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Abstract. As one of the promising techniques to improve the spectral
efficiency of the network in the Internet of Things (IoT), the orbital-
angular-momentum (OAM) multiplexing optical wireless communication
has been studied a lot. In the optical beams with multi-OAM modes, the
vortices deviating from the beam center sometimes cannot be avoidable,
and they will strongly influence the transverse patterns during the beam
propagation. In this article, the expressions of optical beams with off-
axis vortices are derived in a commonly used focusing system, and the
effect of the vortices deviating from the beam center on the propagation
properties of the optical beam is discussed. We find that the number of
the bright spots in the transverse patterns of the superposition of two
OAM modes with off-axis vortices is not always equal to the absolute
value of the mode difference which is observed in the field with only
on-axis vortices. The bright spot can also be found to rotate during the
beam propagating, and as the number of the modes increases in the
overlapping, the superposition patterns become more complicated and
these patterns can be adjusted by the off-axis distance and the topolog-
ical charge of the vortices. Our result will be helpful in developing the
network of the IoT.

Keywords: Orbital angular momentum · Off-axis vortices ·
Multiplexing

1 Introduction

The term of Internet of Things (IoT) was first proposed in 1998 [1], after that, the
IoT has been developing extensively in various areas, and will realize the goal of
intelligent identifying, locating, tracking, monitoring, and managing things [2,3].
However, as the developing of the IoT, trillions of devices will be involved into
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the IoT, therefore the network of the IoT will be congested. The orbital-angular-
momentum (OAM) multiplexing optical wireless communication is a promising
technique to overcome this problem [4,5].

In most of researches on the OAM mode multiplexing, only the vortices
embedded in the beam center are considered [6,7] and many results are obtained
based on the assumption of the axial vortices (i.e. located in the beam center) [8].
However, the off-axis vortices sometimes are inevitable in the generation of the
beams with OAM modes, like in generating on-axis vortex with misalignment
[9–11]. In another perspective, the vortices deviating from the beam center also
have very interesting properties during the beam propagation, such as decreas-
ing the total OAM of the beam [12,13], improving the acceleration of the beams
[14], generating transverse focal shift [15] and having rotating trajectories in
the focused fields [16–23], and also can lead to some special polarization struc-
tures [24,25]. In the OAM multiplexing optical wireless communication system,
the off-axis vortices are also not avoidable in many circumstances, and these
vortices will change the superposition patterns of multi-OAM modes, which will
influence the efficiency at the receiving end. In this article, the expressions of
the propagating optical beams with vortices off the beam center will be derived,
and the influence of these vortices on the propagation properties of the beam
with multi-OAM modes will be discussed.

2 Theory

In practical experiments or applications, in order to concentrate more energy in
the propagation direction, a thin lens is usually used to focus the light before
its propagation. Even if the thin lens is absent, the diffraction effect should
also be considered in the propagation of the optical wave. The far field of the
diffracted light is actually equivalent to the field at the focal plane of the wave
going through a thin lens [26]. Generally an optical beam with OAM mode N
means an optical vortex beam with topological charge N . In this article, we are
considering the propagation of optical beams with multi-OAM modes, therefore,
we first derive the field distribution along the propagation in the focal region of
optical beams with different OAM mode.

Assume that there are N vortices with topological charge mk located at
r = rk, φ = φk, embedded in a Gaussian beam. The amplitude distribution of
the electric field V0, according to [16] at the beam waist w0 can be expressed as

V0(r, φ) =
N∏

k=1

e−r2/w2
0
(
re±iφ − rke±iφk

)|mk|
, (1)

where r denotes the radial distance and φ is the azimuthal angle. If mk is positive,
the sign of φ and φk is positive and vice versa.

Let us then consider a converging, monochromatic wave whose amplitude at
the entrance plane can be expressed by Eq. (1), and this wave emerges from
a circular aperture (which can be treated as passing through a thin lens) with
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its radius a. The geometrical focus is located at the origin of the Coordinates (see
Fig. 1) and f is the focal length or the radius of a Gaussian reference sphere S.
The electric field at point P in the focal region can be given by the expression [26]

E(P ) = − i
λ

e−ikf

f

∫∫

S

V0
eiks

s
dS, (2)

where k is the wave-number. k = 2π/λ and λ is the wavelength in free space.

Fig. 1. Illustrating the notation.

