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Abstract. In this paper, the fundamental problem of multiple sec-
ondary users (SUs) contending for opportunistic spectrum sensing and
access over multiple channels in cognitive radio networks is investigated,
when sensing is imperfect and each SU can access up to a limited number
of channels at a time. For each channel, the busy/idle state is indepen-
dent from one slot to another. The availability information of channels
is unknown and has to be estimated by SUs during channel sensing and
access process. Learning loss, also referred as regret, is thus inevitable.
To minimize the loss, we model the channel sensing and access process as
a multi-armed bandit problem, and contribute to proposing policies for
spectrum sensing and access among multiple SUs under both centralized
and distributed framework. Through theoretical analysis, our proposed
policies are proved with logarithmic regret asymptotically and in finite
time, and their effectiveness is verified by simulations.

Keywords: Multi-user channel sensing and access · Distributed
multi-armed bandit problem · Logarithmic regret

1 Introduction

As new wireless devices and applications have been rapidly deployed, the past
decade has witnessed a growing demand for wireless radio spectrum resources
[1]. However, the traditional static spectrum allocation policy has been reported
that most of the licensed spectrum is severely under-utilized [2]. In this regard,
the concept of cognitive radio (CR) is proposed and has received great attention
to alleviate the spectrum shortage problem due to its great capacity for spectrum
exploitation [3,4]. In a CR network, all users are categorized as primary users
(PUs) and secondary users (SUs), where PUs have the licence and strict priority
to use the channel in frequency and SUs have to explore and exploit channels
in an opportunistic manner. In particular, when a SU detects that a PU is
occupying a given channel, it releases the channel and switches to another. If no
channel is available, a SU waits until a channel is available.
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However, in a practical network environment, the information of primary
channels is usually unknown to SUs, and thus channels have to be fully explored
by SUs to learn the information. At the same time, the prior observations could
be exploited to gain potential rewards by accessing the sensed idle channels.
The requirement for on-line learning this information results in hardness for
balancing a fundamental trade-off between channel exploration and exploita-
tion. To measure the trade-off performance, the loss due to on-line learning until
time t, also represented by the regret R(t), is defined as the expected difference
between the reward of a genie-aided rule with known statistical information of
the channels and the actual reward of a specific channel access policy. To well
balance the trade-off, the problem of single SU performing opportunistic spec-
trum access (OSA) has been studied, and formulated as a multi-armed bandit
problem (MABP). Extended from those efforts, MABP with multiple players is
used to formulate the OSA problem for multiple SUs [5–7]. In such a problem,
multiple SUs contend for primary channels access. To minimize the regret and
equivalently maximize the average system throughput, design of on-line learning
policy is much desired enabling SUs to estimate the channel information and
access without collisions.

Several existing studies are seminal for studying our work. Under a cen-
tralized framework, the research in [8] proposes a stochastic game framework
modelling time-varying process of competition evolution for spectrum opportu-
nities among SUs. In each stage, there is a central spectrum moderator that
auctions the available resources for SUs, and a best-response learning algo-
rithm that improves SUs bidding policy is proposed. However, the centralized
framework could not be used in cognitive networks when multiple SUs operate
autonomously. Motivated by that, under a distributed framework, works in [9–
11] have developed algorithms under scenarios of multiple SUs and channels with
perfect spectrum sensing. Specifically, in [9] Anandkumar proposes a random-
ized distributed policy that utilizes the collision feedback under a slotted CR
network. It is proved that under any uniformly-good learning and access policy,
the proposed policy can achieve order-optimal regret. The total regret is logarith-
mic with slot time. Liu and Zhao [10] present a time-division fair share (TDFS)
policy which yields asymptotically logarithmic regret with respect to slot time.
In addition, an index-type policy with coordination mechanism is proposed in
[11] which achieves regret of O(ln t) uniformly over time t. To summarize, all
these existing works introduce the distributed framework under perfect sensing,
and each SU can sense and access only one channel.

Moreover, some studies take imperfect spectrum sensing into accounts. In
works [12,13], a scenario with imperfect sensing and channel access limitations
has been investigated. Specifically, author in work [13] models the channel sens-
ing and access process as a bi-level MAB problem, upon which several sensing and
access policies are proposed with logarithmic regret asymptotically and in finite
time. Additionally, [7] deals with the OSA problem for infrastructure-less CR net-
works, where multiple SUs collect a priori reward by sensing and accessing one
channel at one time. Therein, a policy called QoS-UCB is proposed with at most
logarithmic order regret.
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Different from existing works, this paper considers the scenario with multiple
SUs where each user can sense multiple channels and access only limited channels
under imperfect sensing, which has not yet been investigated. To the best of
our knowledge, this work is the first research which considers the scenario with
several features in a whole view: (i) there are multiple SUs contending for the
channels with imperfect channel sensing, if more than one SU access the same
channel, collision occurs and no data is successfully transmitted; (ii) each SU
senses up to a limited number of channels at one time, and accesses a portion
of the sensed channels1; (iii) SUs have no knowledge on channel availability and
other SUs activities, and no exchange information is assumed among SUs.

