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Abstract. This paper presents a Sliding-Window Belief Propagation
with Unequal Window Size (SWBP-UWS) algorithm to deal with the
nonstationary heterogeneous source. In this algorithm, the entire source
is divided into several sections according to its variation and each opti-
mum window size is individually determined by each section. The exper-
imental results show this algorithm outperforms the SWBP algorithm.
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1 Introduction

1.1 Background

Reliable communication paves the way for the development of modern IoT as a
service and 5G technology. As an important error-correcting code, Low-Density
Parity-Check (LDPC) codes [1,2] could protect source codes from noisy channel.
Hence, LDPC codes have played a key role in various networking and commu-
nication system.

Decoding LDPC codes is a very important problem. In 2012, the Sliding-
Window Belief Propagation (SWBP) technique was proposed by Fang [3] to
decode LDPC codes. Thereafter, a lot of experiments [4,5] had showed that
SWBP possesses many advantages compared with standard Belief Propagation
(BP) algorithm. It can exactly trace time-varying channel state, demonstrate
near-limit performance, is easy to be implemented, is robust to initial parame-
ters, and is convenient to be parallelized. Recently, Shan [6] has used Graphics
Processing Units (GPUs) to accelerate a parallel version of SWBP algorithm
and achieved a high speed-up ratio.

All above works are based on an assumption that source are transmitted on
the channel with smoothly time-varying, e.g. sinusoidally-varying, homogeneous
state. Here, “homogeneous state” means the frequency of the time-varying func-
tions keeps constant. While in the real communication system, the source and
channel state usually varies arbitrarily. To better model the source, different fre-
quency of the time-varying functions should be considered, which we name as
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heterogeneous source. In Fang’s SWBP algorithm, the uniform sized windows are
imposed to calculate the initial local bias probability of each variable nodes for
belief propagation. This set up is effective for the homogeneous source. Whether
it is suitable for the heterogeneous source still need to be investigated.

1.2 Contribution

The main contribution of this paper includes: (a) A new Sliding-Window Belief
Propagation with Unequal Window Size (SWBP-UWS) algorithm is proposed
to deal with binary LDPC codes; (b) the size of sliding window is directly deter-
mined by the channel parameters in frequency domain; (c) smoothly sinusoidally-
varying channel states with two different frequency are studied. The numerical
simulated experiments demonstrate that our proposed algorithm performs better
than original SWBP.

The rest of this paper is organized as follows: Sect. 2 briefly reviews the
SWBP algorithm. Sect. 3 introduces our proposed model. In Sect. 4, experiment
results are reported and discussed. Section 5 concludes this paper and gives the
future possible development.

2 Preliminary

2.1 Notations

The LDPC code is specified by an m × n parity check matrix H. We give the
following notations to describe SWBP model.

• x = (x1, . . . , xn)T is the binary source, and x̃ is the estimate of x;
• y = (y1, . . . , yn)T is the Side Information (SI) available at receiver side;
• s = (s1, . . . , sm)T = Hx is the syndrome;
• p = (p1, . . . , pn), where pi is the local bias probability, p � 1

n

∑n
i=1 pi is the

global bias probability, and p̃ is the estimate of p;
• αij is the belief propagated from variable node xi to check node sj ;
• βji is the belief propagated from check node sj to variable node xi;
• σ = (σ1, . . . , σm)T is the overall belief of variable nodes;
• Mi is the set of indices of check nodes connected to variable node xi

• Nj is the set of indices of variable nodes connected to check node sj

The SWBP algorithm includes three phases: the standard BP, calculating
window size and refining local bias probability.

2.2 Steps of Standard BP

(1) Initialization:

σ
(0)
i = (1 − 2yi) log

(1 − pi)
pi

, and β
(0)
ji = 0 (1)
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(2) Variable nodes to check nodes BP:

1 − αij

αij
=

1 − σi

σi

/
1 − βji

βji
. (2)

(3) Check nodes to variable nodes BP:

1 − 2βji = (1 − 2sj)
∏

i′∈Mj\i

(1 − 2αi′j) (3)

(4) Computing overall brief of variable nodes:

1 − σi

σi
=

1 − p̃i

p̃i

/ ∏

j′∈Ni

1 − βj′i

βj′i
. (4)

(5) Hard decision:

x̃ =

{
0, σi ≤ 0.5
1, σi > 0.5

. (5)

If Hx̃ = s, the decoding process is successfully terminated; otherwise, more
iteration is required.

2.3 Calculating Window Size

At the beginning of each BP iteration, all variable nodes need be seeded with
local bias probability p. Hence, estimating an appropriate p̃ is a key issue. For
a nonstationary smooth source, we can treat any segment of this source in a
small window as approximately stationary. Therefore, p̃ can be obtained by
taking variable node xi as center, and averaging it’s neighbor’s overall belief in
a window with size h.

