
Enabling IoT/M2M System Scalability
with Fog Computing

Yuan-Han Lee and Fuchun Joseph Lin(B)

Department of Computer Science, College of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan

{henry19950709.cs02g,fjlin}@nctu.edu.tw

Abstract. As increasinglymore IoT/M2Mdevices are connected to Internet, they
will cause serious congestion to IoT/M2Msystemsnormally deployed in the cloud.
Although Cloud can scale out to support more data requests, it may not be able
to satisfy the low latency demanded by certain IoT/M2M applications. Fog, as
an edge of Cloud, can alleviate the congested problem in the cloud and provide
low latency for critical IoT/M2M applications due to its proximity to IoT/M2M
devices. In this research, we propose (1) utilizing oneM2M, a global IoT/M2M
standard, as the middleware to connect the cloud and the fog, (2) using Traffic
Classifiers to intercept and divert IoT/M2M traffic requiring low latency to Fog
and (3) deploying independent scalability mechanisms for Cloud and Fog. We
demonstrate and verify our scalability design using a smart hospital use case and
show that our proposed system can achieve better scalability results in terms of
latency, CPU usage and power consumption compared to those with only Fog or
Cloud.

Keywords: Scalability · Cloud computing · Fog computing · oneM2M · IoT ·
M2M · OpenStack · Kubernetes

1 Introduction

With an estimate of 20 billion IoT/M2M devices connected to the Internet in 2020
by Gartner, it is foreseen that the cloud-based IoT/M2M systems will soon face the
issues of network congestion. Traditionally, an IoT/M2M system can achieve scalability
solely in the cloud. Nevertheless, it may still fail to deliver the low latency demanded
by some IoT/M2M applications such as those for eHealth and video streaming. In this
research,we propose the utilization of “FogComputing” [1] to helpCloud handle the data
traffic that requires low latency. Also, to increase the overall system capacity, scalability
mechanisms for Cloud and Fog are independently designed while assuring the demands
from low latency applications are met by Fog.

Fog, as an extension of Cloud, attempts to move the cloud capacity such as compute,
network and storage to the edge [2]. As such, Fog is much closer to end users and
IoT/M2Mdevices thanCloud.TheFognode is the key component in theFog architecture.
Before data is sent to Cloud, it will be sent to Fog first for filtering and preprocessing.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

B. Li et al. (Eds.): IoTaaS 2019, LNICST 316, pp. 489–502, 2020.

https://doi.org/10.1007/978-3-030-44751-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44751-9_41&domain=pdf
https://doi.org/10.1007/978-3-030-44751-9_41


490 Y.-H. Lee and F. J. Lin

Fog then can decide whether it should send data to Cloud for further processing or just
finish the processing locally. In this way, Fog not only can reduce the load of the cloud
but also can reduce processing latency of IoT/M2M applications.

In our research, in order to achieve overall system scalability while accommodating
the demands from low latency applications, we propose adding a Traffic Classifier in the
Fog architecture to identify IoT/M2M traffic requiring low latency. For IoT/M2M sys-
tems in Cloud and Fog, we use oneM2M, a global IoT/M2M standard, as the middleware
to integrate both Cloud and Fog. Furthermore, independent scalability mechanisms are
designed for them in order to dynamically scale out/in the respective oneM2MMN-CSE
(Middle Node – Common Service Entity) and IN-CSE (Infrastructure Node – Common
Service Entity) instances according to the IoT/M2M traffic load.

Smart Hospital [3] is an ideal use case for applying system scalability of Cloud and
Fog. There are several IoT/M2M applications deployed in such a hospital and each one
has different demands for latency. As the hospital grows and the patient needs evolve,
the smart hospital should keep up with these demands with its system scalability design.

The rest of this paper is organized as follows. Section 2 gives a survey of related
work and explains our motivation and unique contribution. Section 3 describes the high-
level architecture of our proposed system. Section 4 presents our implementation details.
Section 5 compares our proposed system to that with only Fog or Cloud and explains
our experimental results for the smart hospital use case. Finally, Section 6 presents
our conclusion and future work. The main abbreviations used throughout the paper are
summarized in Table 1.

2 Related Work

Scalability research is done based on either Cloud or Fog computing. In addition, there
are also research efforts to explore the collaboration between Cloud and Fog. As such,
we categorize our survey into three areas in the following.