The rest of this paper is organized as follows. System model and problem
formulation are described in Sect. 2. In Sect. 3, a centralized learning and access
policy for multiple SUs is proposed, and in Sect. 4 a distributed learning and
access policy for multiple SUs is proposed. Theoretical analysis is made in both
sections. Numerical results are then illustrated verifying the performance of our
proposed policies.

2 System Model and Problem Formulation

Consider a time slotted system as used in [9,13], where time is partitioned into
slots, denoted by T . Let U be the number of SUs and N ≥ U be the number
of orthogonal licensed channels for PUs. In each channel, e.g. channel i and slot
j, PUs are active with probability 1 − θi, where θi represents idle probability.
We assume idle probability satisfies θ1 > θ2 > ... > θN , and unknown by SUs.
In this work, we define M∗ as a set of channels {1, 2, ..., U · M}. Time varying
channel model is considered, and for channel i, Si(j) = 1 and Si(j) = 0 means
the channel idle and busy at slot j, respectively. The state of each channel varies
independently from a slot to another. For channel access of a slot, a reward
can be obtained by a SU, which is defined as the information bits successfully
transmitted in a slot. For simple expression, a reward in each slot is normalized.

In such a system, SUs access the shared spectrum in an opportunistic manner.
We briefly introduce the sense and access process as follows. In a time slot, each
SU selectively senses M (M < N) channels and subsequently access up to K
(K ≤ M) sensed idle channels. Denote sensing results of N channels by SU
u in slot j as Xu(j) = (Xu,1(j),Xu,2(j), ...,Xu,N (j)), where Xi(j) = 1 and
Xi(j) = 0 indicate that channel i has been sensed idle and busy at slot j,
respectively. Taking sensing errors into accounts, we denote Pd as the detection
probability of channel i (i.e., the probability of detecting the PU active if there
is PU activity), and Pf as the false-alarm probability of channel i (i.e., the
probability of mistakenly estimating that the PU is active when there is no PU
activity). For channel i at slot j, the probability that sensed idle is expressed as
1 In a wireless CR sensor network, sensors usually have the capacity to sense more

than one channel at one time; and in view of hardware constraints or limited power
supply for wireless devices [16], the number of channels that can be sensed and
accessed in each time slot is typically limited.
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f(θi) = (1 − Pf )θi + (1 − Pd)(1 − θi). Furthermore, if channel i is sensed idle
and accessed at slot j, the conditional reward is obtained from channel access,
calculated as E[Si(j)|Xi(j) = 1] = (1−Pf )θi

f(θi)
. E[·] denotes expectation. In every

slot, SU updates observed information for N channels. In particular, for SU u, the
information of sensed time is denoted by Tu(t) = (Tu,1(t), Tu,2(t), ..., Tu,N (t)),
and reward information is denoted by Yu(t) = (Yu,1(t), Yu,2(t), ..., Yu,N (t)). More
specifically, Tu,i(t) represents the number of slots in which channel i has been
sensed until slot t by SU u, within it Yu,i(t) represents the number of slots in
which channel i has been sensed idle.

As multiple SUs operate in a CR system, collisions happen when more than
one SU accesses the same channel simultaneously, resulting in zero reward.
For multi-user access model, both centralized and distributed OSA frame-
works are investigated. An illustration of sense and access policy under a cen-
tralized framework and a distributed framework are shown in Fig. 1. In par-
ticular, under a centralized CR framework, at the beginning of slot t, each
SU, e.g. SU u selects M channels for sensing, and obtains the sensing results
Xu(t) = (Xu,1(t),Xu,2(t), ...,Xu,N (t)). Then SUs report the results to a central
agent, which updates the information of Tu(t) and Yu(t). Subsequently, some
sensed-idle channels are scheduled by the agent to SUs for channel access. On
the other hand, under a distributed learning framework, a central agent does
not exist. Each SU records the information Tu(t) and Yu(t), and accesses the
sensed idle channels in an autonomous manner. At the end of each slot, each SU
receives an acknowledgement (ACK) feedback.

Channel
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User 1

Second 
User 2

Second 
User 3

Slot t

Occupied by Primary User

The channel state is idle

Slot t+1

Collision

Collision

Access at slot t
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Second 
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Second 
User 2

Second 
User 3
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Fig. 1. An illustration of sensing and accessing policies under centralized and dis-
tributed frameworks.

