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Abstract. Due to limited resource and changing environments, wireless
sensor networks are susceptible to device failures. In this paper, we eval-
uate network’s vulnerability under potential device failures or attacking.
Specifically, we model wireless sensors and their operating procedure as
an S-T network, where the information rate regarding the network per-
formance is defined. The network robustness is evaluated via considering
how network capacity varies when network changes. The evaluation pro-
cess turns out to be a maximum flow interdiction problem, which is then
solved by transforming into a dual formation and approximating with
a linear programming. Lastly, via numerical simulation, the proposed
scheme is shown to be well suitable for evaluating network’s robustness.
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1 Introduction

Wireless sensor networks consist of widely deployed sensors that sense environ-
ment, collect data and route information to interested users, which are essential
for the Internet of things. Due to either hardware degradation and or malicious
attacking, wireless sensors may fail and be out of service [1]. The performance of
an improperly designed network may greatly suffer due to device failures. There-
fore, robustness is an important design aspect for wireless sensor networks.

In literature, a network’s robustness or vulnerability is mainly investigated
from the view of the underlying graph topology. For example, in [2], the connec-
tivity of a network is considered, where two metrics, namely “node-similarity”
and “optimal connectivity”, are defined to quantify network vulnerability. Sim-
ilarly, work [3] considers robustness as the redundancy of routing path between
two nodes, and defines a metric “natural connectivity” for measuring the net-
work’s robustness. Beside connectivity, criticality is another metric that is used
for measuring network vulnerability [4,5]. The node critical value is defined via
counting the number of paths that flows through a node. The edge critical value
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is defined similarly. Therefore, a node or edge with higher criticality value con-
tributes more to the network’s throughput, and may manifest itself as a vulner-
able point of a network. Furthermore, based on the definition of node and edge
critical values, network criticality is defined [6,7] via averaging nodes’ and edges’
critical values. From the perspective of information theory, work [8] studied the
vulnerability of network from the topology dissimilarities after network topol-
ogy changes. The robustness metric is then calculated with the Jenson-Shannon
divergence that is original from the information theory.

However, node connectivity or network topology changes does not necessar-
ily well represent the network performance variations caused by node failures.
In this paper, we will investigate the network robustness from the capacity of a
sensor network. Specifically, we model wireless sensors and their operating pro-
cedure as an S-T network, where the maximum supported information rate, i.e.,
the capacity, of the network performance is defined. Furthermore, an intelligent
attacking strategy that aims to minimize the network’s capacity is considered,
where the attacking strategy is solved with maximum flow interdiction methods.
Finally, the network robustness is then measured in terms of capacity variations
under such an attacking scheme.

The rest of this paper is organized as follows. Section 2 introduces mod-
els for representing a sensor network and its working procedure. Section 3 ana-
lyzes the network robustness with a network interdiction problem. Section 4 pro-
vides a computationally tractable algorithm for solving the interdiction problem.
Section 5 shows simulations result and Sect. 6 concludes the paper.

2 Modeling the Capability of Sensor Networks

2.1 Network Topology Model

Environment

Internet

Source node Gate node

Intermediate node

Fig. 1. An example for sensor networks under investigation.

In this paper, we investigate a sensor network as shown in Fig. 1, where some
source nodes measure environment and transmit measured packets throughout
intermediate nodes to gate nodes that located at the edge of network, and from
gate nodes, measured information can be accessed via the Internet. Note that
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a measured packet can be routed to the Internet through potentially multiple
paths, which is determined by underlying routing algorithms. Furthermore, since
different tranceiving pairs are associated with different distance and wireless
resources, edges of network have different transmission capacities.
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Fig. 2. S-T network induced from the sensor network.

Mathematically, the above sensor network can be modeled as a directional
weighted graph, as shown in the S-T network of Fig. 2. Specifically, let V =
{1, 2, · · · , n}∪{S,T} denote the sensor nodes, where {1, 2, · · · , n} denotes the sen-
sor nodes in the network, S is a virtual node that represents the environment, and
T is a virtual node that represents the Internet (destination of information flow).
In addition, let E = {(i, j)} denote the edges that connects node i and node j
with flow direction specified by underlying routing algorithm. Moreover, there is
a weight associated with edge in the S-T network. Specifically, there is a weight wSi

associated with node S to a sensor node i, and it represents the maximum infor-
mation sample rate that sensor node i is able to sense from the environment. The
value of wSi with i ∈ {1, 2, ..., n}is determined by the capacity of sensors and the
design goal of sensing tasks. In addition, there is a weight wjT with j ∈ {1, 2, ..., n}
from a gate node j to node T , and it represents the maximum information trans-
mitting rate from a gate node to the Internet. The value of wjT is determined
by the capacity of gate node and backhauls. Lastly, there is a weight wij with
i, j ∈ {1, 2, ..., n} from a node j to a node i, and it represents the maximum rout-
ing rate that information is transmitted from node i to node j. The value of wij is
determined by nodes’ transmission capability and wireless channel condition. In
summary, the triple G = (V, E ,W ) defines a sensor network, and in the following,
we evaluate the networks’ performance based on the above information.