2.1 Scalability Research Based on Cloud Computing

Cerritos et al. [4] designed a Master Node in the cloud that is aware of system resources
and traffic load so that it not only can decide load balancing policies but also proactively

Table 1. Summary of abbreviations

Abbreviation Expansion

MN Middle Node

IN Infrastructure Node

CSE Common Service Entity

AE Application Entity

TC Traffic Classifier



Enabling IoT/M2M System Scalability with Fog Computing 491

react to scalability needs. Bastida et al. [5] proposed a highly scalable OpenStack-
based architecture for IoT/M2M platforms by taking advantage of functionalities of
OpenStack and introducing a master node cooperating with a load balancing queue for
fair distribution of incoming traffic among platform nodes.

2.2 Scalability Research Based on Fog Computing

As the latency demand of IoT/M2M applications becomes increasingly more important,
Fog is regarded as an alternative to Cloud in this issue. Sen et al. [6] implemented an
auto-scaled IoT broker Nucleus with MQTT in the fog architecture that can scale as the
number of IoT devices increases. Tseng et al. [7] integrated Middle Nodes of oneM2M
with highly scalable container-based Fog nodes to develop a scalable fog network that
can dynamically scale in/out oneM2M instances along with Fog nodes.

2.3 Collaboration Between Cloud and Fog

BycollaboratingwithFog, both latency and congestion inCloud canbe greatly improved.
Hence there has been active research on the collaboration between Cloud and Fog.
Zhao et al. [8] proposed an approach for edge-node-assisted data transmission in the
cloud-centric IoT architecture to overcome the problem of overwhelming bandwidth
consumption in the cloud. Chen et al. [9] took advantage of Fog to reduce the workload
of Cloud by designing an innovative scheduling mechanism to optimize the dispatch of
cloud and fog computing resources.

With the heterogeneous nature of IoT applications, processing them solely in the
cloud or in the fog is not sufficient to meet all their QoS requirements. Although some
collaborationmodels betweenCloud and Fog have been proposed, thesemodels focus on
load sharing between Cloud and Fog than the overall system scalability. In our research,
we adopt a different approach: First, instead of collaboration we just let Cloud and Fog
each handle the IoT traffic they are good at. Second, we enhance each with independent
scalability mechanism to support the huge amount of IoT/M2M traffic.

To accomplish our scalability objective: (1) we design the Traffic Classifiers in the
fog architecture to identify the IoT/M2M traffic that requires low latency, (2) we utilize
oneM2M as a middleware to connect Cloud and Fog, and (3) we enable both Cloud
and Fog to dynamically scale out/in their respective oneM2M instances according to the
incoming traffic load.

3 Proposed System Architecture

In this section, we explain the high level architecture and communication interfaces
of our system. As depicted in Fig. 1, starting from the bottom is Sensor Network that
collects and sends the IoT traffic upward. Next above is Fog Network where each fog
local area network is equipped with an embedded Traffic Classifier for identifying the
IoT traffic to be processed in Fog. Finally, on the top is Cloud Network with multiple
cloud nodes; each has its own IoT platform to handle the IoT Traffic.

Though not explicit in Fig. 1, oneM2M is adopted as the communication middleware
of our system that will be explained below.



492 Y.-H. Lee and F. J. Lin

3.1 Sensor Network

Sensor Network consists of multiple types of sensor devices. They can be regarded as
representing IoT applications and each application requires different QoS for latency.
For example, the ehealth application demands low latency processing to ensure quick
report of a patient’s medical status, while clinic historical information can endure high
latency due to its nature of information retrieval and storage.

3.2 Fog Network

Fog Network is an LAN close to Sensor Network. Traffic Classifiers, as the first points
of receiving the IoT traffic, are capable of distinguishing whether an IoT application
requires low latency processing or not. Then, it will decide whether the traffic should be
processed immediately locally or go to the Cloud Network according to the application
nature. Fog Network consists of a hierarchy of Fog Nodes as illustrated in Fig. 1. In
order to build a highly scalable Fog architecture, Fog Network must not only balance
the load of each Fog Node but also have the scalability mechanism to scale out/in these
nodes according to the overall workload.

3.3 Cloud Network

On the other hand, Cloud Network is responsible for handling all other IoT traffic which
have no low latency demand. It consists of only a single level of Cloud nodes as illustrated
in Fig. 1. Similar to Fog Network, Cloud Network can distribute the load to different
Cloud Nodes and scale them up/down according to the workload.