Notation: For any two functions f(n), g(n), f(n) = O(g(n)) if there exits a
constant c such that f(n) ≤ c · g(n) for all n ≥ n0 for a fixed n0 ∈ N, where N

represents natural number set. Moreover, | · | represents the cardinality of a set.
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3 Centralized Sensing and Access for Multiple SUs

In this section, we consider the scenario that multiple SUs perform joint chan-
nel sensing and access under the control of a central agent. As a fundamental
metric to measure the learning policy performance, an optimal channel sensing
and access policy under the ideal case where the channel information is known
by the central agent, is worthwhile. In reference to the work [15], it is found
that the channel set M∗ is the optimal channel set to be sensed in each slot,
which maximizes the expected system throughput. We call this sense and access
policy a genie-aided rule, and regard the expected reward of this policy as the
benchmark. The maximal expected reward is expressed as

U∗(t) =
t∑

j=1

E

⎡

⎣ max
K(j)⊂IM∗ (j),|K(j)|≤K

∑

i∈K(j)

E [Si(j)|Xi(j) = 1]

⎤

⎦ , (1)

where IM∗(j) denotes the set of sensed idle channels under the set M∗ at slot
j, K(j) denotes the set of channels accessed in slot j. The inner expectation is
to calculate the conditional reward of channel i while the outer expectation is
for the set K(j).

3.1 Single Channel Access at a Slot (K=1)

First, we consider that each SU can simultaneously sense M channels and access
only one channel. Under this scenario, we propose a policy, denoted by ρCENT

presented in Algorithm 1. Let φ denote the sensing and access policy for all U
SUs, and φ(j) denote the set of channels accessed by SUs at slot j. Compared
with the genie-aided rule, the regret of our proposed policy is expressed as

R(t, φ) = U∗(t) − E

⎡

⎣
t∑

j=1

N∑

i=1

E [Si(j)|Xi(j) = 1] · I [i ∈ φ(j)]

⎤

⎦ , (2)

where I[·] is the indicator function, and when channel i is accessed at slot j,
I[i ∈ φ(j)] equals to 1.

Now we analyse the performance of Algorithm 1 in terms of the regret, and
prove that the regret is upper-bounded logarithmically over time. Observing
that the learning loss occurs when SUs do not choose the optimal channels to
access, the regret comprises two components. One is from the case where a SU
chooses non-optimal channels to sense and accesses the sensed idle channels. The
other is from the case where a SU senses the optimal channels but not accesses
the optimal sensed idle channels. By theoretical analysis, the first component is
proved having an upper bound logarithmic in time as shown in Lemma 1, and
the second component is also similarly bounded as shown in Lemma 2.
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Algorithm 1. Single Channel Access under Centralized Learning Framework
1: For time slot l = 1 :

⌈
N

UM

⌉
, SU u = 1, 2, ..., U senses M channels {(u − 1)M + 1 +

(l − 1)UM : uM + (l − 1)uM mod N}, respectively. All SUs report the sensing
result Xu(l), u = 1, 2, ..., U to the central agent.

2: The central agent updates Tu and Yu, u = 1, 2, ..., U , and then randomly selects
up to K sensed idle channels for SUs to access.

3: for each time t do

4: The central agent estimates θi, (i = 1, 2, ..., N) by θ̂i(t) =
Yi(t−1)
Ti(t−1)+Pd−1

Pd−Pf
, sorts

channels in descending order according to indexes θ̂i(t) + 1
Pd−Pf

√
2 ln(t−1)
Ti(t−1)

,

and chooses M · U channels of largest indexes, denoted by M(t).
5: The central agent schedules SU u to sense channels set {(u − 1)M + 1 + (l −

1)UM : uM + (l − 1)uM}, and then the SU reports the sensing result to the
central agent.

6: The central agent selects the set of sensed idle channels I(t), and updates
Tu(t) and Yu(t).

7: if |I(t)| ≥ K then
8: it chooses K largest channels in I(t), and allocates them for SUs to access.
9: else if 0 < |I(t)| < K then

10: it allocates channels for SUs u = 1, 2, ..., |I(t)| to access.
11: end if
12: end for

Lemma 1. For Algorithm1, the expected number of slots where any channel
i /∈ M∗ is sensed by SUs until time t has an upper bound derived as

E[Ti(t)] ≤ 8 ln t

(θUM − θi)2(Pd − Pf )2
+ 1 +

MUπ2

3
, (3)

where Ti(t) represents the number of slots that channel i has been sensed.

