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Abstract. In this paper, we study the distributed DOS problem for
wireless multiple relay networks. Formulating the problem as an extended
three-level optimal stopping problem, an optimal strategy is proposed
guiding distributed channel access for multiple source-to-destination
communications under the help of multiple relays. The optimality of
the strategy is rigorously proved, and abides by a tri-level structure of
pure threshold. For network operation, easy implementation is presented
of low complexity. The close-form expression of the maximal expected
system throughput is also derived. Furthermore, numerical results are
provided to demonstrate the correctness of our analytical expressions,
and the effectiveness is verified.
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1 Introduction

With explosively increasing demands on enhanced quality of service, conven-
tional communication network faces serious challenges where the medium access
control layer and the physical layer are independently designed. As the wireless
medium is shared by multiple users and severe channel fading is experienced, a
cross-layer design concept, channel-aware scheduling (DOS) is thus motivated.
By letting the MAC layer aware of the physical layer information, users can
make channel access decision depending on the channel quality, and users in
good-quality link are scheduled.

Recently, existing researches have drawn much attentions on centralized
scheduling [1,2] where a controller collects channel state information (CSI) of all
users, and schedules those of best channel links to access. On the other hand, the
research on distributed scheduling is still in its infancy. The difficulty lies in how
a user decides when to access channel access. By means of optimal stopping,
the problem in ad hoc network without relays was first addressed in [3], and
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an easy implementation is benefited from the proposed pure-threshold strategy.
Extended from that, the problem of opportunistic channel access in interference
channel allowing multiple nodes simultaneous transmission is investigated in [4],
while the problem with time constraints for real-time service is studied in [5].

Under such distributed multi-source network system, cooperative commu-
nication has great potentials to enhance system performance and thus has
been studied [6–9,11]. Utilizing cooperation diversity, network performance is
improved, including reliability and capacity. Recognizing the benefits, increas-
ing interests have been observed in cross-layer design between MAC and physical
layer. To say a few, the DOS problem for amplify-and-forward (AF) relay net-
works is investigated in [12]. Based on bi-level optimal stopping theory, optimal
opportunistic channel access strategies are derived for both cases where multi-
ple relays are coordinated and not controlled by each winner source-destination
pair. In exploration of observed information influence on the network perfor-
mance, opportunistic channel access problem under single relay network is also
studied in literature [13], where each source has only partial CSI.

This paper differs from existing efforts by jointly considering three following
aspects. First, a direct link is used, and multiple relays participle transmission by
opportunistic relaying. Second, all channels, including direct channels, channels
from each source to all relays, and from all relays to each destination are not
necessarily reciprocal. Third, follow-up transmission in two-hop channels is taken
into accounts, for which both source and relay can transmit data for duration of
channel coherence time. In terms of practicality, these aspects are usually faced
in wireless networking.

These considerations lead to new challenges for finding DOS strategy for wire-
less multi-relay network, and distributed channel access by multiple sources, relays
and destinations should be managed in an orderly manner. Moreover, under help
of multiple relays, each source is endowed with more flexibility in the strategy
design for first-hop channel access, and the broadcast rate at first hop determines
the number of relays available for data forward at second hop. Under availabil-
ity of multiple relays at second hop, more benefits are expected in terms of time
and capacity. Furthermore, as a direct link is available, the problem of when direct
transmission dominates and how it enhances two-hop transmissions, is worth to be
investigated. Thus, optimal DOS strategy is much desired to explore and exploit
joint diversity in terms of multiple relays and time between two hops.

To address the challenges, a problem of DOS for multi-relay networks is
investigated, and our contribution are summarized as follows.

– Extended from the two-level optimal stopping theory, the DOS problem is
formulated, with the goal to maximize average system throughput. Being the
novelty, after each successful channel contention, each winner source should
determine how to access channel through three-step decision, which are when
sources to stop, how they stop, and when relays to stop.

– As a solution to our problem, an optimal strategy for DOS with multiple
relays is proposed, maximizing the average system throughput. Different from
the existing results, it is in two-threshold structure. Particularly, at first hop
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the optimal rule of sources is pure-threshold, and an optimal broadcast rate
is calculated through a sequential threshold comparison; at second hop, the
optimal rule of relays is also pure-threshold.

– The implementation of our proposed strategy is illustrated, and the effective-
ness is also validated in terms of system throughput enhancement.

The rest of this paper is organized as follows. System model and problem
formulation is described in Sect. 2, and an optimal DOS strategy maximizing
average system throughput is proposed. Performance evaluation is provided in
Sect. 4, followed by concluding remarks in Sect. 5.

2 System Model and Problem Formulation

2.1 System Model

Consider a wireless multi-source DOS network with K source-destination pairs
aided by L relays in decode-and-forward (DF) mode. In such network, a direct
link between each source and destination is included, and for transmission from
a source to its destination, several relays are used opportunistically aiding the
transmission in a half-duplex mode. The transmission power of a source and a
relay is Ps and Pr, respectively.

We denote the channel gain from the ith source to its destination as hi, the
channel gain from the ith source to the jth relay as fij , and the channel gain
from the jth relay to the ith destination as gji. Typically, we assume channels
gains

√
Pshi,

√
Psfij and

√
Prgji are Rayleigh faded, with

√
Pshi ∼ CN(0, σ2

h),√
Psfij ∼ CN(0, σ2

f ) and
√

Prgji ∼ CN(0, σ2
g). Time-varying channel environ-

ment is considered, and channel coherence time is denoted as τd. Channel gains
remain constantly within the duration. Notably, results from this research can
be extended for general channel fading environment.

