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Abstract. The sensor networking based on multi-source information fusion can
significantly improve direction accuracy, and the sensor networking is always used
in direction of spread spectrum signals. Aimed at eliminating the phase ambiguity
of the phase-comparison method, this paper proposed a direction-finding method
based on ISM (Incoherent Signal Subspace Method) and CSM (Coherent Signal
Subspace Method) algorithms. Firstly, the wideband spread spectrum signal is
divided into narrowband at different time points. Then perform the DCT (Discrete
Cosine Transform) and obtain the covariance matrix at different frequency points.
Finally, the narrowband signal power spectrums at independent frequency points
are synthesized to obtain the total power spectrum of spread spectrum signal. The
simulation results demonstrate that the ISM and CSM algorithms can accurately
determine the direction of the spread spectrum signal, and the direction error is
kept within 1° when the signal-to-noise ratio (SNR) is higher than 5 dB, which
satisfy the accurate direction-finding requirement. Therefore, the ISM and CSM
algorithms based on sensor networking is a necessary solution in high-precision
direction of spread spectrum signals.
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1 Introduction

The DOA (direction of arrival) of the signal based on multi-source information fusion
can significantly improve direction accuracy, and the multi-source information is
always obtained through sensor networking. The spread spectrum signal has good anti-
interference, low interception and strong networking capability, and it is widely used in
military communication and GNSS navigation and positioning [1, 2]. It directly modu-
lates the information code through a pseudo-random spread spectrum sequence, so that
the used bandwidth of the transmission signal is greatly increased. For the signal trans-
mitter, since the energy of transmitting information is extended to a wider spectrum, the
signal radiated power per unit bandwidth is reduced, and the system capacity is improved
[3]. For the cooperative receiver, the received signal increases the anti-interference ability
of the system. Because the signal is despreaded by the known spread spectrum sequence,
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and the channel noise and the narrowband interference signal are extended to a wider
frequency band [4].

The estimation of the DOA of the spread spectrum signal plays an important role
in various military and civilian fields such as GNSS and GPS navigation, as well as
sonar and radar. The spread spectrum signal is essentially a wideband signal. Compared
with wideband DOA, the narrowband DOA estimation algorithm developed earlier [5].
In 1967, Burg proposed the MEM algorithm (Maximum Entropy Method) and 1969
Capon proposed the MVM algorithm (Minimum Variance Method). In these methods,
the resolution ratio and accuracy of DOA estimation are improved, but in low signal-
to-noise ratio the estimation performance is not good, and the high resolution in the
true sense is not realized [6, 7]. The classification algorithm appeared in the 1970s,
such as the MUSIC algorithm (Multiple Signal Classification) proposed by Schmidt in
1979 [8, 9]. It is the first algorithm to realize signal DOA estimation by using subspace.
The resolution ratio of the array signal direction-finding is greatly improved, and it is
an important node in the history of high resolution ratio direction-finding algorithm
[10, 11]. The broadband high-resolution direction-finding algorithm is developed on
the basis of narrowband signal direction-finding algorithm. The DOA estimation of
narrow-band signals has been developed for several decades, and the technology has been
relatively mature [12, 13]. However, direction-finding algorithm for wideband signals,
especially for spread-spectrum signals, there are few studies on DOA estimation. The
existed direction-finding technology of wideband signals is mainly based on the phase
comparison method [14, 15]. However, in the phase comparison method, the phase
ambiguity occurs with a period of multiple of 2π and it is difficult to eliminate, which
limits the direction-finding accuracy [16, 17]. In this paper, aiming at solving the above
problems, this paper proposes the ISM (Incoherent Signal Subspace Method) and CSM
(Coherent Signal SubspaceMethod) methods to determine the direction of the wideband
spread spectrum signal.