Proof. Recall that idle probability satisfies θ1 > θ2 > ... > θN , for any channel
i /∈ M∗, we have

Ti(t) = 1 +
t∑

j=� N
UM �+1

I [i /∈ M∗] . (4)

Similar to the Appendix D in the work [13], it can conclude that

Ti(t) ≤ l+
UM∑

k=1

t∑

j=1

j∑

t1=1

j∑

t2=l

I

[
θ̂k(t1) +

1
Pd − Pf

√
2 ln j

t1
≤ θ̂i(t2) +

1
Pd − Pf

√
2 ln j

t2

]
.

(5)

By doing expectation for both sides of (5) and using Chernoff-Hoeffding
bound, we obtain that

E [Ti(t)] ≤ 8 ln t

(θUM − θi)2(Pd − Pf )2
+ 1 +

MUπ2

3
. (6)
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From above, we can see that the expected number of slots that the channels
sensed not within the set M∗ grows as O(ln t) with finite t and t → ∞.

We denote T ′(t) as the number of slots where optimal set is sensed but
wrong channel is accessed. In the following, we present Lemma 2 which provides
an upper bound for the expectation E[T ′(t)].

Lemma 2. For Algorithm1, the expectation of T ′(t) is bounded by

E [T ′(t)] ≤
UM−1∑

i=1

UM∑

k=i+1

[
8 ln t

(θi − θk)2(Pd − Pf )2
+ 1 +

π2

3

]
. (7)

Proof. By definition of T ′(t), a slot where optimal set is sensed but wrong channel
is accessed happens when optimal channel set is sensed, i.e. M(j) = M∗, but

central agent has a wrong top UM -order of the indexes θ̂i(j)+ 1
Pd−Pf

√
2 ln(j−1)
Ti(j−1) .

Under such circumstance, the estimated order of indexes θ̂i(t)+ 1
Pd−Pf

√
2 ln(t−1)
Ti(t−1)

for the first U · M channels is not correct. Therefore, it suffices to analyse the
bound for the event where any two channels, e.g. channel i and channel k with
i < k, i, k ∈ M∗ are estimated in wrong order.

Recall that θi > θk. The event happens when θ̂i(t) + 1
Pd−Pf

√
2 ln(t−1)
Ti(t−1) <

θ̂k(t)+ 1
Pd−Pf

√
2 ln(t−1)
Tk(t−1) . Similar to the proof in Theorem 1, the result is derived.

In accordance with two lemmas above, two components contributing to the
regret are with upper bound logarithmic over time. And apparently we can
conclude the regret bound in the following theorem.

Theorem 1. The regret R(t) of Algorithm ρCENT satisfies O(ln t).

Proof. For the centralized scenario, regret has a bound by the sum of two com-
ponents as shown below.

R(t) ≤ 	
N∑

i=UM+1

E [Ti(t)] + 	E

[
T

′
(t)

]
, (8)

where Δ � E

[
max
i∈M∗

θi(1−Pf )
f(θi)

Xi(j)
]

is the bound for expected reward loss in each

slot.

In particular,
N∑

i=UM+1

E [Ti(t)] represents the number of slots where SUs do

not choose the optimal channels to sense while E [T ′(t)] represents the number
of slots that SUs sense the optimal channels but access non-optimal sensed idle
channels. Combining results from (3) and (7), the regret satisfies the following
inequality
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R(t) ≤	 ln t

N∑

i=UM+1

8
(θUM − θi)

2 (Pd − Pf )2

+ 	 ln t

UM−1∑

i

UM∑

k=i+1

8
(θi − θk)2 (Pd − Pf )2

+ 	(N − UM)
(

UMπ2

3
+ 1

)
+ 	

(
UM

2

) (
π2

3
+ 1

)
.

(9)

By definition of O(ln t) in the notation above, the conclusion is derived.

3.2 Multiple Channel Access at a Slot (K > 1)

Then we consider the case where SUs simultaneously access multiple channels
at a slot. After SUs report the sensing result to central agent, the central agent
schedules the sensed idle channels. If the number of sensed idle channels is less
than U · K, all sensed idle channels will be allocated to SUs; otherwise, U · K
channels with best expected reward are selected for SUs. Under this case, the
expected reward of the genie-aided rule can be calculated in (1), while the regret
is derived in (2). To design a policy, Line 7 to Line 11 of Algorithm1 should be
modified as follows: if |I(t)| ≥ U ·K, within set I(t) central agent schedules U ·K
channels with best expected reward for SUs to access; otherwise, central agent
allocates all channels in I(t) to SUs. In an extreme case where all channels are
sensed busy, no channel is accessed. In this scenario, the regret R(t) of Algorithm
ρCENT satisfies O(ln t), and the proof process is similar to Theorem 1.