The opportunistic channel access protocol by multiple sources is operated as
follows. At the beginning of a time slot with duration δ, each source indepen-
dently contends for the channel by sending a request-to-send (RTS) packet with
probability p0. There are three possible outcomes:

– If there is no source transmitting RTS in the time slot (with probability
(1 − p0)K), then all the sources continue to contend in the next time slot;

– If there are two or more sources transmitting RTS (with probability 1 − (1 −
p0)K − Kp0(1 − p0)K−1), a collision happens, and then in the next time slot
after the RTS transmission, all sources continue to contend;

– If there is only one source, say Source i, transmitting RTS (with probability
Kp0(1− p0)K−1), Source i is called winner of the contention. By reception of
the RTS, each relay and Destination i can estimate CSI between Source i and
itself. Then all relays send a RTS to Destination i in turn, in which CSI from
the source to each relay is included. After reception of the RTSs, Destination
i knows CSI from its source to itself, from the source to all relays and from
all relays to itself. Then Destination i decides to stop, i.e. transmit data, or
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continue, i.e. re-contend channel with other sources. And if stop, it requires
to determine in what manner and data rate for transmission. There are three
options.

• End-to-end transmission: Destination i sends a CTS to Source i and all
relays, notifying them to transmit under optimal scheme. Upon reception
of the CTS, Source i transmits to relays and destinations in the first hop,
and then in the second hop a best relay is selected forwarding data to
Destination i. After channel coherence time τd, the two-hop transmission
finishes.

• Sources contention: Source i gives up its transmission opportunity, and
other sources can detect an idle slot after the RTS and CTS exchanges
among Source i, all relays, and Destination i (i.e., that idle slot tells other
sources that Source i gives up its transmission opportunity). After that
a new contention is started among all the source nodes.

• First-hop broadcast: Destination i sends a CTS to Source i, letting it
transmit data at first hop within duration τd. Depending on the transmis-
sion rate, a subset of relays decode the data. The destination also receive
the transmitted signals from the source. Then, the relays sequentially send
a RTS to Destination i. After estimating the CSI of second-hop channels,
Destination i has to decide whether to stop or not, and thus three choices
are faced in the following.
1. Second-hop forward: when there exists relays at good link, Desti-

nation i decide to stop by sending a CTS for selecting a single relay
to forward its received data to Destination i. After that, the two-hop
transmission is accomplished;

2. Relay termination: when relays which can decode the first-hop
transmission are all at bad link, Destination i decide to stop by send-
ing a CTS to the relays and sources for telling them giving up the
data forward;

3. Relays contention: otherwise, Destination i decides to continue, and
then channel coherence time τd is waited until the next observation.

• After Destination i stops, either second-hop forward or relay termination,
new channel contention is started among all sources.

2.2 Problem Formulation

In this sub-section, we develop a decision-theoretic approach to DOS design for
distributed multi-relay networks. Based on the optimal stopping theory, the DOS
can be formulated as a variant of optimal stopping problem, namely two-stage
optimal stopping problem (TSOSP), and the strategy correspondences to an
extended stopping rule for the problem.

We illustrate the DOS dynamics of the distributed multi-relay network in
Fig. 1 as specified in Sect. 2. A dynamic two-stage observation and decision model
is formulated, including the main layer for sources and sub layer for relays.

Main Layer Decision Process: At beginning of each transmission between
a source-to-destination pair, multiple sources contend the channel. We define
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Fig. 1. System model

an observation in the main layer as the process of channel contention among
the sources until a successful contention. In an observation, the number of con-
tentions follows a geometric distribution with parameter Kp0(1−p0)K−1. Among
all the contentions in an observation, the last contention is successful, with total
duration (L+1) ·τRTS +τCTS . The mean of an observation duration is thus given
as τo = (L+1) · τRTS + τCTS + (1−p0)

K

Kp0(1−p0)K−1 · δ + 1−(1−p0)
K−Kp0(1−p0)

K−1

Kp0(1−p0)K−1 · τRTS .
Given nth observation in the main layer, the winner source s(n) observes

information Fn = {s(n), ts(n), hs(n)(n), fs(n)1(n), ..., fs(n)L(n), g1s(n)(n), ...,
gLs(n)(n)}, including those on CSI and channel contention. Based on informa-
tion history until observation n, denoted by Fn := ∨n

i=1Fi, the winner source
decides if to stop, i.e. N = n, i.e. sources stop channel contention by taking
some actions. Furthermore, the destination chooses an action φ(n) ∈ {1, 2}. In
particular, φ(n) = 1 means end-to-end transmission, and φ(n) = 2 means first-
hop broadcast. To be further, if φ(n) = 1, the winner source finishes end-to-end
transmission, and receives a reward Yn,φ(n); if φ(n) = 2, the winner source fur-
ther decides the broadcast rate Rn in first hop. After broadcast, channel access
process of relays who can decode the broadcast data starts the process for data
forwarding in second hop. Otherwise, new channel contention starts and the next
observation is obtained.