When the vortex is located at (a1, 0) and its topological charge is m = 1 (i.e.,
the mode is 1), the complex amplitude at the entrance plane is expressed as

V0(ρ, φ) = e−(aρ/w0)
2
(aρeiφ − a1), (3)

here aρ = r. Substituting Eq. (3) into Eq. (2), we can get

E1(P ) = − i
λ

e−ikf

f

∫∫

S

e−(aρ/w0)
2
(aρeiφ − a1)

eiks

s
dS, (4)

where the subscript 1 of U1 means that the mode is 1. In this article, we will
adopt the dimensionless Lommel variables u and v instead of x, y, z, i.e.,

u =
2π

λ

(
a

f

)2

z (5)

v =
2πa2ρ

λf
=

2π

λ

a

f

√
x2 + y2. (6)

In order to get the explicit expression of Eq. (4), we will use some approxi-
mations. First the factor 1/s can be approximated as 1/f , second the Debye
approximation is also applied, i.e.,

s − f = −q · R, (7)

where q is a unit vector in the direction of OQ and R is the vector from the
focus to the point P (see Fig. 1). Then Eq. (7) can be written as

kq · R = vρcos(φ − ψ) − (f/a)2u +
1
2
uρ2, (8)
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with ψ = arctan(y/x). By applying Eq. (8) and dS = a2ρdρdφ, we can re-write
Eq. (4) as

E1(u, v, ψ) = − i
λ

a2

f2
ei(

f
a )2u

∫ 1

0

∫ 2π

0

e−i[vρcos(φ−ψ)+ 1
2uρ2]

×e−(aρ/w0)
2
(aρeiφ − a1)ρdρdφ (9)

Because of the following identity
∫ 2π

0

ei[−vρcos(φ−ψ)]eimφdφ = Jm(−vρ)
2π

i−m
eimψ, (10)

where Jm is the first kind of Bessel function of order m, the Eq. (9) can be
simplified as

E1(u, v, ψ) =
2πa2

λf2
ei(

f
a )2u

[
eiψ

∫ 1

0

−aρ2J1(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

+ia1

∫ 1

0

ρJ0(vρ)e−(aρ/ω0)
2
e−

i
2uρ2

dρ

]
. (11)

Using the same steps, one can derive the expressions of the electric fields for
arbitrary modes, and here the expressions for mode 2, 3 and −1 are presented,
as

E2(u, v, ψ) =
2πa2

λf2
ei(

f
a )2u

[
iei2ψ

∫ 1

0

a2ρ3J2(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

+2a2e
iψ

∫ 1

0

aρ2J1(vρ)e−(aρ/w0)
2
e−

i
2uρ2

d

−ia2
2

∫ 1

0

ρJ0(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

]
, (12)

E3(u, v, ψ) =
2πa2

λf2
ei(

f
a )2u

[
ei3ψ

∫ 1

0

a3ρ4J3(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

−i3a3e
i2ψ

∫ 1

0

a2ρ3J2(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

−3a2
3e

iψ

∫ 1

0

aρ2J1(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

+ia3
3

∫ 1

0

ρJ0(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

]
, (13)

E−1(u, v, ψ) =
2πa2

λf2
ei(

f
a )2u

[
e−iψ

∫ 1

0

−aρ2J1(vρ)e−(aρ/w0)
2
e−

i
2uρ2

dρ

+ia−1

∫ 1

0

ρJ0(vρ)e−(aρ/ω0)
2
e−

i
2uρ2

dρ

]
, (14)
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where the subscript n of En (n = 1, 2, 3,−1) indicates the mode of the beam
(or the topological charge of the vortex), and an presents the off-axis distance
of the vortex with charge n in the entrance plane.

3 Result and Discussion

In this section, we will use the expressions derived in the previous section to
discuss the propagation properties of the focused optical beams with multi-
OAM modes. In our research, only the case of perfect superimposed beams are
considered, which means that the beams with different modes are overlapped
with their beam centers and propagating directions coincident with each other.

First of all, the superposition of the mode m = 1 and mode m = 2 are
considered. When the off-axis distances a1 and a2 are both equals to 0, i.e.,
the vortices are perfectly in the beam center, the superimposed pattern in the
transverse planes during the propagation of the beam usually has one bright
spot because of their phase distributions. It is shown in Fig. 2 that in the focal
plane and in the transverse planes along the propagation direction there is only
one diffraction spot (i.e. the bright spot), which is coincident with the result
in [5]. Moreover, it also can be found that this bright spot rotates during its
propagation.
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Fig. 2. Intensity distribution in the transverse planes along the propagation direction.
Here a = w0, a/f = 10, a1 = a2 = 0.

