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Abstract. The point cloud obtained by the 3D laser scanner contains
a very large amount of data, in order to transmit the point cloud data
as much as possible with the limited bandwidth, the effective compres-
sion of point cloud data has become a problem that needs to be solved
urgently nowadays. In this paper, we use the compressive sensing theory
to compress and reconstruct one of the point features, that is, the Y color
component, served as the signal. We also use the K-SVD algorithm to
explore the signal’s sparsity according to its unique structural features,
the K-SVD algorithm can learns a sparse basis matrix that is common to
all point cloud models used in our experiments. For experimental results,
we use rate-distortion metric. The results show that for each point cloud
model, our method can achieve a higher probability to reconstruct the
original data after compressed.
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1 Introduction

In the field of computer vision, it has become more important to represent data
in 3D. In recent years, point clouds have become popular to represent 3D data,
as the scanners that can capture 3D data increasingly ubiquitous, 3D point
clouds have widely been used in different kinds of fields in modern society, like
robotics [1], autonomous driving [2], virtual/augmented reality [3], vehicular
networking technology [4], internet of things [5] etc. A point cloud is a collection
of points that can describe the surface of an object which can obtained by the
3D scanners, and can represented as a set of 3D points {pi|i = 1, ...n}, where
each point contains a position vector (x, y, z), and its features such as color (R,
G, B), surface normal, etc. However, with the development of the scanners, point
cloud can be created at very high rates which allow for efficient and compact
storage as well as transfer of this data, compression of point cloud has therefore
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been Chinese and foreign academia hot research field, which is the key driving
force in the fields of immersive communication and automatic driving.

The compression of point cloud can be started from two aspects: geometry
and texture. At first, the compression of geometry information gained the most
concerned. Among them, the octree decomposition method [6] has been used
extensively because of its efficiency and low-complexity. Given a point cloud P,
we can get a cube based on its geometric information that is able to surround
the entire point cloud model, then, an octree O is constructed with a maximum
number of level L and the points in P are sorted into the cells of the octree.
We can divide the cube by the mean value from the three directions of x, y,
z, each subdivision produces eight child cells. If the current cell is occupied or
does not meet the maximum number of level that we already set, it continues
to be divided. At the process of encode, the existent child cells are specified in
a single byte per cell subdivision, i.e. each bit specifies the occupancy of a child
cell. This is the most basic principle for encoding geometric information of the
point cloud with an octree.

In recent years, with the development of 3D video panorama and other tech-
nologies, for better visual effects, and recently the color feature of the point
cloud received an increasing amount of attention in particular. However, for
data represented in point cloud form, which is irregular, the compression of the
color also faces enormous challenges. Instead of compressing the irregular data
directly, [7–9] map the irregular data into regular data for convenient data pro-
cessing. Mekuria et al. [7] traversed each point’s color with a depth first order
from the octree and then used the zig-zag scan to map them to a 8 × 8 blocks
of a 2D grid. After that, they compressed the grids with JPEG by using the
correlations between the colors. Almost the same idea with Mekuria, Tu et al.
[8] map the point cloud into range images and then compressed them with either
JPEG or MPEG-4. Cui et al. [9] compressed the 2D grids data by selecting two
redefined models. And in this paper, we compressed one of the color attributes
by exploiting compressive sensing theory.

In 2006, the theory of compressive sensing (CS) proposed by Candès and
Donoho [10–13] pointed out that for signals that are sparse themselves or sparse
under a certain transform basis, they can be observed by non-linear down-
sampling. And then the low-dimensional observations can be used by the mea-
surement matrix which satisfy the Restricted Isometry Property (RIP) with
transform basis to perform a high probability reconstruction of the original sig-
nal. Different from the traditional Nyquist sampling theorem, the compressive
sensing theory combines the sparse characteristics of the signal, and uses the
measurement matrix to observe the signal, so that the sampling process of the
signal does not depend on the bandwidth of the signal, but the content and
structure of the signal. Therefore, the theory of compressive sensing opens a
new path for the compressing and coding theories of signals. In the past decade,
the CS algorithm has made great progress, especially the development of its
reconstruction algorithm [14–16]. Wang et al. [17] applied this theory to the
deep network of image reconstruction, which not only achieves good reconstruc-
tion effect, but also reduces the computational complexity. In order to avoid
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unauthorized access to multimedia content, Athira et al. [18] even added this
theory to Encryption technology. In the automobile sensor system, radar sensors
are often used to image in order to provide better visual aids for drivers. A new
radar signal processing technology based on compressive sensing theory is pro-
posed by Baselice et al. [19] which can image two or more targets in the same
line of sight. The performance of radar DAS (DAS: Driver Assistance Systems)
is greatly improved. It can be seen that the theory is widely used in various
fields.