Sub Layer Decision Process: When the main layer stops with action φ(n) =
2, a subset of relays, denoted as Jn, start observation in the sublayer. In each
slot of channel coherence time, says observation m, each relay obtains second-
hop CSI from itself to Destination s(n). We denote observation information as
G′

nm =
{
gjs(n)(m), j ∈ Jn

}
, and the accumulated information until observation

m is denoted as Gnm = ∨m
i=1G′

ni. Based on the history information in sub layer,
Destination s(n) decides if to stop, i.e. M = m, which means that relays stop
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forwarding by taking some actions. Then, if relays stop, an action ψ(m) ∈ {1, 2}
is chosen. In particular, ψ(m) = 1 means second-hop forward, and ψ(m) = 2
means terminating relays. Furthermore, if ψ(m) = 1, relays finish the second-hop
transmission, and receives a reward Yn,m,ψ(m); and if φ(n) = 2, relays terminate
the transmission and let sources re-contend the channel. Based on this formula-
tion, a DOS strategy is fundamentally a policy of the TSOSP.

Reward and Objective Functions: For DOS problem with multiple relays, in
accordance with network protocol as described in Subsect. 2.1, utility functions
are defined for the main and sub layer decision process, and are in two parts.
The reward function represents transmitted data traffic, and the cost function
represents time spent.

In the definitions, upon observed information until nth observation at main
layer, for sources to stop by φ(n) = 1, the winner source obtains a reward

Yn,1 = τd max{Ch(n), Cr(n)}, and a cost Tn,1 =
n∑

l=1

ts(l) + τd. In details, rate

Ch(n) represents the maximal rate in direct link, which is calculated as that

Ch(n) = log2(1 + Ps|hi(n)|2). (1)

The rate Cr(n) represents the achievable rate through best single-relay selec-
tion, which is calculated as

Cr(n) =
1
2

max
j∈{1,2,...,L}

{
min

(
log2(1 + Ps|hi|2 + Pr|gji|2),

log2(1 + Ps|fij |2)
)}

. (2)

Moreover, for stop by φ(n) = 2, a cost is received with Tn,2 =
n∑

l=1

ts(l)+τd/2,

and a broadcast rate Rn (i.e., Rn = log2(1+rn)) is decided by the winner source.
Subsequently, a relay set, denoted as Jn, is determined, representing the relays
who can decode the broadcast signal successfully.

Then, sub layer decision process of multiple relays begins, which will give a
reward Yn,m,ψ(m) in future.

Upon observed information until mth observation at sub layer, if relays stop
by ψ(m) = 1, a reward Yn,m,1 = τdRnI[gJn

(m) ≥ rn−Ps|h(n)|2] is received as
well as a cost Tn,m,1 = Tn,2 +Tm. Tm means the time spent in sub layer process,
and is calculated as

Tm = (m − 1)τd+I[gJn
(m) ≥rn−Ps|hs(n)(n)|2]τd

+ I[gJn
(m)<rn−Ps|hs(n)(n)|2](|Jn| · τRTS +τCTS). (3)

Moreover, at mth observation at sub layer, if relays stop by ψ(m) = 2, a
reward Yn,m,2 = 0 is received, and a cost Tn,m,2 = Tn,2 + Tm is spent.

TSOSP Formulation: Based on the theoretic framework above, if winner
source stops at Nth observation in main layer and relays stop at Mth observation
in sub layer, an instantaneous reward YN,M is obtained and a time cost TN,M is
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spent. And the corresponding instantaneous system throughput is YN,M/TN,M .
In the sequel, capital N is called stopping time in main layer, and capital M is
called stopping time in sub layer. To achieve the optimal OCA strategy, our goal
is to find an optimal stopping strategy {N∗, R∗

N∗ ,M∗} maximizing the average
system throughput sup

N,RN ,M
E[YN,M ]/E[TN,M ]. Here E[·] means expectation.

3 Optimal OCA Strategy and Its Implementation

Enlightened by Lemma 1 in [14, Chapter 6], the maximal-expected-rate-of-return
problem is transformed into a standard problem for maximal expected return in
accordance with the following theorem. For a given price λ > 0, we define the
reward function V (λ) = sup

N,RN ,M
E[YN,M − λTN,M ], representing the maximal

expected reward under price λ for time cost.

Theorem 1. The optimal OCA strategy {N∗(λ∗), R∗
N∗(λ∗),M∗(λ∗)} achieving

sup
N,RN ,M

E[YN,M ]/E[TN,M ] is an optimal strategy achieving the priced expected

return V ∗(λ∗) = sup
N,RN ,M

E[YN,M − λ∗TN,M ], where λ∗ uniquely exits such that

V ∗(λ∗) = 0. The price λ∗ is the maximal expected system throughput such that
λ∗ = sup

N,RN ,M
E[YN,M ]/E[TN,M ].

In accordance with Theorem 1, thought train towards finding an opti-
mal strategy is that, for a given price λ > 0, an optimal strategy
{N∗(λ), R∗

N (λ),M∗(λ)} is found achieving V ∗(λ). Then, by replacing λ with λ∗,
{N∗, R∗

N ,M∗} is acquired as an optimal OCA strategy maximizing the average
system throughput.

Based on the relation between main layer and sub layer, reward function
obtained from sub layer decision process conditioned on observation information
Fn and broadcast rate Rn in main layer, is defined as that

Wn(λ) := E[Yn,M∗ − λTM∗ |Fn, Rn].

Theorem 2. For a given price λ > 0, finding optimal strategy {N∗(λ), R∗
N∗(λ),

M∗(λ)} is equivalent to a two-stage optimal stopping problem. In the sub layer,
when main layer stops at nth observation, and φ(n) = 2, an optimal stop-
ping strategy M∗(λ) is to find achieving Wn; in the main layer, an optimal
strategy {N∗(λ), R∗

N∗(λ)} is to find achieving sup
N,RN

E
[
(YN − λTN )I[φ(N) =

1] + WN (λ)I[φ(N) = 2]
]
.