4 Distributed Sensing and Access for Multiple SUs

Different from centralized framework, in this section, we consider a distributed
framework where no information exchange or prior agreement is assumed among
multiple SUs. Two challenges are thus faced. On one hand, sensing results can-
not be shared by SUs, resulting in a slow convergence of estimation process in
respect to channel information. On the other hand, multiple SUs accessing the
same channel in one slot causes transmission collisions, resulting in additional
throughput loss. To overcome these challenges, a distributed sensing and access
policy with minimal regret is desired.

As follow, we propose a distributed policy by which each SU selects the
channel set for sensing in a randomized manner, driven by collision feedback after
channel access. In particular, different from the centralized case, SUs randomly
choose one channel set for sensing, then choose sensed idle channels for access
in a slot. At the end of this slot, SUs will receive a collision feedback indicating
whether collisions happen. Only those SUs who receive collision feedback will
randomize the channel set for sensing and access in the next slot. For simplicity,
we name the proposed distributed policy ρRANDOMIZE.
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4.1 Single Channel Access (K = 1)

First, we consider the genie-aided policy for optimal channel sensing and access
when channel information is known by SUs. Before introducing our policies, it is
necessary to analyse the benchmark, i.e., the optimal expected reward of genie-
aided rule. Different from the benchmark of centralized cases, SUs make decisions
based on their own sensing observations. The expected reward of distributed
genie-aided rule can be given as

U∗(t) =
t∑

j=1

max
Mu(j),u=1,...,U

U∑

u=1

E

⎡

⎣ max
Ku(j)⊂IMu(j),|Ku(j)|≤K

∑

i∈Ku(j)

E [Si(j)|Xi(j) = 1]

⎤

⎦ ,

(10)

where Mu(j) denotes the set of channels sensed by SU u at slot j, IMu(j) denotes
the set of sensed idle channels in Mu(j) at SU u in slot j, Ku(j) denotes the
channel set that SU u accesses in slot j.

Then, we consider how to get the best reward by genie-aided rule in the
following lemma.

Lemma 3. When SUs sense the channel set {M∗
u}u=1,2...,U , where M∗

u =
{u,M(U − u) + (u + 1), ...,M(U − u) + (u + M − 1)}, and access the sensed
idle channel of the smallest index, the maximal reward U∗(t) is achieved.

Proof. Recall that K = 1, the expected reward in (10) can be rewritten as

U∗(t) =
t∑

j=1

max
u=1,...,U

U∑

u=1

WM (θu,1, θu,2, ..., θu,M ) · (1 − Pf ), (11)

where Wn(x1, · · · , xn) = x1 +(1 − f(x1)) x2 + · · ·+
n−1∏
i=1

(1 − f(xi)) xn. It can be

proved that the function Wn(x1, x2, · · · , xn) is an increasing function of variables
(x1, x2, · · · , xn).

To maximize the expected reward U∗(t), the problem is transformed into
how to allocate U · M channels to each SU. Assume that channel 1 is allocated
to SU 1, Eq. (11) is written as

U∗(t)/t = θ1 + max
u=1,...,U

(
(1 − f(θ1)) WM−1(θ1,2, · · · , θ1,M ) +

U∑

u=2

WM (θu,1, · · · , θu,M )

)
.

(12)

Subsequently, we further consider how to allocate remaining channels to SU 1
and other SUs. Notably, any i ≥ 2, we have 1 − f(θ1) < 1 − f(θ2) < 1. Thus,
U∗(t)/t will become larger if optimal channels are allocated to other SUs. In
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particular, if the channel is allocated to SU 1, the reward WM−1(θ1,2, ..., θ1,M )
will be discounted by a coefficient 1 − f(θ1), which contributes less to U∗(t)).
Therefore, it is optimal to allocate channels {M(U − 1) + 2, · · · , UM} (i.e.,
those channels with smallest availability probability in M∗) to SU 1 and the
other channels {2, 3, · · · ,M(U − 1) + 1} to other SUs. By analogy, the optimal
allocation rule for all SUs is derived, under which for each SU u, the optimal
sensing channel set should be {u,M(U−u)+(u+1), · · · ,M(U−u)+(u+M−1)}.
Here concludes the proof.

In accordance with Lemma 3, the expected reward of genie-aided rule is
calculated as

U∗(t) = t ·
U∑

u=1

WM

(
θu, θ(U−u)M+(u+1), · · · , θ(U−u)M+(u+M−1)

) · (1 − Pf ), (13)

and the regret is derived as

R(t, {φu}u=1,2,··· ,U ) = U∗(t)−

E

⎡

⎣
t∑

j=1

U∑

u=1

N∑

i=1

E[Si(j)|Xi(j) = 1]I[φu(j) = i]
U∏

v=1,v �=u

I[φv(j) 
= φu(j)]

⎤

⎦ ,
(14)

where {φu} represents the access policy and φu(j) represents the channels
accessed in slot j at SU u. The term I[φv(j) 
= φu(j)] means that if there are
multiple SUs choosing the same channel, collision happens and no reward is
received.