2 DOA Estimation

2.1 Mathematical Model of the Signal

In the narrowband signal model, a phase delay is used to approximately represent the
time delay, which is obviously no longer applicable for wideband signals. In this case,
Fourier transform is used. Each wideband signal is distributed within [ωL , ωH ] and use
the following formula to express the output of the m element:

xm(t) =
P∑

l=1

αl sl(t − τlm) + nm(t),m = 1, 2, · · · , M (1)

Where, αl is the gain of the m th element for the l th signal; nm(t) is additive noise at
the m th element; τlm is the delay generated by the m th signal when it reaches the l th
element.
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For the uniform linear array; τlm = νm sin θl , νm = dm/c; d is the array space; c
is the speed of the signal in the propagation medium; θi is the target angle to estimate.
Assuming αl is 1, and the array is sampled at time t. The output vector of the array is as
follows:

X(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P∑
l=1

sl(t − τl1)

P∑
l=1

sl(t − τl2)

...
P∑

l=1
sl(t − τlM )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

n1(t)
n2(t)

...

nM (t)

⎤

⎥⎥⎥⎦ (2)

Adopt DFT for Eq. (1), we can get:

Xm(ω) =
P∑

l=1

Sl(ω) exp(− jωτlm) + Nm(ω) (3)

When the frequency is fn , rewrite the above equation into a matrix equation:

X( fn) = A( fn)S( fn) + N ( fn) (4)

Where, A( fn) is M × P matrix, represents a flow matrix of the spatial array.

X( fn) = [
X1( fn) X2( fn) · · · XM ( fn)

]T

N ( fn) = [
N1( fn) N2( fn) · · · NM ( fn)

]T

S( fn) = [
S1( fn) S2( fn) · · · SP ( fn)

]T
(5)

A( fn) =

⎡

⎢⎢⎢⎣

exp(− j2π fnτ11) exp(− j2π fnτ12) · · · exp(− j2π fnτ1P )

exp(− j2π fnτ21) exp(− j2π fnτ22) · · · exp(− j2π fnτ2P )
...

...
. . .

...

exp(− j2π fnτM1) exp(− j2π fnτM2) · · · exp(− j2π fnτMP )

⎤

⎥⎥⎥⎦ (6)

The covariance matrix corresponding to Eq. (4) is as follows:

R( fn) =A( fn)E
[
S( fn)S

H ( fn)
]
AH ( fn) + σn

2 I

=A( fn)Rs( fn)A
H ( fn) + σn

2 I (7)

It is represented at different frequency points. Where, Rs( fn) = E
[
S( fn)SH ( fn)

]

represents the covariance matrix of the wideband signal at fn .

2.2 ISM (Incoherent Signal Subspace Method)

From Eq. (7), we obtain the covariance matrix R( fn) of the wideband signal. During
this part, the wideband signals involved are incoherent wideband signals. Assuming
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there are J frequency points in the signal bandwidth, and the covariance matrix is
R
(
f j

)
, j = 1, 2, · · · , J . Decompose this matrix to obtain the M eigenvalues: λ1

(
f j

) ≥
λ2

(
f j

) ≥ · · · ≥ λM
(
f j

)
in descending order and the corresponding eigenvectors is

em
(
f j

)
,m = 1, 2, · · · M . The eigenvectors corresponding to the large P eigenvalues

and the eigenvectors corresponding to the small M − P eigenvalues are constructed into
matrixes respectively.

US
(
f j

) = [
e1

(
f j

)
, e2

(
f j

)
, · · · , eP

(
f j

)]

UN
(
f j

) = [
eP+1

(
f j

)
, eP+2

(
f j

)
, · · · , eM

(
f j

)] (8)

The signal subspace constructed at f j is the same as the space formed by the
array flow matrix, and the signal subspace is orthogonal to the noise subspace. That
is, span

{
US

(
f j

)} = span
{
A
(
f j , θ

)}
span

{
US

(
f j

)}⊥ span
{
UN

(
f j

)}
.

We can firstly obtain the covariance matrix of each frequency point in the bandwidth
of the wideband signal. Then the weighted average of these spatial spectrum is obtained
to get the total ISM spatial spectrum. Finally, DOA estimation is performed. There are
two different weighted averaging methods: the arithmetic averaging method and the
geometric averaging method. The arithmetic average method calculates the ISM spatial
spectrum:

PISSM1(θ) =
⎛

⎝ 1

J

1∑

j=1

1

PMUSIC
(
f j , θ

)

⎞

⎠
−1

(9)

The geometric mean method calculates the ISM spatial spectrum:

PISSM2(θ) =
⎛

⎝
J∏

j=1

1

PMUSIC
(
f j , θ

)