Proof. We prove by deriving the two-stage optimal strategy dominates other
strategy in the expected reward value.
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For any strategy {N†, R†
N† ,M

†}, we analyze that1

E
[
YN†,M† − λTN†,M†

]
=

E
[ ∞∑

n=1

I[N† =n]I[φ(N†)=2]E[Yn,M† − λTM† |Fn]

+ (YN† − λTN†)I[φ(N†) = 1]
]

≤ E
[ ∞∑

n=1

I[N† =n]I[φ(N†)=2]E[Yn,M∗ − λTM∗ |Fn]

+ (YN† − λTN†)I[φ(N†) = 1]
]

≤ E
[
(YN∗ − λTN∗)I[φ(N∗) = 1] + WN∗(λ)I[φ(N∗) = 2]

]
(4)

Therefore, the optimal strategy {N∗(λ), R∗
N∗(λ),M∗(λ)} in a two-stage form

can achieve V ∗(λ).

In the light of Theorem 2, optimal OCA strategy is derived as follow. A sub-
layer optimal strategy M∗(λ) followed by relays is first presented in following
theorem. We define upper and lower thresholds Thl and Thu, where Thl =
λ

τd−τ|Jn|
τd

and Thu = λ + λ(τd+τ|Jn|)
Pnτd

.

Theorem 3. If main layer stops at nth observation with φ(n) = 2 and broadcast
rate Rn, an sub-layer optimal strategy has a one-of-three choices form:

– when Rn ≤ Thl, a myopic strategy is optimal, i.e. M∗(λ) = 1 and ψ(M∗) = 2;
– when Rn ∈ (

Thl, Thu

)
, a myopic strategy is optimal, i.e. M∗(λ) = 1 and

ψ(M∗) = 1;
– when Rn ≥ Thu, M∗ = inf{m > 0 : Pr max

j∈Jn

|gjs(n)(m)|2 ≥ rn−Ps|hs(n)(n)|2},
where gJn

:=Pr max
j∈Jn

|gjs(n)(m)|2.

Proof. When the first-hop observation stops at observation n, an optimal stop-
ping strategy in the second hop exists2. By optimal stopping theory it is of form
that

M∗ = inf{m≥0 : Yn,m,ψ(m) −λ(Tn,2+Tm)≥
E[Sn,m+1|Fn ∨ Gnm]} (5)

The threshold Snm is conditional reward defined as

sup
M≥m

E
[
Yn,M,ψ(M) − λ(Tn,2 + TM,ψ(M))

∣
∣Fn ∨ Gnm

]
. (6)

1 Note the superscript ∞ means the summation includes term at n = ∞.
2 For finite n, the existence proof is similar to Theorem 6, while n = ∞ means the

main layer does not stop.
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Based on optimal stopping theory, we have bellman equation that

Snm = max{Yn,M,ψ(M) − λ(Tn,2 + Tm,ψ(m)),
E[Sn,m+1|Fn∨Gnm]}. (7)

Then, we calculate the threshold E[Sn,m+1|Fn ∨ Gnm] in the right side of
Eq. (5), and is shown in Eq. (8). Duration τ|Jn| denotes the time cost for relay
channel sensing, with τ|Jn| = |Jn|τRTS+τCTS . The last line is from the definition
of Wn, which is the maximal expected reward in sub layer.

E[Sn,m+1|Fn ∨ Gnm]

= E

[
sup

M≥m+1
E

[
Yn,M,ψ(M) − λ(Tn,2 + TM,ψ(M))

∣
∣Fn∨Gn,m+1

]∣∣
∣Fn∨Gnm

]

= E

[
sup

M≥m+1
E

[
(Rn − λ)τdI

[
ψ(M) = 1

] −λτ|Jn|

−λ(M−m)τd

∣
∣Fn ∨ Gn,m+1

]∣∣
∣Fn ∨ Gnm

]
−λ

(
Tn,2 + mτd

)

(a)
= Wn(λ) − λ

(
Tn,2 + mτd

)

By substituting expression in Eq. (8) into Bellman Equation (7), we have
that

Wn − λ(Tn,2 + (m − 1)τd) = E
[
max

{
Yn,m,ψ(m)−

λTm,ψ(m),Wn − λ
(
τ|Jn| + mτd

)}|Fn

] − λTn,2. (8)

And it is further simplified into the form that

E
[
max

{
Yn,m,ψ(m) − λ

(
Tm,ψ(m) − (m − 1)τd

) − Wn,

− λ
(
τ|Jn| + τd

)}|Fn

]
= 0. (9)

The reward −Wn can be derived by solving the next equation. By the sub-
layer optimal stopping strategy, at each observation m, whether stop or not
is decided by relation between Yn,m,ψ(m) − λ

(
Tm,ψ(m) − (m − 1)τd

)
and Wn −

λ
(
τ|Jn| + τd

)
. And by observing the above equation, the decision on ψ(m) for

stop is first determined, which maximizes the reward by stop.

E
[
max

{
I[ψ(m) = 1](Yn,m,1 − λτd) + I[ψ(m) = 2]Yn,m,2 − Wn, −λτd

}|Fn

]
= λτ|Jn|.

Recall that reward Yn,m,1−λτd and Yn,m,2−λτ|Jn| for ψ(m) = 1 and ψ(m) =
2 respectively, it is optimal to stop by taking action as follows.