In this paper, we use compressive sensing theory to compress and reconstruct
one of each point’s color component, that is, Y color component. In the early data
preprocessing stage, we will use the geometric information to spatially decompose
the point cloud with octree firstly, after that we can obtain the Y color compo-
nent values for each point in the same cell. The Y color component values are
then applied as a signal in our compressive sensing theory. Simultaneously, we
use the K-SVD algorithm to learn a sparse basis that can be universally used by
these five models: Longdress vox10 1300, Loot vox10 1200, Queen 0200, Redand-
black vox10 1550 and Soldier vox10 0690, these five models we used in the exper-
iments are all from the new test models presented at the MPEG 125th conference.

The following contents are organized as follows: in the second part we will
introduce how to use the geometric spatial characteristics and the local similarity
characteristics of the point cloud to obtain the training data; the third part, as
the acquired training data has some similarities, we propose to use the K-SVD
algorithm to train a dictionary to obtain the sparse basis of signals; in the fourth
part, we will give the experimental results and have a brief explanation; in the
fifth part, we concludes the paper and provides pointers to future directions.

2 Acquisition of Training Data

Generally speaking, the points collected by the 3D laser scan are out of order,
if we want to use the compressive sensing theory to have a good compression
and reconstruction effect on the point cloud data, the higher the similarity of
the point’s Y color component value, the better, this will provide important
guarantees for our subsequent dictionary learning method to obtain a good sparse
basis, so we need to do some preprocessing on the point cloud data. In this paper,
we use a signal matrix to train the sparse basis matrix D with each column of the
signal matrix to be one signal. In the experiment, we take the Y color component
of each point in the same cell as a signal. To ensure that the dimensions of each
signal can be the same, we first decompose each point cloud model with an
octree. The octree decomposition process only uses the geometric information of
the point cloud model: given a point cloud model, a cuboid can be constructed
according to the maximum and minimum values of its coordinate information,
which can then be divided from the mean of the three coordinate axes, with
each cell be divided into eight childcells. We finally want to extract the Y color
component of the points in the same cell as our signal, and also try to ensure
that the number of points in each cell can be the same, that is, the dimensions
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of our signals are the same. In experimenting we set the dimension of a signal to
512. For each cell subdivision, the number of points in each cell can be known
and only cells with more than 512 points are further subdivided. However, this
does not absolutely guarantee that the number of points contained in each cell
is the same as 512.

Through the above octree decomposition, we can know which cell each point
is located. After simple processing, we can get an index matrix. The value in
each column of this matrix represents the index value of the point in the same
cell. The number of columns of the index matrix is the number of cells in which
the point cloud is divided by the octree. (Index value: each point cloud model
is a N × 6 matrix I = {i0, ..., iN−1} after reading with Matlab, regardless of
the normal vector, N represents the total number of points in the model, with
in (n = 0, ..., N − 1) represents the geometric and color information of a point. n
is what we said the index value). After the index matrix is obtained, to make a
better use of the similarity between signals, we slice the points in the same cell,
and perform a raster scan for each point on the slice. The slice operation changes
only the order of the index value in the index matrix I. Then we extract the Y
color component of each point according to the index matrix and subsequently
get the signal matrix S. What needs to be mentioned is that each value in the
signal matrix is de-averaged. For signals with less than 512 values, zero-padding
operations is performed in the vacant place. The disadvantages of this is that it
is equivalent to an increase in the amount of data, and the coding efficiency will
be very low.

In our experiment, the signal matrix is obtained from five point cloud models
by the method of obtaining training data proposed above. The signal matrix is
then used as our training data in the K-SVD algorithm. Among the five mod-
els, the training data of the Longdress vox10 1300 model has a dimension of
512 × 4777, the Loot vox10 1200 model is 512 × 3824, the Queen 0200 model
is 512 × 6131, the Redandblack vox10 1550 model is 512 × 3784, and the Sol-
dier vox10 0690 model is 512× 7385, so the dimension of the large training data
S composed of these five models is 512 × 25901. The purpose of using the five
point cloud models to form a large training data is to learn a dictionary D that
is common to the five point cloud models. Under the dictionary D, each point
cloud model can have a good sparse representation.

