
Unequally Weighted Sliding-Window
Belief Propagation for Binary LDPC

Codes

Zhaotun Feng, Bowei Shan , and Yong Fang(B)

School of Information Engineering, Chang’an University,
Xi’an, People’s Republic of China

{2018124076,bwshan,fy}@chd.edu.cn

Abstract. In this paper, an Unequally Weighted Sliding-Window Belief
Propagation (UW-SWBP) algorithm was proposed to decode the binary
LDPC code. We model the important of overall beliefs of variable nodes
in a sliding window as Gaussian distribution, which means central nodes
play a more importance role than the nodes on both sides. The UW-
SWBP demonstrates better performance than SWBP algorithm in both
BER and FER metrics.

Keywords: UW-SWBP · LDPC · Overall belief

1 Introduction

Thanks to extremely fast data speed, very low latency and ubiquitous coverage,
the Fifth Generation (5G) technology promises a fundamental ecosystem for
the Internet of Things as a Services (IoTaaS). In 2018, 5G New Radio (NR)
has used Low-Density Parity Check (LDPC) Codes as the code for forward
error correction [1]. LDPC codes was originally invented by Gallager [2] in 1962.
Due to lack of high computing ability at that time, it was not recognized by
information community for nearly thirty years. In 1990s, MacKay at Cambridge
[3] and Spielman at MIT [4] independently rediscovered the LDPC codes and
showed its near-Shannon-limit performance.

In today’s communication society, LDPC codes play a key role in many dif-
ferent areas. Thereafter, how to design a LDPC decoder with best performance
is an important issue. In 2012, a Sliding-Window Belief Propagation (SWBP)
algorithm [5] for decoding binary LDPC codes was introduced by Fang. Many
experiments [6,7] shows that SWBP can outperform standard belief propagation
(BP) algorithm. As the state-of-the-art LDPC decoder, SWBP can be easily
accelerated by GPU as well [8].

The idea of SWBP is based on belief propagation between variable nodes
and check nodes of LDPC, while SWBP initialize the variable nodes with the
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optimum seeds which are computed by averaging the overall beliefs of the vari-
able nodes in a well-chosen window size. Experiments results demonstrated that,
as long as the window size is selected properly, this technique is highly effective
[5–7]. With the advance of this research, we discover that some improvement can
be made in the basic SWBP algorithm, which regards all the variable nodes as
same weights. In fact, different variable nodes in the window should have different
importance. The closer to the central nodes, the more important the nodes should
be. In this paper, we present an Unequally Weighted Sliding-Window Belief
Propagation (UW-SWBP) algorithm. In this algorithm, the optimum seeds are
obtained by weighted averaging overall beliefs, and the weights decreases from
the center node to the nodes on both sides. The experiment results show that
UW-SWBP outperforms standard SWBP for decoding binary LDPC codes.

This paper is organized as follow. Section 2 reviews the SWBP algorithm. Our
proposed UW-SWBP is introduced in Sect. 3. Section 4 presentes the experiment
results and Sect. 5 concludes this work.

2 Review on Related Works

2.1 Notations

Let x = (x1, . . . , xn)T be the binary source codeword and y = (y1, . . . , yn)T be
the binary received codeword, where n is the length of the LDPC code. Let H
be an m × n parity check matrix, and s = (s1, . . . , sn)T = Hx be the syndrome.
In this paper, we only consider Binary Symmetric Channel (BSC) with cross
probability p = (p1, . . . , pn), where pi = Pr(xi �= yi).

2.2 SWBP Algorithm

SWBP algorithm is consisted of two steps: standard BP algorithm and com-
puting the optimum seeds. Standard BP algorithm has been depicted in many
articles. Reader nay refer to [5] for details.

The optimum seeds p̃ = (p̃1, . . . , p̃n)T of variable nodes can be computed by
averaging the overall beliefs of neighboring variable nodes in a size-l (an odd)
window around xi.

p̃i =
−ri +

∑min(i+u,n)
i′=max(1,i−u) ri′

min(i + u, n) − max(1, i − u)
, (1)

where r = (r1, . . . , rn)T is the overall belief of variable node i, and u = �l/2�.
Ref. [5] also presented an stepwise form of Eq. (1):

p̃i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p̃i−1 +
ri−1 − ri + ri+u − p̃i−1

i + u − 1
, 2 ≤ i ≤ (1 + u)

p̃i−1 +
ri−1 − ri + ri+u − ri−u−1

h − 1
, (2 + u) ≤ i ≤ (n − u)

p̃i−1 +
ri−1 − ri + ri−u−1 − p̃i−1

n − i + u
, (n − u + 1) ≤ i ≤ n

. (2)
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How to determine a proper window size l∗ is the key task in SWBP. In [5,6],
the mean squared error (MSE) τ2 between r and p̃ is calculated.