– when (Rn − λ)τd > −λτ|Jn| and gJn
(m) ≥ rn−Ps|h(n)|2, we have ψ(m) = 1;

– otherwise, we have ψ(m) = 2.
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Following a similar line, we analyse the Bellman Equation. For simplicity, we
define Pn := P[gJn

≥ rn−Ps|h(n)|2].
When (Rn − λ)τd > −λτ|Jn|, there are two cases.
Case 1: if Rnτd ≥ Wn and Wn ≤ λτd, we have

Wn = Pn · (Rn − λ)τd − λτ|Jn|. (10)

Case 2: if Rnτd ≥ Wn and Wn > λτd, we have

Wn = Rnτd − λ(τd + τ|Jn|)
Pn

. (11)

Case 3: otherwise, when (Rn − λ)τd ≤ −λτ|Jn|, we have that

Wn = −λτ|Jn|. (12)

Based on three cases above, we further analyze the form of optimal strategy
in sub layer.

1. When Rn < λ
τd−τ|Jn|

τd
, Case 3 applies and thus it is optimal to stop at the

beginning by φ(m) = 2;
2. when Rn ∈ (

λ
τd−τ|Jn|

τd
, λ + λ(τd+τ|Jn|)

Pnτd

)
, Case 1 applies and it is optimal to

stop at the beginning by φ(m) = 1;
3. when Rn ≥ λ + λ(τd+τ|Jn|)

Pnτd
, Case 2 applies and it is optimal to stop when

gJn
(m) ≥ rn−Ps|h(n)|2 satisfies.

Theorem 3 presents an optimal strategy M∗(λ) in the sub layer. It is con-
ditioned on the observed information in the main layer and the broadcast rate
Rn. On this basis, an optimal strategy in the main layer, denoted as {N∗, R∗

N∗}
is focused. In the following, the problem is decomposed into two levels: the
optimal stopping time N∗ at higher level and its associated optimal transmis-
sion manner {φ(N∗), R∗

N∗} at lower level. For finding optimal stopping time
in the main layer, we define optimal expected reward {Gn}n=1,2,... such that
Gn := sup

Rn≥0
{(Yn − λTn)I[φ(n) = 1] + Wn(λ)I[φ(n) = 2]}, which represents the

maximal expected reward achieved by taking optimal actions for stop in the
main layer and optimal strategy in the sub layer.

Theorem 4. In the main layer, for a price λ > 0, the problem of finding
an optimal strategy {N∗, R∗

N∗} achieving sup
N,RN

E
[
(YN − λTN )I[φ(N) = 1] +

WN (λ)I[φ(N) = 2]
]
is equivalently decomposed as that: in the lower level, at

each observation n > 0, find optimal stop manner φ(n) and transmitting rate
R∗

n :=arg sup
Rn≥0

{(Yn − λTn)I[φ(n) = 1] + Wn(λ)I[φ(n) = 2]}; in the higher level,

find optimal stopping rule N∗ :=arg sup
N>0

E[GN ].
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E[YN†(R†
N†) − λTN† ]

= E

[ ∞∑

n=1

I[N† = n]
(
Yn(R†

n) − λTn

)]

≤ E

[ ∞∑

n=1

I[N† = n] sup
Rn≥0

{
(Yn − λTn)I[φ(n) = 1] + Wn(λ)I[φ(n) = 2]

}]

= E
[ ∞∑

n=1

I[N† = n] · Gn

] ≤ sup
N≥0

E [GN ] = E [GN∗ ] (13)

Proof. For any transmission strategy {N†, R†
N†} in main layer, we derive an

upper bound in Eq. (13). It is proved that E [GN∗ ] is an upper bound for any
feasible rules, and E [GN∗ ] is achieved by following a stopping strategy N∗ with
its associated transmission manner such that reward Gn is attained for stop at
observation n.

Based on the optimal rule’s structure in Theorem 4, the optimal stopping
strategy N∗ in the top level relies on the reward sequence {Gn}n∈N, where N is
the positive integer set. This sequence is acquired by solving problems in lower
level. In this regards, for each observation n, we focus on derivation of the reward
function Gn. Recognizing that the component λTn in function Gn is independent
with rate Rn, it suffices to maximize the following function, which is derived by
using analytic form of Wn(λ). Replacing Wn in Eqs. (10), (11) and (12), we have
the objective function to maximize in Eq. (14).

I[Rn < Thl] · (−λτ|Jn|) + I[Thl ≤ Rn ≤ Thu] · (
Rnτd − λ(τd + τ|Jn|)

Pn

)

+ I[Rn > Thu] · (
Pn · (Rn − λ)τd − λτ|Jn|

) (14)

For stop by φ(n) = 2, i.e. two-stage transmission.
To maximize the objective in Eq. (14), we solve the problem in piece-wise

region. In the following, the maximization problem is analyzed.
First, we consider the problem when Rn ≤ Thl.
The function Pn · (Rn − λ)τd − λτ|Jn| is to maximized based on channels

gains Fn. Observing that the variable |Jn| depends on the {Rn,Fn}, it requires
to analyze the function when |Jn| = 1, 2, ..., L.

Therefore, we define functions Zk, k = 1, 2, ..., L below:

Zk = Pn(k) · (Rn − λ)τd − λτk

where Pn(k) = 1 −
(
1 − e

− rn−Ps|h(n)|2
σ2

g

)k

.
Properties of these functions are taken into accounts in the following lemma.
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Lemma 1. Function Zk has unique maximal solution for k = 1, 2, ..., L, denoted
as ζk respectively. In particular, when rn ≤ζk, Zk increases, and when rn > ζk,
Zk decreases. The maximal solutions satisfy that Ps|h(n)|2 ≤ ζ1 < ζ2 < ... < ζL.