When there is one vortex moving away from the beam center, i.e., aN �= 0
(N = 1, 2), the number of the bright spots in the superimposed pattern will not
always equal |N1 − N2| (N1, N2 are the numbers of the modes). It is shown in
Fig. 3 that as the vortex of mode 2 is leaving off the beam center with a2 =
0.25w0, there appear two bright spots during the beam propagation and also
these two spots rotate with the distance.

If the vortices in both two modes are placed at a very short distance from
the beam center, i.e., a1 �= 0 and a2 �= 0, the superimposed field can also be
quite different. In Fig. 4, it is clear to see that when a1 = a2 = 0.25w0, although
there are also two bright spots, the pattern in this case is perpendicular to that
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Fig. 3. Intensity distribution in the transverse planes along the propagation direction.
Here a = w0, a/f = 10, a1 = 0, a2 = 0.25w0.
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Fig. 4. Intensity distribution in the transverse planes along the propagation direction.
Here a = w0, a/f = 10, a1 = 0.25w0, a2 = 0.25w0.

in Fig. 3, for instance in the focal plane the bright spots are located along the y
axis in Fig. 3, while they appear on the x axis in Fig. 4.

Secondly, the mode difference of two modes which is more than 1 is considered
for superimposition. Here we choose two pairs of modes: mode 1 and 3, mode 1
and −1. It is displayed in Fig. 5 that since the mode difference in these two cases
are both equal to 2, there exist two bright spots when a1 = a3 = a−1 = 0. When
there is one vortex embedded away from the beam center, one can see that in the
superposition of mode 1 and 3, the number of the bright spots becomes 1 [see
plot (a) and (a’) in Fig. 6], whereas in the case of mode 1 and −1, this number
can be different in the focal plane and other transverse planes during the beam
propagation [see plot (b) and (b’) in Fig. 6].

At last, we will look at the superposition of three different modes. Here the
mode 1, 2 and 3 are overlapped in one beam. There has not been any theoretical
formula to describe the superposition pattern of the modes more than 2, thus
it is hard to say how many bright spots will exist there. As it shows in Fig. 7,
for the superposition of mode 1, 2 and 3, the number of the bright spots can be
1 or 2, and the position of the bright spot is dependent on the position of the
vortices in the initial beams.
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Fig. 5. Intensity distribution in the focal planes for (a) the superposition of mode 1
and 3, (b) the superposition of mode 1 and −1. Here a = w0, a/f = 10, a1 = a2 = 0.

In summary, from the discussions in this section, we can see that if there
exists any off-axis vortex in the beam with multi-OAM modes, it is hardly to
define the superposition patterns during the propagation. When two different
modes are superimposed, the number of the bright spots is not always equal
to the absolute value of the mode difference. The positions of the bright spots
also can be changed as the beam propagates. Even if there is no off-axis vortice,
the position of the bright spots can rotate along its propagation direction. The

(a) mode 1, 3; u = 0 (a’) mode 1, 3; u = 5

(b) mode 1, -1; u = 0 (b’) mode 1, -1; u = 5
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Fig. 6. Intensity distribution in the transverse planes. The superposition of mode 1
and 3 are shown in (a) u = 0 and (a’) u = 5; The superposition of mode 1 and −1
are shown in (b) u = 0 and (a’) u = 5; Here a = w0, a/f = 10, a1 = 0, a3 = 0.25w0,
a−1 = 0.50w0.
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Fig. 7. Intensity distribution in the focal planes for the superposition of mode 1, 2 and
3. In plot (b) a2 = −0.10w0 means that the vortex is embedded in the −x axis with
the distance 0.10w0. Here a = w0 and a/f = 10.

superposition pattern will become more complicated as the number of modes
increases. In this case the number and positions of the bright spots are also
dependent on the topological charges, the off-axis distances of the vortices in
the input field.

4 Conclusion

In this article, the influence of the off-axis vortices on the propagation properties
of the optical beam with multi-OAM modes is discussed. The expressions for
the optical beams with different OAM modes (including the on-axis/off-axis
vortices) passing through a thin lens are derived. Based on the derivation, the
superposition fields of different modes are analyzed. It is found that when there
is any off-axis vortices, the number of the bright spots is not always equal to
that in the superimposed field with only on axis vortices. The superposition
patterns can rotate and the bright spots can split or combine during the beam
propagation. The superposition patterns will become more complicated if the
combined modes are increased. Our result shows that in a telecommunication
system with multi-OAM modes the effect of the off-axis vortices should be taken
into consideration seriously, and our finding will give implications in the receiving
end of the telecommunication system with multi-OAM modes where an antenna
needs to be adjusted according to the superposition pattern.
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