In the following, to minimize the regret, we present our proposed policy in
Algorithm 2 and analyse its regret bound. Note that there are multiple SUs
contending for channels, collisions exist resulting in regret increase. Through
analysis, the regret consists of two parts: one comes from the case where SUs do
not sense or access non-optimal sensed idle channels, and the other comes from
multi-user collisions.

For the first part contributing to the regret, it contains two situations,
denoted by situation 1 and situation 2, respectively. In situation 1, SU u senses
or accesses channels not within M∗, while in situation 2, the channels sensed
or accessed by SU u within M∗ but not within M∗

u. The reason for situation 2
existing is that SU u has a wrong estimation of optimal channel order, and thus
SU is likely to choose wrong channels to sense and access.

Considering situation 1, the expected number of slots Tu,i(t) where a SU u
senses and accesses non-optimal channel i is derived in Lemma 4.

Lemma 4. For Algorithm2, the expected number of slots where any channel
i /∈ M∗ is sensed by SU u until time t has an upper bound

E [Tu,i(t)] ≤ 8 ln t

(θUM − θi)2(Pd − Pf )2
+ 1 +

Mπ2

3
. (15)

Proof. The proof of inequality (15) is similar to that of Lemma 1.
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Algorithm 2. Distributed Learning with Randomization by SU u

1: Set Flag = 0. SU u senses all N channels using
⌈

N
M

⌉
slots. At each slot, it selects

“a sensed idle channel to access, and then update Tu and Yu.
2: for at slot t do

3: SU u estimates θi, (i = 1, 2, ..., N) by θ̂u,i(t) =

Yu,i(t−1)
Tu,i(t−1)+Pd−1

Pd−Pf
, and then sorts

channels in a descending order by indexes θ̂u,i + 1
Pd−Pf

√
2 ln(t−1)
Tu,i(t−1)

. The order

is recorded as N ′
u.

4: if Flag = 1 then
5: Selu(t) ⇐ Unif(1, 2, ..., U).
6: else
7: Selu(t) ⇐ Selu(t − 1).
8: end if
9: SU u calculates index of sensing channels set as Au(t) = {Selu(t), M(U −

Selu(t)) + (Selu(t) + 1), · · · , M(U − Selu(t)) + (Selu(t) + M − 1)}
10: Update channel sensing set by Mu(t) ⇐ N ′

u(Au(t)). Flag ⇐ 0.
11: Update Tu(t) and Yu(t), and obtains the set of sensed idle channels Iu(t).
12: if Iu(t) is non-empty then

13: SU u accesses channel i with largest θ̂u,i +
1

Pd−Pf

√
2 ln(t−1)
Tu,i(t−1)

, and waiting

for ACK feedback.
14: if SU u receives the ACK then
15: Flag ⇐ 0.
16: else
17: Flag ⇐ 1.
18: end if
19: else
20: Do not access any channel at slot t.
21: end if
22: end for

In reference to Lemma 4, we can derive the bound for the expected time
of situation 1 by taking the slots that all SUs sense and access non-optimal
channels into consideration. Then, we analyse the expected number of slots for
situation 2. Denote T ′

u(t) as the expected number of slots where SU u has a
wrong estimation of optimal channel order until time t, and the conclusion is
derived in Lemma 5.

Lemma 5. For Algorithm2, the expected number of slots where a SU u does not
estimate the correct order of optimal channels until t has an upper bound

E [T ′
u(t)] ≤

UM−1∑

i=1

UM∑

k=i+1

[
8 ln t

(θi − θk)2(Pd − Pf )2
+ 1 +

π2

3

]
. (16)

Proof. The proof of inequality (16) is similar to that of Lemma 2.

In Lemma 5, we derive the bound for the expected number of slots where
SU u has a wrong estimation of optimal channel order. Notably, when situation
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1 exists, there must be a wrong estimation of optimal channel order at SU u.
Therefore, we can derive an upper bound for the expected time of situation 2 by
summing up E [T ′

u(t)] at all SUs.
Subsequently, we analyse the second part contributing to regret, which comes

from multi-user collisions. Define M(t) as the number of collisions faced by SUs
in optimal channels until time t. The bound for the expectation of M(t) is given
in the following lemma.

Lemma 6. For Algorithm 2, the expectation of M(t) is bounded by

E[M(t)] ≤
U∑

u=1

E [T ′
u(t)] ·

(
2U − 1

U

)

≤ U ·
UM−1∑

i=1

UM∑

k=i+1

[
8 ln t

(θi − θk)2(Pd − Pf )2
+ 1 +

π2

3

]
·
(

2U − 1
U

)
.