Proof. See Appendix A.

Second, we consider the problem when Thl ≤ Rn ≤ Thu.
The function Rnτd − λ(τd−τ|Jn|)

Pn
is to maximized based on channels gains Fn.

We define functions Uk, k = 1, 2, ..., L below:

Uk = τd log2(1 + rn) − λ(τd − τk)

1−(
1−e

− rn−Ps|h(n)|2
σ2

g
)k

.

Properties of functions Uk, k = 1, 2, ..., L are taken into accounts in the
following lemma.

Lemma 2. For k = 1, 2, ..., L, function Uk is strictly concave in rn ≥ 0; if

Ps|h(n)|2 >
τdσ2

g log2 e

λ(τCT S+τd)
−1, the optimal point of U1, denoted by η1, is equal to

Ps|h(n)|2; otherwise, for k ≥ 1, the optimal point of Uk, denoted by ηk, is equal
to xk+Ps|h(n)|2 such that ∂Uk(x)

∂x

∣
∣
xk

=0, respectively. Also, Ps|h(n)|2≤η1 <η2 <

... < ηL is satisfied.

Denote Z∗
k :=Zk(ζk) as the maximum of Zk in rn ≥Ps|h(n)|2. As function Zk

increases with the number k of available relays in the second hop, it is obvious
that Z∗

1 <Z∗
2 < ... <Z∗

L.
Moreover, by definition of functions Uk, k = 1, 2, ..., L , it is shown that U1<

U2<...<UL on rn ≥0. By denoting U∗
k = Uk(ηk), U∗

1 <U∗
2 <...<U∗

L is satisfied.
Then, combing the function analysis above, we focus on finding the optimal

broadcast rate Rn.
We first investigate the region of rn such that Rn ≥ Thu.
Using properties of functions {Zk}k = 1, ..., L and relations, we define an

integer κ that
κ(λ) = min{k = 1, 2, ..., L : Z∗

k ≥ λτd}.

Correspondingly, regions {ζ−
k , ζ+k } for k ≥ κ′ are further defined, and rn ∈

{ζ−
k , ζ+k } satisfies Rn ≥ Thu. Also, for ∀i ≥ k, it is proved that ζ−

i ≥ ζ−
i+1 and

ζ+i+1 ≥ ζ+i .
Based on the region above, for channel information Fn, we need to design an

algorithm to determine the point maximizing the function. By sorting the first-
hop channel gains in descending order as γ1 ≥ γ2 ≥ ... ≥ γL, the region such
that Rn ≥ Thu is ∪q

i=1

{
[ζ−

i , ζ+i ] ∩ (max{γi+1(n), Ps|hs(n)(n)|2}, γi(n)]
}
, where

integer q satisfying γq+1(n)≤Ps|h(n)|2<γq(n).
As the process acquiring the optimal rate R∗

n within the region demands high
complexity, further investigation is made to design an algorithm which signifi-
cantly reduces the complexity. Algorithm 1 is presented in the following. In it, we
define κ† as the least integer κ such that [ζ−

κ , ζ+κ ] ∩ (γκ+1(n), γκ(n)] �= ∅. More-
over, for k =1, 2, ..., L, truncated functions U ′

k(γk(n)) :=Uk(γk(n))I[γk(n)≥ ζ−
k ]
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are defined. Also, we use Hn := Yn,1−λτd to denote the reward by instantaneous
transmission.

Algorithm 1. Algorithm to determine optimal broadcast rate
1: Calculate integer q and κ′ based on channel gain Fn.
2: if γq(n) ≥ max{ηq, ζ

+
q } then

3: r∗
n = arg max{Uq(min(ηq, ζ

+
q )), Hn}.

4: else
5: Set k = q − 1.
6: while k > κ′ do
7: if γk(n) ≥ max{ηk, ζ+

k } then
8: if γk+1(n) < ηk then
9: r∗

n =arg max
q≥i≥k+1

{Uk(min(ηk, ζ+
k )), U ′

i(γi(n)), Hn}.

10: else if γk+1(n) ≥ ηk then
11: r∗

n = arg max
q≥i≥k+2

{Uk+1(γk+1(n)), U ′
i(γi(n)), Hn}.

12: end if
13: k = k − 1.
14: end if
15: end while
16: if γκ†(n)<max{ηκ† , ζ+

κ†} then

17: if γκ†(n)<min(ηκ† , ζ+

κ†) then
18: r∗

n =arg max
q≥i≥κ†

{U ′
i(γi(n)), Hn}

19: else
20: r∗

n =arg max
q≥i≥κ†+1

{Uκ†(min(ηκ† , ζ+

κ†)), U ′
i(γi(n)), Hn}.

21: end if
22: end if
23: end if

The effective of our proposed algorithm is guaranteed by the following theorem.

Theorem 5. Based on observed information Fn until observation n in main
layer, Algorithm1 solves the optimal rate R∗

n achieving Gn.

Proof. Due to page limit, the proof is omitted.

Based on Theorem 5, the optimal transmission rate R∗
n := arg sup

Rn≥0
{(Yn −

λTn)I[φ(n) = 1] + Wn(λ)I[φ(n) = 2]}is derived, which is followed by multiple
sources. According to Theorem 4, it remains an optimal stopping strategy N∗.
In the sequel, we target in finding an optimal stopping strategy in main layer
achieving sup

N>0
E[GN (λ)].