Fig. 1. Proposed system architecture



Enabling IoT/M2M System Scalability with Fog Computing 493

Fig. 2. oneM2M functional architecture

3.4 Communication Interface

In order to construct the above components, a middleware is required to support the
communication and connection among them. Our research utilizes the standardized IoT
platform, oneM2M [10], as the middleware. Figure 2 depicts the oneM2M architecture
in our system which consists of a infrastructure domain and a field domain. Besides
IoT/M2M devices represented by Application Service Node (ASN) and Application
Dedicated Node (ADN), we focus on the other two types of nodes: Infrastructure Node
(IN) and Middle Node (MN). IN is an IoT/M2M server that is normally deployed in the
cloud while MN resides between IoT/M2M devices and Cloud. Both of them consist of
three functional entities: Application Entity (AE), Common Service Entity (CSE) and
Network Service Entity (NSE). AE is an application service. CSE provides common
service functions (CSFs) which maintain communication interfaces in oneM2M. NSE is
responsible for providing the interface to the underlying transport network. The oneM2M
supports HTTP binding and provides Restful APIs over each layer. The oneM2M also
defines several reference points among its entities: Mca between AE and CSE; Mcc
between CSEs; and Mcn between CSE and NSE.

IN is related toMN as how cloud is related to Fog as there aremany common features
between them. In our research, MNs are thus deployed in Fog nodes and used to offload
the congested IN normally deployed in the cloud. These MNs on Fog nodes support low
latency required for critical IoT/M2M applications.

4 Detailed Design and Implementation

This section illustrates the implementation details of our system architecture introduced
in Sect. 3, including its applications to a smart hospital use case.

4.1 Sensor Network

We assume three kinds of IoT/M2Mdevices deployed in the hospital. Each one produces
a specific type of data traffic:



494 Y.-H. Lee and F. J. Lin

• Heartbeat Data - produced by the heart monitoring devices to ensure the wellness of
the patients with heart disease.

• Video Stream - produced by video cameras installed in the hospital to monitor patients
and detect any anomaly.

• Personal and Clinic Historical Information - produced by the hospital information
system terminals to track patients’ personal data and clinic historic record for reference
and analytics.

To simulate the three kinds of devices above we design a multi-thread Traffic Gener-
ator configurable in terms of number of thread, data size and data frequency. Each sim-
ulated device can send IoT data to Fog Network via HTTP Post by specifying the URI
address of a oneM2MAE (Application Entity) such asm2m/video_app/video_container.

4.2 Fog Network

Our design of Fog Network, as depicted in the lower part of Fig. 3, is based on the open-
source container orchestration system, Kubernetes [11]. Fog Nodes are constructed as
Kubernetes pods managed by kubelet and communicate with each other using Flannel
Container Network Interface (CNI).

Fig. 3. Detailed system architecture

The components of Fog Network and its associated scalability mechanism are
described below.

1. Fog Manager: Fog Manager is implemented based on Kubernetes Metrics Server
[12] that can monitor the CPU utilization of Fog nodes periodically. Through API,
the resource usage metrics for pods and nodes can be monitored. Fog Manager then
can scale Fog nodes out and in according to the workload discovered.



Enabling IoT/M2M System Scalability with Fog Computing 495

2. FogNode:Weconstruct Fognodes as a single-level architecture and eachone consists
of three entities: Traffic Classifier (TC), oneM2MMN-CSE and oneM2MMN-AE.

TC is the first point of Fog Network for receiving IoT traffic from Sensor Network.
It decides whether to relay the traffic to remote Cloud or keeps it locally. Assuming
the kinds of IoT applications coming to the IoT/M2M system are known in advance, a
mapping table is pre-provisioned in Traffic Classifier to specify the latency demand of
each type of IoT applications. When Traffic Classifier receives an HTTP request, it will
parse the HTTP post to get the URI of oneM2M AE and use it to determine its latency
demand from the mapping table.

Among the three IoT devices in our hospital use case, heart monitoring devices
require ultra-low latency response to ensure the quick report of a patient’s medical
status. Video cameras also demand low latency for anomaly detection. On the other
hand, personal and historical clinic information has no need of low latency because it’s
for information retrieval and storage. Consequently, Traffic Classifier would divert the
first two types of traffic to local Fog nodes for fast processing and the last one to Cloud
Network for regular processing.

