node distances

Metric New York tunnel Cherry plains Fossolo

Regions 3 4 3

Accuracy 0.984671980 0.979095271 0.946260926

TPR 0.995028409 0.980237154 0.987672768

TNR 0.919282511 0.971649485 0.677184466

Fig. 4. ROC curve of the Fossolo network, 1-hop region size
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WDN makes it more difficult for the machine learning model to learn connections
in the pressure profile and correctly classify non-leakage scenarios. Having more
connections on average for each junction further exacerbates this problem, as
nodal pressures are more affected by neighboring nodes.

In general, the model was able to correctly classify leakage and non-leakage
scenarios correctly. From the results gathered, significant increases in accuracy,
TPR, and TNR for leak detection can be achieved by allowing the model to
be trained further, as each network configuration was trained using the same
machine learning model and the same amount of training periods. Networks
with higher connections between nodes require more training as well, to find
more connections between the different pressure profiles generated by each node.

Fig. 5. ROC curve of the Fossolo network, 2-hop region size

Fig. 6. ROC curve of the Fossolo network, 3-hop region size
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5 Conclusions

This study explored the problem of detecting leakages in water distribution
systems. The proposed solution of using a CNN ensemble with wavelet decom-
position was able to determine occurrences of leaks within the pipeline. Wavelet
decomposition allowed the data used for machine learning features to be rela-
tively small, while retaining information regarding changes in the pressure pro-
file. By using a CNN as a classifier, connections in the pressure profiles were
analyzed and yielded sufficient performance by the model. Generally, the model
is able to perform well on different network topologies, different sensor densities,
and certain combinations thereof.

5.1 Limitations of the Study

The research dealt exclusively with simulated data, as real-life datasets were
found to be incomplete or hard to come by. Sensor placement within the simu-
lated networks were also not optimized. While the sensors were physically dis-
tributed equitably over the network, a study was not done on how specific sensor
placements affect the overall performance of the model. Determining where the
leak is located is likewise not incorporated into the study. As the study simply
aims to detect whether or not a leak exists in the system, the utility of this
knowledge depends on the size of the network and how easy it is for the leak
to be alleviated. The trained model was not used in actual implementations of
water distribution networks. This is primary due to the scale of the simulated
networks, and the difficulty in implementing small-scale ones.

5.2 Future Work

Improvements in the implementation of the CNN ensemble could still lead to
better performance. From the results, it could be seen that the model performs
worse on networks that are relatively large and have a higher number of con-
nections per node; better results could be achieved by optimizing the layers and
parameters of the model. A better model would also allow for a better classifier,
allowing for the classification of more regions within the network or more dense
sensor distributions.

Similar to leak detection, machine learning techniques could also possibly
be used for determining the location of the leak within the network. The CNN
could be used as a multiple classifier, where outputs are different regions within
the network, narrowed down to a smaller area.
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