Using the statistical characteristics of observed channel gains in the network,
which are independent and identically distributed, the reward function Gn condi-
tioned on the first-hop channel gains {hs(n)(n), fs(n)1(n), ..., fs(n)L(n)} remains
invariant along observation n, And a following conclusion is derived.
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Theorem 6. The optimal stopping rule N∗ achieving sup
N>0

E[GN (λ)] exists and

is given by N∗ = inf{n > 0 : Gn(λ∗) ≥ 0}, where the optimal throughput λ∗

uniquely satisfies E[max{Gn(λ∗), 0}]=λ∗τo.

Notably, as the maximal average throughput λ∗ is achieved by using our
joint optimal strategy, according to Theorem 6 it is inferred that a unique-form
second-hop optimal rule exits, which is M∗ = inf{m > 0 : Pr max

j∈Jn

|gjs(n)(m)|2 ≥
rn}.

According to Theorems 2 and 4, our optimal OCA strategy is decomposed
into three-level form: at the top level, an optimal stopping strategy is derived to
decide when sources to stop (i.e., broadcast or directly transmit), at the medium
level, an optimal transmitting rate is demanded to decide how a winner source
to stop, and at the bottom level, another optimal strategy at second hop is to
be decided on when relay(s) to stop (i.e., forward data to destinations).

Combing the results in Theorems 3, 5 and 6, our proposed optimal OCA
strategy can be implemented as follows.

For channel access of multiple sources, upon a successful contention in the
observation n, the winner source s(n) obtains information Fn, sorts the first-
hop channel gains by {γ1(n) ≥ γ2(n) ≥ ... ≥ γq(n) ≥ Ps|hs(n)(n)|2}. If an integer
q does not exist, the broadcast rate Rn is 0; otherwise, calculate {ζ−

k , ζ+k } for
k ∈ {q, q−1, ..., 1}, pick up every k′ ∈ {q, q−1, ..., 1} such that γk′+1(n) < ζ+k′

and γk′(n) ≥ ζ−
k′ ; then records the minimal k′ as κ†; if such k′ does not exist,

the broadcast rateRn is 0; otherwise, for each step k falling from q to κ†, Source
s(n) acts as follows until the broadcast rate r∗

n is acquired.

– If γk(n) ≥ max{ηk, ζ+k }
• If γk+1(n) < ηk, (r∗

n, Y ∗
n )=v1

k.
• If γk+1(n) ≥ ηk, (r∗

n, Y ∗
n )=v2

k.
– If γk(n) < max{ηk, ζ+k }, go into next comparison until κ†.
– If k=κ† and γκ†(n) < max{ηκ† , ζ+

κ†}
• If γκ†(n) < min(ηκ† , ζ+

κ†), (r∗
n, Y ∗

n )=v3
κ† .

• If γκ†(n) ≥ min(ηκ† , ζ+
κ†), (r∗

n, Y ∗
n ))=v1

κ† .

Then, Source s(n) decides if or not to stop.

– If max{Y ∗
n ,Hn} < λ∗τd, Source s(n) gives up its transmission opportunity

and re-contends with other sources.
– If max{Y ∗

n ,Hn} ≥ λ∗τd,
• If Y ∗

n ≤ Hn, Source s(n) transmits its data to Destination s(n) in direct
manner.

• If Y ∗
n > Hn, Source s(n) broadcasts its data in rate R∗

n, and the channel
probing of relays starts. The relays in Jn decode the signals, and based
on observed channel conditions they have to decide if or not to forward
data. In the mth observation, each relay, says Relay j ∈ Jn, has infor-
mation of channel gain gjs(n). If Pr|gjs(n)|2 < r∗

n − Ps|h(n)|2, it keeps
silent; otherwise, it forwards the data to Destination s(n) in best single-
relay transmission. After relays’ transmission, a two-hop transmission is
finished and a new contention is started among all sources.
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It is notable that, the threshold λ∗ deciding if or not to stop at first hop is
calculated off-line. In the process to decide the broadcast rate, the thresholds
{ζ+l , ζ−

l , ηl}l=1,2,...,q are calculated; also, only one of vectors {v1
k,v2

k,v3
k} demand

to obtain for the step where the condition is satisfied (i.e., it is calculated once
for each-round decision).

v1
k :=(arg max

q≥i≥k+1
{Uk(min(ηk, ζ+

k )), U ′
i(γi(n))}, max

q≥i≥k+1
{Uk(min(ηk, ζ+

k )), U ′
i(γi(n))}),

v2
k :=(arg max

q≥i≥k+2
{Uk+1(γk+1(n)), U ′

i(γi(n))}, max
q≥i≥k+2

{Uk+1(γk+1(n)), U ′
i(γi(n))}),

v3
k :=(arg max

q≥i≥k
{U ′

i(γi(n))}, max
q≥i≥k

{U ′
i(γi(n))})

4 Performance Evaluation

In this section, system performance for our proposed strategy is investigated
through numerical simulations. We consider a wireless cooperative network with
15 source-destination pairs under the help of 6 relays. The probability that a
source sends a RTS in a mini-slot is p = 0.1, and channel coherence time is τd =
8ms. RTS transmission duration is τRTS = 40 µs, CTS transmission duration is
τCTS = 40 µs, and mini-slot duration δ = 20 µs.
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Fig. 2. Average system throughput with ρg = 2 · ρf

Various average SNR configurations are considered. The second-hop average
SNR ρg is from 10 dB to 30 dB, and the first-hop average SNR ρf = ρg/2 and
ρf = ρg/4, respectively. To evaluate performance, the average system throughput
is investigated. To verify the performance enhancement, we also compare the
average system throughput with other two strategies, which are no-wait strategy
and direct-link optimal stopping (DL-OS) strategy. In particular, under no-wait
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strategy, each source accesses the channel through direct transmission without
wait, while under DL-OS strategy each source senses and accesses the direct link
channel using optimal stopping strategy.