Each MN-CSE in Fog Network registers to the upper MN-CSE that acts as the load
balancer in theCloudNetwork.As a result,whenTCswant to forward the traffic toCloud,
MN-CSEs in Fog nodes can retarget these requests to theMN-CSE Load Balancer in the
cloud via the oneM2M Mcc interface. MN-AE subscribes to the MN-CSE in the same
Fog node so that it can receive notification from MN-CSE when there’s any new IoT
traffic coming in.

When TC forwards the IoT traffic requiring low latency to theMN-CSE in Fog node,
the MN-CSE stores the incoming data and sends notification to the MN-AE. MN-AE
will either analyze the heartbeat data or process the video stream to determine whether
there is any anomaly. If any anomaly is detected,MN-AEwill trigger an alarm for special
actions.

3. Fog Load Balancer: Fog Load Balancer is used to distribute the incoming data
traffic to each Fog node fairly. It is designed based on RabbitMQ [13], an open-
source message-broker software supporting Advanced Message Queuing Protocol
(AMQP). LoadBalancer is implemented in Remote Procedure Call (RPC) consisting
of the request channel and the response channel. The RPC client in Load Balancer
forwards the HTTP requests to the RPC servers in each Fog node via the request
channel. Next, the RPC server in each Fog Node translates the messages to a specific
format for inserting IoT data to oneM2M; it then sends a response back to the RPC
client via the response channel. The response would be forwarded through Load
Balancer to IoT/M2M devices in Sensor Network.

4. Scalability Mechanism: We define two thresholds as depicted in Fig. 4: Scale In
(10%) and Scale Out (50%). Whenever Fog Manager detects that the average CPU
utilization of Fog nodes is higher than the Scale Out threshold, it will scale out one
more Fog node. On the other hand, if the average CPU utilization of Fog nodes is
lower than the Scale In threshold, Fog Manager will scale in one Fog node.



496 Y.-H. Lee and F. J. Lin

Fig. 4. The threshold of scalability mechanism

4.3 Cloud Network

We depict the architecture of our scalable Cloud Network in the upper part of Fig. 3.
We use the open-source cloud operating system, OpenStack [14], to construct our Cloud
Network. All the components as discussed below are virtual machines managed by
OpenStack Nova and communicate with each other using OpenStack Neutron.

1. Cloud Manager: CloudManager manages the scale-out and scale-in of Cloud nodes
with the following operations: (1) Cloud nodes send their CPU status to Cloud
Manager periodically, (2) At CPU overload, Cloud Manager would scale Cloud
nodes up while at CPU underload, it would scale Cloud nodes down.

2. Cloud Node: We provision a oneM2M IN-CSE into each Cloud node so that each
Cloud node becomes a oneM2M server capable of processing the personal and
clinic historical information. In addition, a plugin is embedded in each Cloud node
for reporting its CPU utilization to Cloud Manager.

3. Cloud Load Balancer: Cloud Load Balancer is integrated in oneM2MMiddle Node.
WhenMN-CSE receives the data fromTCs in FogNetwork, it will redirect the data to
Cloud Load Balancer immediately instead of processing it. Similar to Fog Network,
Cloud Load Balancer for Cloud Nodes is also implemented based on RabbitMQ
with RPC. The RPC client in Load Balancer forwards the HTTP requests to the RPC
servers in each Cloud node via the request channel. After RPC servers send the data
to IN-CSE, the response from the Cloud node is then sent back via the response
channel to TCs, then to Sensor Network.

4. Scalability Mechanism: We define the same two thresholds: Scale In (10%) and
Scale Out (50%) as depicted in Fig. 4, Once the average CPU utilization of Cloud
nodes calculated by Cloud Manager exceeds Scale Out threshold, Cloud Manager
will create and add one more Cloud node. Conversely, if the average CPU utilization
of Cloud nodes is lower than Scale In threshold, CloudManagerwill stop and remove
one Cloud node.

5 Experiment and Evaluation

In this section, we will show the experimental testing of the proposed architecture and
the evaluation of testing results.