2.2 Network Capability Model

The S-T graph represented in Fig. 2 captures the network topology and capa-
bility of individual nodes (source nodes, intermediate nodes and gate nodes). In
this part, we model the capability from the network point of view with network
flow model, which integrates the overall ability of sensing environment, routing
sensed information, and delivering information to the Internet. Specifically, we
investigate the question: what is the maximum information rate can be deliv-
ered from the node S (environment) to node T (the Internet) without violating
pairwise capability constraints wij with i, j ∈ {S, T, 1, 2, ..., n}?



Vulnerability Analysis of Wireless Sensor Networks 313

The network flow model answers the question. We define a flow function
f : V × V �→ R, such that the function f satisfying following conditions:

1. capacity constraints: for all i, j ∈ V, we have f(i, j) ≤ w(i, j) (which means
that the actual data rate cannot exceed the edge rate capacity);

2. skew symmetry: for all i, j, we have f(i, j) = −f(j, i) (because edges are
directional);

3. flow conservation: for all u ∈ V\{S, T}, we have
∑

v∈V f(u, v) = 0 (flows into
a node must equal flows out from a node).

A valid flow function f satisfying above conditions represents an assignment
of data rate over different edges. The value of a flow function defined as
|f | =

∑
i∈V f(S, i) represents the data rate flow over the network. Among all

possible flow functions (assignments), there is an optimal flow f∗ that achieve
the maximum flow value, which is the best one can get under the network topol-
ogy and devices’ individual capacity. Hence, we can use the value of maximum
flow to capture the network capacity.

There exists many algorithms for solving f∗, and Ford-Fulkerson algorithm
is perhaps the most well-known one, which can solve f∗ with time complexity
of O(n · |E|2) [11]. Developing fast algorithms for solving the maximum network
flow is an on-going research direction in computer science. Algorithms faster than
Ford-Fulkerson algorithm have been developed (see [12] and references therein).

In summary, we have developed a maximum flow model for modeling the over-
all network capability given sensor networks’ topology and individual devices’
capacity. In addition, the developed model can be solved efficiently with poly-
nomial time complexity.

3 Vulnerability Analysis via Network Flow Interdiction

In this part, we analyze the network vulnerability under device’s potential fail-
ures. Specifically, due to device degradation and potential attacks, sensors in the
network may be out of service and network capability deteriorates. A robustly
designed network is able to tolerate such device failures and reserve network
capability as much as possible. In contrast, the performance of a vulnerable
network may be severely suffered when devices are out of service.

In order to evaluate the vulnerability, we have to model the pattern of device’s
failures. In this paper, we analyze the network’s performance changes under the
worst case device failure pattern. It may correspond to an intelligent attacker
that is attempting to deteriorate the network’s performance by compromising
the most important sensors. This problem can be modeled under network inter-
diction framework.

Suppose that an attacker is able to compromise k edges among the total
|E| edges, and it selects the k edges in a way such that the maximum flow
of the residual network (after removing the selected edges) is minimized. Let
xij ∈ {0, 1}, ∀(i, j) ∈ E , indicates the decision of the attacker, i.e., if xij = 1 the
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edge (i, j) is removed from the network; xij = 0 otherwise. Hence, the attacker’s
attacking scheme can be formulated as

MFI-K: min
x∈X

max
f

∑

i∈V
f(S, i) (1)

s.t.
∑

(i,j)∈E
xij = k (2)

f(i, j) ≤ wij(1 − xij) (3)
∑

j∈FS(i)

f(i, j) −
∑

j∈RS(i)

f(j, i) = 0, (4)

Note that, in (1), ‘max
f

’ means to find a flow assignment function that achieves

network capacity (i.e., maximizes the overall network flow (see Sect. 2.2)). In
addition, ‘min

x∈X
’ means to find an attacking scheme that minimizes the capacity

of residual network. Lastly, constraint (3) means that a flow from node i to node
j cannot exceed the capacity wij , if the edge (i, j) is not chosen by the attacker;
the flow equals 0, if the edge is compromised by the attacker.