Considering different SNR configuration, two figures are shown as follows.
Figures 2 and 3 show the system performance with second-hop average SNR

ρg = 2 · ρf and ρg = 4 · ρf . In both figures, three curses are presented, rep-
resenting the average system throughput by following our proposed strategy,
no-wait strategy and DL-OS strategy, respectively. It can be seen that the aver-
age throughput with the proposed strategy performs much better than other
strategies, and significant performance enhancement is harvested.
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Fig. 3. Average system throughput with ρg = 4 · ρf

5 Conclusion

In a wireless network aided by multiple relays, independent channel fading is
experienced in both sources and relays. To enhance the spectrum efficiency, a
joint exploitation of the multi-source diversity, multi-relay diversity, and time
diversity is desired, and efficient distributed scheduling is motivated. To make
a full exploitation of these diversities, the distributed DOS problem is investi-
gated in our research. Formulating the problem as a three-level optimal stopping
problem, an optimal strategy is proposed guiding distributed channel access for
multiple source-to-destination communications under the help of multiple relays.
The optimality of the strategy is rigorously proved, and easy implementation is
presented of low complexity. The close-form expression of the maximal expected
system throughput is also derived. This research should provide insights to the
design of channel-aware MAC protocols in distributed cooperative network. Fur-
ther research may involve the cases with quantized CSI and with QoS provision.
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A Proof of Lemma 1

For relay number k ∈ {1, 2, ..., L}, we define r′
n := rn−Ps|h(n)|2. For function

Zk, the first-order derivative is calculated as that

∂Zk

∂r′
n

= τd

( log2 e

1+r′
n+Ps|h(n)|2

(
1−(1 − e

− r′
n

σ2
g )k) − 1

σ2
g

e
− r′

n
σ2

g

(1−e
− r′

n
σ2

g )k−1k
(
log2(1+r′

n+Ps|h(n)|2) − λ
))

.

By replacing 1−e
− r′

n
σ2

g with y(r′
n), the derivative is rewritten in Eq. (15).

∂Zk

∂r′
n

= (1−y(r′
n))ky1−k(r′

n)
(
− τd

σ2
g

(
log2(1+r′

n+Ps|h(n)|2) −λ
)

+τd log2 e
1
k

k−1∑

i=0

y−i(R̄n)
1

1 + r′
n+Ps|h(n)|2

)

.

(15)

In the region r′
n ≥0, the factor in Eq. (15) satisfies (1 − y(r′

n))y1−k(r′
n) > 0.

Therefore, it suffices to compare τd log2 e
1+r′

n+Ps|h(n)|2
k−1∑

i=0

y−i(r′
n) and 1

σ2
g
k
(
log2(1+r′

n+

Ps|h(n)|2)τd−λτd

)
to determine the derivative.

It can be proved that
k−1∑

i=0

y−i(r′
n) 1

1+r′
n+Ps|h(n)|2 is decreasing and log2(1 +

r′
n +Ps|h(n)|2)−λ is increasing in r′

n ≥0, respectively. Meanwhile, as r′
n is large,

k−1∑

i=0

y−i(r′
n) will approach to k and 1

1+r′
n+Ps|h(n)|2 is small, while {log2(1 + r′

n +

Ps|h(n)|2)τd − λτ ′
d} is large. Thus, the existence of stationary point, denoted by

ζk−Ps|h(n)|2 is guaranteed, which are unique such that ∂Zk

∂r′
n

=0.
As a result, function Zk increases in rn <ζk, and decreases in rn ≥ζk.
Then, relation of these points {ζk}, k = 1, 2, ..., L is further investigated.
For k>1, by valuing r′

n =0, we have the derivative satisfy

∂Zk

∂r′
n

∣
∣
r′

n=0
=

log2 e · τd

1+Ps|h(n)|2 > 0. (16)

which means ζk >Ps|h(n)|2.
For k=1, we have the derivative satisfy that

∂Zk

∂r′
n

∣
∣
r′

n=0
=

τd log2 e

1+Ps|h(n)|2 − log2(1+Ps|h(n)|2)τd−λτd

σ2
g

. (17)

Suppose ζ1 satisfies ∂Zk

∂r′
n

= 0, we compare the points {ζ1, ζ2, ..., ζL}. The
situation where ζ1=Ps|hs(n)(n)|2 is similar as ζk >Ps|hs(n)(n)|2 for ∀k ≥ 2.

Since ζk such that ∂Zk

∂R̄n
= 0, by induction it suffices from (15) to compare

1
k

k−1∑

i=0

y−i(r′
n).
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Based the relation shown in the following that

1
k

k−1∑

i=0

y−i(r′
n) − 1

k + 1

k∑

i=0

y−i(r′
n)

=
1

k(k + 1)
( k−1∑

i=0

y−i(r′
n) − ky−k(r′

n)
)

< 0

it proves that ζk < ζk+1 for ∀k = 1, 2, ..., L−1. In other words, ζ1 < ζ2 < ... < ζL.
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