5.1 Testbed Environment

Our testbed environment is shown in Table 2. In Cloud Network, OpenStack Newton
is deployed while in Fog Network, Kubernetes v1.12.1 and Docker [15] 18.06.1-ce are



Enabling IoT/M2M System Scalability with Fog Computing 497

installed.We use OM2M [16], an open source implementation of oneM2M from LAAS-
CNRS, to construct oneM2M MN and IN. Cloud Network consists of two physical
machines: one for Controller and one for Compute Node. Fog Network consists of four
physical machines: one for K8S Master and three for K8S Nodes. Besides, we set the
minimum number of Cloud nodes to 2, the maximum number to 5 and each one runs on
a virtual machine with 8CPU, 4 GB of RAM and 30 GB of HDD. On the other hand,
we set the minimum number of Fog nodes to 2 and the maximum number to 7, each one
running on a Kubernetes pod with 1 CPU, 2 GB of RAM and 15 GB of HDD.

Table 2. Testbed hardware information

Component Operating system CPU RAM Machine Disk

Sensor network Ubuntu 16.04 Inter Core i5-8400
CPU @2.80 GHz
(6cores)

8 GB 1 Desktop 256 GB

Fog network Intel Core i5-4200H
CPU @ 2.80 GHz
(4cores)

8 GB 4 Laptops 512 GB

Cloud network Intel Core i7-8700
CPU @ 3.20 Ghz
(12cores)

64 GB 2 Desktops 1 TB

To simulate the proximity of FogNetwork and theCloudNetwork toSensorNetwork,
we configure the network in such away that the average response time fromFogNetwork
is 6.7 ms while the one from Cloud Network is 210 ms with 1000 simple HTTP requests
sent to each site. This simulates the distance from Sensor Network to Fog Network and
Cloud Network, respectively.

5.2 Experiment Setup

We design a Traffic Generator that is a multi-thread program, to simulate the IoT traffic
of heartbeat data [17], video stream [18] and clinic information [19] as described in
Sect. 4.1. Traffic Generator can configure any number of devices with different data
frequency and data size such as those in Table 3. used in our experiments. The settings

Table 3. Traffic generator configuration

IoT traffic Thread number
(low/high)

Data frequency Data size

Heartbeat data 2/10 10 records/s 170 B

Video stream 2/10 10 records/s 20 KB

Clinic information 4/20 2 records/s 950 B



498 Y.-H. Lee and F. J. Lin

are chosen to reflect the relatively small size but high frequencyof heartbeat data, the large
data size and high frequency of video stream though our IoT/M2M system only stores
the metadata of video instead of the whole media. Furthermore, we assume Personal and
Clinic Historical Information is the major application data traffic in the smart hospital
so its number of devices is set to be the largest. We intend to show that by letting Cloud
and Fog handle the type of traffic they are good at, we can achieve better overall system
scalability than sending all the traffic to either Fog or Cloud alone.

We test our systemwith two scenarios: high and low traffic loads. The amount of high
traffic is five times than that of low traffic as indicated in Table 3. In our experiment, we
send both high and low traffic loads for 5 min respectively to our proposed system and
compare the scalability of our system versus those with only Fog or Cloud in terms of
latency, CPU usage and power consumption per each IoT request. These three features
can represent how well the scalability of a system has been designed. Ideally, for the
system with good scalability design, when the amount of processed data increases, it
would cause lower latency, lower CPU resource and lower power consumption than the
ones with worse scalability.

5.3 Evaluation Result

We expect our system can leverage the benefits of dual scalability mechanisms of Fog
and Cloud to outperform the other two compared systems in majority of our test cases.

• Latency

In order to explain the benefits of our proposed system, we define maximum tolerable
latency of each application. For the application which would be forwarded to Fog Net-
work, the value of heartbeat data is set at 70 ms and the one of video stream is set at
250 ms. On the other hand, the value of Personal and Clinic Historical Information is
set at 4 s because it doesn’t require low latency response.

The evaluation results of latency are shown in Fig. 5. Under the condition of low
traffic, our proposed system and the one with only Fog can meet all the latency demands

Fig. 5. Latency results for three applications in low/high traffic load



Enabling IoT/M2M System Scalability with Fog Computing 499

of three IoT applications. However, the one with only Cloud cannot provide low latency
to heartbeat data and video stream due to the long haul communication. On the other
hand, only our proposed system satisfies all latency requirements in the case of high
traffic thanks to the effort of Traffic Classifier. Similar to the situation in low traffic,
the system with only Cloud cannot even meet one of them. In addition, the system with
only Fog has to allocate part of computing resources for Personal and Clinic Historical
Information, so it cannot fully focus on handling the other traffic requiring low latency.