(17)

Proof. Define good events as the events that all SUs have correct order of top
U ·M channels, while other events are defined as bad events. Each event consists
of a consecutive time slots. Denote b as the number of bad events until t. B(k),
k = 1, 2, ..., b represents the good event and Bc(k), k = 1, 2, ..., b represents the
bad event between two adjacent good events. Denote M(B(k)) and M(Bc(k))
as the collision number during the event B(k) and Bc(k), respectively. In each
slot, if there are multiple SUs accessing the same channel, collision number will
increase 1.

Subsequently, we analyse collision number M(t) until t. In each slot, either
a good event or a bad event happens, so M(t) contains two parts, one is the
collisions under good event, which can be expressed as

∑b
k=1 M(B(k)), the other

one is the collisions under bad event, which can be expressed as
∑b

k=1 M(Bc(k)).
Therefore, M(t) is written as

M(t) =
b∑

k=1

M(B(k)) +
b∑

k=1

M(Bc(k)). (18)

In a good event, collision number is bounded by

b∑

k=1

E [M(B(k))]
(a)

≤
U∑

u=1

E [T ′
u(t)] ·

((
2U − 1

U

)
− 1

)
. (19)

where inequality (a) comes from the Theorem 3 in work [9],
(
2U−1

U

)−1 represents
the probability of having an orthogonal configuration over optimal channels by
all SUs in a slot under the perfect knowledge of channel information.

In a bad event, by definition of T ′
u(t), we have the following inequality

b∑

k=1

E [M(Bc(k))] ≤
U∑

u=1

E [T ′
u(t)] . (20)
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Concluded from (18) to (20), the expectation of M(t) is bounded by

E[M(t)] =
b∑

k=1

E[M(B(k))] +
b∑

k=1

E[M(Bc(k))]

≤
U∑

u=1

E [T ′
u(t)] ·

(
2U − 1

U

)
.

(21)

In reference to (16) and (21), (17) is concluded.

In accordance with Lemmas 4, 5 and 6, we derive the regret bound in the
following theorem.

Theorem 2. The regret R(t, {φu}u=1,2,...,U ) of Algorithm2 satisfies O(ln t).

Proof. Recall that the regret consists of two parts: one comes from the case
where SUs do not sense or access non-optimal sensed idle channels, and the
other comes from multi-user collisions. The regret resulting from the first case
can be concluded from Lemmas 4 and 5, while the regret resulting from the
second case can be concluded from Lemma 6. Therefore, the regret is bounded
as

R(t, {φu})

≤ η ·
(

U∑

u=1

∑

i/∈M∗
E [Tu,i(t)] + U · K ·

U∑

u=1

E
[
T ′
u(t)

]
)

+ η · U · K · E[M(t)]

≤ η ·
(

U∑

u=1

∑

i/∈M∗

[
8 ln t

(θUM − θi)2(Pd − Pf )2
+ 1 +

Mπ2

3

]

+ U2 · K ·
UM−1∑

i=1

UM∑

k=i+1

[
8 ln t

(θi − θk)2(Pd − Pf )2
+ 1 +

π2

3

]
·
((

2U − 1

U

)

+ 1

))

.

where η = max
u=1,··· ,U

E

[
max
i∈M∗

u

θi(1−Pf )
f(θi)

Xi(j)
]
. The term

U∑
u=1

∑
i/∈M∗

E [Tu,i(t)] repre-

sents the number of time slots that all SUs sense or access channels not belonging

to M∗, while the term U · K ·
U∑

u=1
E [T ′

u(t)] represents the maximal number that

channel order is incorrectly estimated and thus incorrectly accessed by all SUs.
U ·K ·E[M(t)] describes the worst case that all SUs access the same K channels
in a slot, under which all SUs have no reward.

From the expression of R(t, {φu}), by definition of O(ln t), the conclusion is
derived.

4.2 Multiple Channel Access (K > 1)

Then we consider the case where SUs simultaneously sense and access multiple
channels at a slot. For each SU, if the number of sensed idle channels is less
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than K, all sensed idle channels will be accessed; otherwise, K channels with
best expected rewards are accessed. Under this case, the expected reward of the
genie-aided rule can be calculated in (11), while the expected reward of regret
is derived in (14). To design a policy, Line 12 to Line 13 of Algorithm 2 can
be modified as follows: if |Iu(t)| ≥ K, SU u accesses up to K channels with

K-th largest θ̂u,i + 1
Pd−Pf

√
2 ln(t−1)
Tu,i(t−1) in Iu(t); if |Iu(t)| ≤ K, SU u accesses all

channels in Iu(t). Then SU u waits for ACK feedback. For the scenario where SUs
simultaneously access multiple channels at a slot, the regret R(t) of Algorithm
ρRANDOMIZE also satisfies O(ln t), and the proof process is similar to that of
Theorem 2.