⎞

⎠
− 1

J

(10)

Here, PMUSIC
(
f j , θ

)
represents the MUSIC spatial spectrum at j th frequency:

PMUSIC
(
f j , θ

) = 1

aH
(
f j , θ

)
Un

(
f j

)
UH
n

(
f j

)
a
(
f j , θ

) (11)

2.3 CSM (Coherent Signal Subspace Method)

In ISM algorithm for wideband DOA estimation, we need to select the frequency point
with high SNR, and also carry out plenty of snapshots. In this case, the DOA calculation
is greatly increased. Besides, the ISM algorithm cannot perform in DOA estimation of
coherent wideband signals. The CSM algorithm constructs a focusingmatrix by aligning
the array flow matrix of each frequency point at the predicted angle to the same array
flow matrix at the focus frequency. Then the array covariance matrix corresponding to
each frequency of the signal is focused transform under this focus matrix.
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Assuming s1(t) and s2(t) (s2(t) = s1(t − t0)) are two coherent broadband signals,

let s(t) =
[
s1(t)
s2(t)

]
and its covariance matrix can be expressed as:

Rs(τ ) =E
{
s(t)sH (t + τ)

}

=
[

R1(τ ) R1(τ − t0)
R1(τ + t0) R1(τ )

]
(12)

Where, R1(τ ) is the correlation function of s1(t). The spectral matrix can be obtained
by performing a Fourier transform on both sides of the above formula:

Ps( f ) =
[

P1( f ) P1( f ) exp(− j2π f t0)
P1( f ) exp( j2π f t0) P1( f )

]
(13)

The spectralmatrix Ps( f ) of s1(t) is always a singularmatrix and the signal subspace
and the noise subspace cannot be completely orthogonal. In order to solve this problem,
it needs to make Ps( f ) be non-singular. Smoothing the spectral matrices in frequency
at individual J frequency points:

P( f ) = 1

J

J∑

j=1

P
(
f j

)

=

⎡

⎢⎢⎢⎣

P( f0) P( f0)
1
J

J∑
j=1

exp
(− j2π f j t0

)

P( f0)
1
J

J∑
j=1

exp
(
j2π f j t0

)
P( f0)

⎤

⎥⎥⎥⎦ (14)

The construction of the focusing matrix is described in the following. Assuming that
the rank of the array A

(
f j

)
flow matrix at the frequency point f j is P , the focusing

matrix should satisfy:

T
(
f j

)
A
(
f j

) = A( f0), j = 1, 2, · · · , J (15)

Here, f0 is the reference frequency and also the focus frequency. T
(
f j

)
is a dimen-

sional non-singular M × M matrix. Because the rank of A
(
f j

)
and A( f0) is P , we

can construct M × (M − P) matrixes B
(
f j

)
and B( f0) to make

[
A
(
f j

)∣∣B
(
f j

) ]

and [A( f0)|B( f0) ] be both non-singular matrixes. We can get the focusing matrix as
following:

T
(
f j

) = [A( f0)|B( f0) ]
[
A
(
f j

)∣∣B
(
f j

) ]−1 (16)

After the focus matrix transformation, the array output vector is:

Y
(
f j

) = T
(
f j

)
X

(
f j

) = A( f0)S
(
f j

) + T
(
f j

)
N

(
f j

)
, j = 1, 2, · · · , J (17)
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We can get the following:

J∑

j=1

w jcov
(
Y

(
f j

)) = A( f0)

⎡

⎣
J∑

j=1

w j Ps
(
f j

)
⎤

⎦AH ( f0)

+ σn
2

J∑

j=1

w j T
(
f j

)
Pn

(
f j

)
T H (

f j
)

(18)

Where,

R = A( f0)Rs AH ( f0) + σn
2Rn

R =
J∑

j=1
w jcov

(
Y

(
f j

))

Rs =
J∑

j=1
w j Ps

(
f j

)

Rn =
J∑

j=1
w j T

(
f j

)
Pn

(
f j

)
T H

(
f j

)

(19)

w j is the normalized weighted value, which is proportional to the SNR of the frequency
f j . Here, take it as 1.