• CPU Usage

Figure 6 depicts the result of Average CPU usage. These results measured average CPU
utilization of physical machines for computing. To calculate the overall CPU usage of
our proposed Cloud-Fog system, we survey a CPU benchmark website [20] to compare
the CPU of both sites so that we can get the CPU usage of our hybrid system by using the
weighted averagemethod. For the low traffic load, the systemwith only Fog outperforms
the others due to its lightweight characteristics. On the other hand, Cloud has the highest
CPU usage due to the needs to maintain heavyweight Virtual Machines even in the light
traffic load.

Fig. 6. Result for CPU usage in low/high traffic load

However, our proposed system shows the best result in the condition of high traffic
load. That’s because when the amount of data traffic increases, the value of Traffic
Classifier and dual scalability mechanisms stands out. Both Fog and Cloud can fully
utilize their computing resources to handle the traffic that they are good at instead of
spending extra resource to process all three types of traffic.

• Power Consumption

Figure 7 shows the results of average power consumption per request for three appli-
cations. We calculate the total power consumption in the period of our experiment and



500 Y.-H. Lee and F. J. Lin

Fig. 7. Result for average power consumption per request in low/high traffic load

derive the results by dividing it by the total number of requests. We use the following
formula (1) to calculate the power consumption:

Power Consumption = T DP ∗ CPU% + K ∗ Memory% (1)

where TDP is the microprocessor’s Thermal Design Power, a reference measurement
of CPU running in normal conditions and given by the manufacturer. For our particular
testbed, TDP for the machines in Cloud is 65W and for the ones in Fog is 47W. K is the
common power consumption of memory modules [21], and it’s 6 W for the memory in
Cloud and 4W for the one in Fog. CPU% andMemory% are the average CPU utilization
and memory usage of the machines.

The results show that our proposed system and the one with only Fog consume
less power consumption per request in the high traffic load than in the low traffic load,
because both sites leverage Fog Computing to handle the traffic. Although they may
consume more total power in high traffic than in low traffic, the amount of requests they
can handle also largely increases due to low latency communications and scalability
mechanisms. As the impact of the increase in the amount of requests is greater than
the increase of total power usage, the average power consumption per request becomes
dramatically lower. On the other hand, the system with only Cloud performs worse in
the high traffic load than in the low traffic load because its high latency characteristics
produces more impact to the average power consumption per request.

In the two conditions of traffic load, our proposed system performs better than the
one with only Cloud but it doesn’t perform better than the one with only Fog because we
leverage both Cloud and Fog to handle the IoT traffic so it’s reasonable that our proposed
system consume more power than the system with only Fog.

In summary, only our proposed system canmeet all the latency requirements of three
applications even though it doesn’t always perform the best in terms of the average power
consumption per request. However, for smart hospital latency should be the first priority
consideration. This verifies that our proposed architecture is indeed the best choice in
the case of smart hospital applications.



Enabling IoT/M2M System Scalability with Fog Computing 501

6 Conclusion and Future Work

In this research,we propose the use of FogComputing to helpCloud handle the IoT/M2M
applications requiring low latency. Accordingly, we introduce a Traffic Classifier which
is deployed near the Sensor Network, to divert different IoT traffic to Fog Network
or Cloud Network according to their latency requirements. We also propose the use of
standardized IoT/M2M platform, oneM2M, to integrate Kubernetes-based Fog Network
and OpenStack-based Cloud Network. Moreover, we adopt dual scalability mechanisms
inFogandCloud to achieveoverall systemscalabilitywhile accommodating thedemands
from low latency applications.

We compared our proposed system to the ones with only Fog or Cloud by utilizing a
smart hospital use case. Three architectures are compared in terms of their latency, CPU
usage and power consumption. We verify that the proposed system is the best choice for
the specific use case.

In the future, we plan to apply SDN/NFV technology to our proposed system. The
goal is to bring the benefits of softwarization and virtualization to system scalability
such as to manage Cloud Node as VM-based VNFs and Fog Node as container-based
VNFs in the NFV architecture.