Denote the results to problem (1) MFI-K is (x∗(k),f∗(k)), where x∗(k)
means the optimal attacking decisions made by attackers, and f∗(k) means
the optimal flow assignment for protecting the network’s performance from the
attacking. We can repeatedly solve the MFI-K problem for different values of
k and obtain a sequence of solutions {(x∗(k),f∗(k))}K

k=1, from which several
metrics can be defined to evaluate the network’s robustness:

1. Robustness profile {|f∗(k)|}k, which describes how the network performance
changes under different attacking intensity.

2. β−quantile point k(β) is the maximum number of edges loss such that the
network can tolerate before performance drop to β percent, i.e.

kβ = max
{

k

∣
∣
∣
∣
|f∗(k)|
|f∗(0)| ≥ β

}

. (5)

It can be seen that, for a given β, a network with larger kβ is more robust.
3. Critical edge set EC is the set of edges that are susceptible to attackings,

which can be defined as
EC = ∪kx∗(k) (6)

The set EC describes how the vulnerable edges distributed. Given that other
conditions are equivalent, a network with smaller size of EC is more robust.

We have shown that the network vulnerability can be analyzed with max-
imum flow interdiction methods and corresponding evaluation metrics. In the
following, we develop a method for solving (x∗(k),f∗(k)) of an MFI-K problem.
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4 Solving Maximum Flow Interdiction Problems

In this part, we consider the solving of the MFI-K problem (1). It is well known
that exactly solving the MFI-K is NP-hard [13], and we restore to linear approx-
imation of MFI-K. However, due to the min-max structure, (1) manifests as a
two-stage optimization problem, which hampers the solving process. By trans-
forming the maximum flow problem into its dual formulation, the two-stage
optimization problem can be transforming into a minimization problem

MFI-K-Dual: min
x,u,η

∑

(i,j)∈E\{(S,T )}
wij(1 − xij)ηij (7)

s.t.
∑

(i,j)∈E
xij = k (8)

αi − αj + ηij ≥ 0 ∀(i, j) ∈ E\{(S, T )} (9)
αT − αS ≥ 1 (10)
η ≥ 0 (11)

x ∈ [0, 1]|E|, (12)

where α and η are the dual variables of the constraints (3) and (4), respectively,
and constraint (12) represents the linear approximation of the original problem.
It can be seen that problem is a linear programming problem, which can be
addressed efficiently with standard LP solver. Furthermore, from its solution,
we can get x∗(k), i.e., the selected attacking edges. Lastly, after removing x∗(k)
from the network, we can obtain |f∗(k)|, i.e., the performance of the residual
network, by applying standard maximum flow solver [11].

5 Numerical Results

In this part, we verify our proposed evaluation methods with numerical simula-
tion. A sensor network is generated over an area with 1000 × 1000 m, where the
three types of nodes are selected for representing source nodes, gate nodes and
intermediate nodes, respectively. Figure 3 shows an instance of generated net-
work. Two nodes are assumed to be able to establish connection if their distance
is less than 100 m. The source node’s sampling rate is fixed to 0.3 Mbps; the gate
node’s delivery rate is fixed to 10 Mbps; and the transmission capacity of a link
is based on the distance dij between two nodes, calculated as wij = 1

d2
ij+1

Mbps.
Links are bidirectional, and for each source node, its routing paths to gate nodes
through intermediate nodes are computed via maximum flow routing algorithms
[14,15].

Three different attacking schemes are considered, namely, maximum flow
interdiction scheme as shown in (7); random attacking scheme that randomly
removes edges in the network; greedy attacking scheme that removes edges with
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Fig. 3. Topology of a simulated sensor network instance.
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Fig. 4. Network performance degradation under different attacking schemes.

largest transmission capacity. Figure 4 shows the robustness profile of the inves-
tigated network under these three schemes averaged over 1000 network realiza-
tions. It can be seen that, as the removed edges increases, the network per-
formance drops quickly under the maximum flow interdiction scheme. Further-
more, the network demonstrates a more robust profile against the greedy attack-
ing scheme. Lastly, the network’s performance changes slightly under random



Vulnerability Analysis of Wireless Sensor Networks 317

attacking scheme. In summary, different attacking schemes demonstrate signifi-
cant robustness profile, while the maximum flow interdiction represents the worst
case situation, and is suitable for evaluating networks’ robustness.

6 Conclusion

In this paper, we have investigated network vulnerability with maximum flow
interdiction methods, from which network robustness profile, the critical edges
and quantile points are theoretically defined. As the maximum flow interdiction
problem is NP-hard, we consider its linear approximation for solving an attacking
strategy and the evaluation metrics. It is interesting to study how these metrics
change under typical sensor networks’ topology, which is left as future work.
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