Decompose the matrix (R, Rn) to obtain the M eigenvalues: λ1
(
f j

) ≥ λ2
(
f j

) ≥
· · · ≥ λM

(
f j

)
in descending order and the corresponding eigenvectors is em

(
f j

)
,m =

1, 2, · · · M . The subspace formed by the column vector of Es = [e1, e2, · · · , eP ] is
called the signal subspace, and the subspace formed by the column vector of En =[
eP+1, eP+2, · · · , eM

]
is called the noise subspace, and then the signal subspace and

the noise subspace are orthogonal to each other.

λP = λP+1 = · · · = λ

AH ( f0)En = 0
EsH RnEn = OP × (M − P)

EsH Rs Es = I P
EnH RnEn = I (M − P)

(20)

We can get the CSM spatial spectrum as the following:

PMUSIC( f0, θ) = 1

aH ( f0, θ)Un( f0)UnH ( f0)a( f0, θ)
(21)

3 Simulation Analysis

3.1 Spatial Spectrum Analysis

The distribution of energy of the target signal in all directions in space is the spatial
spectrum. This is a intuitive indicator of the performance of the DOA estimation algo-
rithm. In the experiment, it is assumed that the receiving antenna array is a 10 elements
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uniform linear array, snapshots are performed 128 times and the array element spacing
is half of wavelength. The target wideband spread spectrum signals wave come from
20° and 26°. Perform the ISM and CSM algorithm with signal-to-noise ratio of −5db
and 5db respectively and following is the spatial spectrum of ISM and CSM.

It can be seen from Figs. 1 and 2 that the power spectrum formed the peak in 20°
and 26°, which are the directions of target signal and it almost maintained nearly zero
in other directions. That is both the ISM and CSM algorithms can find the direction of
the wideband spread spectrum signals. But in the condition with lower SNR, the ISM
impossible to find the direction accurately and the CSM has higher resolution ratio.
Besides, with the SNR becoming higher, the power spectrum in the target direction is
sharper. In practical engineering applications, the resolution of the peaks can be increased
by increasing the number of receiving antenna elements and the number of fast snapshots.
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Fig. 1. ISM Spatial Spectrum with SNR of −5 dB and 5 dB.
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Fig. 2. CSM Spatial Spectrum with SNR of −5 dB and 5 dB.

3.2 Direction Correct Rate

The correct rate of direction-finding refers to the ratio of the number of successful
direction-findings to the total number of experiments (monte carlo number). In the
experiment, it is assumed that the wideband spread spectrum signals are received by the
10-element antenna. The direction is successfully determined if the difference between
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the direction-finding angle and the true angle is within 1°. ISM and CSM algorithm are
performed 100 monte carlo simulations respectively and following is the result.

It can be seen from Fig. 3 that as the signal-to-noise ratio increases, the direction-
finding correct rate of both ISM and CSM algorithms will increase. However, in the
case of SNR within−10 dB and 5 dB, the CSM algorithm has a higher direction-finding
correct rate. The correct rate of the direction-finding is almost maintained at around
1 after the SNR reaching a certain value. That is, the ISM and CSM direction-finding
algorithms proposed in this paper can effectively reduce the influence of interference on
the direction-finding result and achieve accurate direction-finding. Therefore, in practical
engineering applications, we can use the ISM algorithm for incoherent wideband signals
direction and CSM algorithm for coherent wideband signals direction.
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Fig. 3. ISM and CSM Direction Correct Rate.

4 Conclusion

The ISMandCSMalgorithms based on sensor networking for the spread spectrum signal
direction finding are proposed in this paper. After dividing the received spread spectrum
signal intomultiple time segments and performingDFT transform, the covariancematrix
is obtained at different frequency points according to the different constraint criteria of
ISM and CSM. Then, the mentioned covariance matrixes are decomposed into eigen-
values to obtain the corresponding signal subspace and noise subspace. Meanwhile, the
narrowband MUSIC direction finding is applied independently at different frequency
points. Finally, the geometric power average or arithmetic average method is adopted
to synthesize the final power spectrum in order to implement the direction finding of
wideband spread spectrum signal. When the SNR is higher than 5 dB, the proposed
algorithm performance satisfies accurate and low error direction finding, which should
be better for engineering direction finding of spread spectrum signals.
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