Another extension in our plan is to add more layers of Fog Nodes. As more compli-
cated IoT traffic comes in, it’s necessary to distribute the task tomore levels of Fog nodes
and each level of Fog nodes can be equipped with scalability mechanisms to support the
processing of the huge amount of incoming data requests.

Acknowledgement. This work was financially supported by the Center for Open Intelligent
Connectivity from The Featured Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet
of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, Helsinki, Finland, pp. 13–16 (2012)

2. OpenFog Consortium: OpenFog Reference Architecture for Fog Computing (2017)
3. Smart Hospital. https://www.sdglobaltech.com/blog/how-developers-must-prepare-to-

create-smart-hospital-solutions. Accessed 9 Apr 2019
4. Cerritos, E., Lin, F.J., De la Bastida, D.: High scalability for cloud-based IoT/M2M sys-

tems. In: IEEE International Conference on Communications (ICC), Kuala Lumpur,Malaysia
(2016)

5. De laBastida,D., Lin, F.J.: OpenStack-based highly scalable IoT/M2Mplatforms. In: iThings,
Exeter, England, UK, June 2017

6. Sen, S., Balasubramanian, A.: A highly resilient and scalable broker architecture for IoT
applications. In: 10th International Conference on Communication Systems & Networks
(COMSNETS), Bengaluru, India (2018)

7. Tseng, C.L., Lin F.J.: Extending scalability of IoT/M2M platforms with fog computing. In:
IEEE World Forum on IoT, Singapore (2018)

8. Zhao, W., Liu, J., Guo, H., Hara, T.: ETC-IoT: edge-node-assisted transmitting for the cloud-
centric internet of things. IEEE Netw. 32, 101–107 (2018)

https://www.sdglobaltech.com/blog/how-developers-must-prepare-to-create-smart-hospital-solutions


502 Y.-H. Lee and F. J. Lin

9. Chen, Y.C., Chang, Y.C., Chen, C.H., Lin, Y.S., Chen, J.L., Chang, Y.Y.: Cloud-fog computing
for information-centric Internet-of-Things applications. In: 2017 International Conference on
Applied System Innovation (ICASI) (2017)

10. oneM2M: Functional Architecture, oneM2M Technical SpecificationTS-0001-V.3.12.0
11. Kubernetes. https://kubernetes.io/. Accessed 9 Apr 2019
12. Metrics Server. https://github.com/kubernetes-incubator/metrics-server.Accessed 9Apr 2019
13. RabbitMQ. https://www.rabbitmq.com/. Accessed 9 Apr 2019
14. Openstack. https://www.openstack.org. Accessed 9 Apr 2019
15. Docker. https://www.docker.com/. Accessed 9 Apr 2019
16. OM2M. https://www.eclipse.org/om2m/. Accessed 9 Apr 2019
17. Heartbeat Data. https://archive.ics.uci.edu/ml/datasets/Heart+Disease. Accessed 24Apr 2019
18. Video Stream. https://schema.org/VideoObject. Accessed 25 Apr 2019
19. Personal andClinicHistorical Information. https://schema.org/Patient. Accessed 25Apr 2019
20. UserBenchmark. https://cpu.userbenchmark.com/. Accessed 9 Apr 2019
21. Power Supply Calculator: https://outervision.com/power-supply-calculator. Accessed 9 Apr

2019

https://kubernetes.io/
https://github.com/kubernetes-incubator/metrics-server
https://www.rabbitmq.com/
https://www.openstack.org
https://www.docker.com/
https://www.eclipse.org/om2m/
https://archive.ics.uci.edu/ml/datasets/Heart%2bDisease
https://schema.org/VideoObject
https://schema.org/Patient
https://cpu.userbenchmark.com/
https://outervision.com/power-supply-calculator

	Enabling IoT/M2M System Scalability with Fog Computing
	1 Introduction
	2 Related Work
	2.1 Scalability Research Based on Cloud Computing
	2.2 Scalability Research Based on Fog Computing
	2.3 Collaboration Between Cloud and Fog

	3 Proposed System Architecture
	3.1 Sensor Network
	3.2 Fog Network
	3.3 Cloud Network
	3.4 Communication Interface

	4 Detailed Design and Implementation
	4.1 Sensor Network
	4.2 Fog Network
	4.3 Cloud Network

	5 Experiment and Evaluation
	5.1 Testbed Environment
	5.2 Experiment Setup
	5.3 Evaluation Result

	6 Conclusion and Future Work
	References