τ2 =
1
n

n∑

i=1

(ri − p̃i)2. (3)

Then we search all l one by one from 1 to n and only that gives the smallest τ2

is selected as l∗.
The complexity of above algorithm is O(n2). To reduce it, a fast window size

algorithm is presented in [7]. This search-free algorithm first calculates the Fast
Fourier Transform (FFT) of r as f(θ), where θ ∈ [1 : n]. Then let

A =
n∑

θ=1

|f(θ)|, (4)

where |f(θ)| is the modulus of f(θ). Then the proper window size

l∗ ≈ n

A

n∑

θ=1

|f(θ)|/θ, (5)

Obviously, the complexity of this new algorithm is reduced to O(n log2 n).

3 UW-SWBP Algorithm

Our proposed UW-SWBP is based on SWBP. The step of Standard BP of these
two are identical, while the step of computing the optimum seeds is improved
in UW-SWBP to achieve better performance. In Eq. (1), every overall beliefs of
variable nodes ri in window have the same importance account for p̃i. In fact,
when we want to calculate the optimum seeds of a node, a natural idea is to
highlight the characteristics of the node, so we believe that nodes in different
locations should play different degrees of importance.In other words, the central
node should play a more important role than the nodes on both sides of the
window. As a result, we modify Eq. (1) to a weighted form.

p̃i =
−ri ∗ wi +

∑n
i′=1(ri′ ∗ wi′)

∑n
i′=1 wi′

, (6)

where the weight of variable nodes w(x) follows Gaussian distribution

w(x) =
1√

2πσ2
e− |x−μ|

2σ2 . (7)
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We illustrate equal and unequal weights distribution in Fig. 1. Obviously unequal
weights distribution fulfills our expectations of the importance of different nodes.
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Fig. 1. Different type of weight distribution.

We can find that parameter σ plays an key role in computing the optimum
seeds. Because σ determines the size of the window and the importance of each
node. The main task of UW-SWBP is to estimate an optimum σ∗. Same as
SWBP algorithm, we first calculate the MSE τ2 between ri and p̃i by Eq. (3).
Then we calculate the following problem:

σ∗ = arg min
σ

τ2, (8)

which can be solved by searching all σ from 1 to n and only that gives the
smallest τ2 is choosed as σ∗. We show the UW-SWBP algorithm as follow.
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Algorithm 1. UW-SWBP Algorithm.
Input: Overall beliefs, r; Side information, y; Syndrome, s;
Output: Estimated source, x̃;
1: Initialization: b

(0)
i = 0, q

(0)
ij = pmfij

2: for l = 1 : MAX ITERATION do
3: Standard BP algorithm [5]
4: Computing overall beliefs r = (r1, . . . , rn)T for variable nodes:
5: Computing optimum parameter σ∗ by equation (6)
6: Refining local bias probability p̃ = (p̃1, . . . , p̃n)T by equation (4) and equation

(5)
7: Hard decision:

8: x̃i =

{

0, if ri ≤ 0.5

1, if ri > 0.5

9: if Hx̃ = s then
10: quit loop
11: end if
12: end for

4 Experimental Results

In this section, we will use numerical simulation to carry out experiments. The
aim of this paper is to evaluate the performance of UW-SWBP algorithm. Our
testing platform is configured with Intel(R) Core(TM) E7500 CPU 2.93GHz(2
Cores) main frequency, 4GB memory, and 64-bit Windows-10 operation system.
All algorithms are developed in MATLAB 2017b environment.
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Fig. 2. Bit-Error-Rate under two algorithms
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Fig. 3. Frame-Error-Rate under two algorithms

We construct a LDPC code with codeword length n = 1024 and information
bit number k = 512. The local bias probability varies according to pi = A(1 +
sin(2πi/n)). We test five value of A, i.e., A ∈ {0.08, 0.09, 1.00, 1.05, 1.10} in our
experiment. The Bit-Error-Rate (BER) and Frame-Error-Rate (FER) are used
as the metrics to compare these two algorithms. The experimental results are
illustrated in Figs. 2 and 3.We can see that the BER and FER of UW-SWBP
are much lower than SWBP when the initial value A=0.08. Moreover, with the
increase of A value, the BER and FER of SWBP show unstable and drastic
changes, and the increase trend of UW-SWBP has been very flat. We find that
under different A, UW-SWBP outperforms SWBP in both BER and FER.

5 Conclusion

In this paper, we propose a unequally weighted Sliding-Window Belief Propa-
gation (UW-SWBP) algorithm to decode binary LDCP codes. We assume that
the importance of the overall belief of a variable node is subject to a Gaussian
distribution. The UW-SWBP algorithm can improve the local deviation proba-
bility with higher precision. Experiment results show that UW-SWBP has better
performance that SWBP algorithm.
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