In fact, a suitable h is a tradeoff between two factors: on one hand, h should
be large enough that neighbor nodes’ information can be taken into account as
much as possible; on the other hand, h should be rather small to ensure that
source keeps stationary in this window. In [3], an adaptively searching algorithm
was proposed to calculating window size h. In this algorithm, p̃ is first computed
by (6)

p̃i =
−σi +

∑min(i+u,n)
i′=max(1,i−u) σi′

min(i + u, n) − max(1, i − u)
, (6)

where u = �h/2� is the half window size. Then, the mean squared error (MSE)
between p̃ and σ is computed by (7)

τ =
1
n

n∑

i=1

(p̃i − σi)2. (7)

At last, an appropriate h is obtained when MSE reaches the smallest value,
which is named h∗. In [3], all possible h ∈ {1, 2, . . . , n} are tested to find out
the h∗.
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2.4 Refining Local Bias Probability

Once h∗ is determined, local bias probability can be refined by (6), which can
be straightforwardly deduced to follows.

p̃i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p̃i−1 +
σi−1 − σi + σi+u − p̃i−1

i + u − 1
, 2 ≤ i ≤ (1 + u)

p̃i−1 +
σi−1 − σi + σi+u − σi−u−1

h − 1
, (2 + u) ≤ i ≤ (n − u)

p̃i−1 +
σi−1 − σi − σi−u−1 + p̃i−1

n − i + u
, (n − u + 1) ≤ i ≤ n

. (8)

3 Model Description

SWBP in Sect. 2 can only tackle the homogeneous source or channel state. In
this section, we present the SWBP-UWS algorithm to deal with heterogeneous
source. The steps of standard BP are identical with that in Sect. 2. The method
of calculating window size in Sect. 2 is very time consuming. In [5], the window
size was directly obtained by the frequencial characteristics of variable nodes’
global bias probability. We borrow this novel idea into our new algorithm.

3.1 Calculating Different Window Size

Assuming the source is consist of l sections, i.e. {x1, x2, . . . , xn}={x1, . . . , xn1} ∪
{xn1+1, . . . , xn2} ∪ . . . {xnl−1+1, . . . , xnl

}, where n = nl. The frequency of time-
varying function in one section is different from that in another section, but keeps
constant within itself. In SWBP-UWS algorithm, the best window size for each
section is independently computed by the overall beliefs within this section. Let
| · | be the cardinality of the set. For the ith section, the algorithm first calculates
the Fast Fourier Transform (FFT) of ri as f i(θ)), where θ ∈ [ni + 1 : ni+1], and
|θ| = Wi. Then let Di =

∑Wi

θ=1 |f i(θ)|. Then the best window size for ith section
is calculated by:

h∗
i ≈ Wi

Di

Wi∑

θ=1

|f i(θ)|/θ (9)

3.2 SWBP-UWS Algorithm

Once all best window sizes h∗
i , i ∈ [1, ..., l] are computed, the local bias probabil-

ity for each section can be computed by Eq. (8). Then we combine them to an
optimum local bias probability p̃, which will be the seeds for next BP iteration.
The SWBP-UWS algorithm is summarized as follow.
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Algorithm 1. SWBP-UWS Algorithm.
Require: Overall beliefs, r; Side information, y; Syndrome, s;
Ensure: Estimated source, x̃;
1: Initialization: b

(0)
i = 0, q

(0)
ij = pmfij

2: for l = 1 : MAX ITERATION do
3: Steps of Standard BP [3]
4: Computing overall beliefs r = (r1, . . . , rn)

T for varialbe nodes:
5: Dividing overall beliefs r into l sections
6: Computing each best window size h∗

i by equation (9)
7: Computing each optimum local bias probability by equation (8)
8: Combining local bias probabilities in each section to optimum local bias prob-

ability p̃
9: Hard decision:

10: x̃i =

{

0, if ri ≤ 0.5

1, if ri > 0.5

11: if Hx̃ = s then
12: quit loop
13: end if
14: end for
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Fig. 1. Bit-error-rate under two algorithms.
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Fig. 2. Frame-error-rate under two algorithms.

4 Experimental Results

To evaluate the performance of SWBP-UWS for nonstationary heterogeneous
source, a regular length n-1024 LDPC code is constructed. The local bias prob-
ability varies according to pi = pi1 + pi2, where pi1 = A(1 + sin(2πf1i1/n)),
i1 ∈ [1, ..., 512] and pi2 = A(1 + sin(2πf2i2/n)), i2 ∈ [513, ..., 1024]. To satisfy
the heterogeneous source, we set f11 : f2 = 1 : 3. Let five values of A be tested,
i.e., A ∈ {0.08, 0.09, 0.10, 0.11, 0.12}.

The experimental results are illustrated in Figs. 1 and 2, from which we find
that under different A SWBP-UWS outperforms SWBP algorithm in both BER
and FER.

5 Conclusion

To handle the nonstationary heterogeneous source, we present a Sliding-Window
Belief Propagation with Unequal Window Size (SWBP-UWS) algorithm. In this
algorithm, the entire source is divided into several sections according to its
variation and each optimum window size is individually determined by each
section. We perform numerical experiments to evaluate our algorithm. Compar-
ing SWBP, SWBP-UWS demonstrates better performance in both BER and
FER.
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