5 Numerical Results

In this part, we perform simulations, varying the number of channels and SUs
to verify the effectiveness of the proposed algorithms. Consider a cognitive radio
network with U SUs and N channels, each SU can sense M channels, and access
K channels. We set Pd = 0.8 and Pf = 0.3. The information of channels is listed
in Table 1.

Table 1. Experimental parameters.

N θi

N=5 (0.5296, 0.4001, 0.9817, 0.1931, 0.2495)

N=6 (0.1647, 0.7506, 0.4402, 0.9408, 0.8242, 0.6610)

N=7 (0.8811, 0.5390, 0.3468, 0.9522, 0.7823, 0.0471, 0.7968)

N=8 (0.6923, 0.5430, 0.3544, 0.8753, 0.5212, 0.6759, 0.8783, 0.9762)

N=20 (0.0965, 0.1320, 0.9221, 0.9861, 0.5352, 0.0598, 0.2348, 0.3532, 0.8612,
0.0154, 0.0430, 0.1690, 0.6891, 0.7317, 0.6477, 0.4709, 0.5870, 0.2963,
0.7847, 0.1890)

First we perform simulations for ρCENT, where the results are shown in Fig. 2.
We consider various scenes with U = 2, 3, N = 5, 6, 7, 8 and K = 1, 2. Since our
proposed algorithm is bounded by O(ln t), we explore the relationship between
time and normalized regret R(t)/ ln t. From Fig. 2, it is easy to see that R(t)/ ln t
is finitely bounded. Further observation finds that when the number of channels
increases, R(t)/ ln(t) becomes larger. This is because as the number of channels
increases, the number of non-optimal channels increases, so SUs utilize more
time to sense and access non-optimal channels, consequently resulting in larger
regret and slower sensing speed. Additionally, as K increases, R(t)/ ln(t) becomes
larger. This is because when the estimation of channel order is not correct, SUs
are more likely to access the non-optimal channels.

Then, we present simulations for ρRANDOMIZE. We consider different sce-
narios with U = 2, 3, N = 5, 6, 7, 8, K = 1, 2. From Fig. 3, it is seen that the
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Fig. 2. Average R(t)/ ln t of Algorithm ρCENT.

normalized regret R(t)/ ln(t) tends to be finitely bounded as time goes, which
verifies that the regret is bounded by O(ln t). From the result we find that there is
no transmission loss as time goes infinitely, which means that all SUs will access
the optimal channels and converge to a collision-free configuration. Similar to
ρCENT, with the increasing number of channels N , regret increases. As expected
from the comparison between Figs. 2 and 3, we can see centralized allocation
policy has a lower regret than that of distributed allocation policy.

Further, we increase the number of channels (N = 20), and compare the
regret with various M , K and fixed U in Fig. 4. It is seen that as time increases,
R(t)/ ln(t) is asymptotically limited. With fixed number of SUs and the number
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Fig. 3. Average R(t)/ ln t of Algorithm ρRANDOMIZE.



276 Z. Xu et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time 105

0

500

1000

1500

2000

2500

3000

R
eg

re
t/l
og

(t)

N=20,U=3,M=4,K=1
N=20,U=3,M=4,K=2
N=20,U=3,M=4,K=3
N=20,U=3,M=4,K=4
N=20,U=3,M=2,K=1
N=20,U=3,M=2,K=2

Fig. 4. Average R(t)/ ln t of Algorithm ρRANDOMIZE with different M and K.

of channels M , R(t)/ ln(t) increases with increasing number of K. It is explained
that before correctly estimating the order of channels, accessing more channels
will bring out more collisions and higher probability for non-optimal channels.
Another important observation is that with fixed U and K, sensing more chan-
nels simultaneously can contribute to lower R(t)/ ln(t). The reason behind is that
if SU can sense more channels at one time, it can not only estimate channels
more quickly, but has broader chance to get access of sensed idle channels.

6 Conclusion

In this paper, we propose policies for both centralized and distributed learn-
ing of channel information for multiple SUs under imperfect sensing in a CR
network. Algorithm ρCENT considers the scenario under the centralized frame-
work while Algorithm ρRANDOMIZE adapts the collision feedback to randomize
the channel set for SUs under the distributed framework. Both algorithms make
SUs converge to a collision-free configuration, ensuring that the regret is loga-
rithmic asymptotically and in finite time. Theoretical analysis and simulations
are presented to illustrate the efficiency of proposed algorithms.
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