3 Over-Complete Dictionary Training of Point Cloud
Based on K-SVD Algorithm

In the existing sparse representation theory, there are usually two methods used
to create a sparse representation dictionary: (1) Based on mathematical mod-
els. E.g. Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) [20],
Wavelet Transform [21,22] etc. (2) Training dictionary for training sets with
distinct characteristics.

For signals that do not have the properties of digital image signals, they
do not necessarily have good sparsity in the DCT transform domain, so if the
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DCT domain transform is still performed, the sparse coefficients obtained cannot
guarantee the sparsity. In the preliminary stage of the experiment, we used the
DCT transform basis for the signal, but the effect was not satisfactory. In order
to get the sparsity of the more general signals, we later modified it to obtain the
sparse basis matrix of the signal through the dictionary learning method. The
dictionary learning learns a matrix, which is equivalent to the transformation
matrix in the DCT transform, and is often called over-complete dictionary, its
number of rows is much smaller than the number of columns, which is generally
represented by D. In the signal encoding and decoding algorithm based on com-
pressive sensing, constructing a good dictionary is a very important part. The
quality of the dictionary directly affects the quality of the final reconstruction
effect.

The commonly used dictionary learning algorithms are K-SVD [23] and K-
Means [24]. The K-SVD algorithm obtains the over-complete dictionary that is
most suitable for the training set through continuous training update. Since it
is adaptively obtained through training update, the signals can be decomposed
according to its excellent structural features in the over-complete dictionary for
better exploration of the signal’s sparsity.

3.1 K-SVD Algorithm

In the K-SVD algorithm, Y=DX, with Y is the sample signal matrix, D is the
dictionary, X is the sparse coefficient matrix, the goal of the algorithm is to train
a dictionary D so that the product of the dictionary D and the sparse coefficient
matrix X can be as close as possible to the matrix Y, while each column of the
sparse coefficient matrix X is as sparse as possible. In our experiment, the sample
signal matrix Y is our training set S which we obtained above. During train-
ing, according to the suggestions in [23], for atoms that are used less frequently
and have similarities, we replaced them with normalized vectors in the sample
signal matrix that maximizes the error. In this experiment, the training set S is
composed of five point cloud models, Longdress vox10 1300, Loot vox10 1200,
Queen 0200, Redandblack vox10 1550, Soldier vox10 0690, and the learned dic-
tionary can be universally used by this five models, then, each model is com-
pressed through the compressive sensing methods by using the common dictio-
nary D as there sparse basis.

3.2 Compressive Sensing Theory

As we stated earlier, the theory of compressive sensing (CS) proposed by Candès
and Donoho [10–13] pointed out that for signals that are sparse themselves
or sparse under a certain transform basis, almost exact reconstruction of the
signal can be achieved by unknown observations. The focuses of this theory
are measurement matrix, sparse basis matrix and the reconstruction algorithm.
The measurement matrix acts as a down-sampling, reducing the original high-
dimensional data to a low-dimensional, reducing the amount of data, which in
turn can be encoded with fewer bits-streams. There are two requirements for the
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measure matrix: it can play the role of down-sampling; and together with the
sparse basis matrix satisfies the Restricted Isometry Property (RIP). Therefore,
the dimension of the measurement matrix must ensure that the number of rows
is less than the number of columns. In our experiments, the measurement matrix
Φ ∈ Rm×n, m = a ×n, obviously, a is the sample rate. We set the values of the
two sample rates to 0.7, 0.8 and 0.5 respectively for comparison experiments, n
is 512. The measurement matrix can be divided into deterministic measurement
matrix and random measurement matrix. The common deterministic measure-
ment matrix has partial orthogonal matrix, polynomial deterministic matrix,
Toeplitz matrix, partial Fourier matrix, etc. and the commonly used random
measurement matrix is Gaussian random measure matrix. In this experiment,
a more common Gaussian random measurement matrix is adopted. Since the
generation of the matrix is random, in order to ensure that the same measure-
ment matrix can be used under different quantization steps, we first generate
a m ∗ n-dimensional Gaussian random measurement matrix. The measurement
matrix is saved and then loaded directly into each run.

The discrete point cloud data are almost non-sparse in numerical represen-
tation, so it is impossible to directly observe and reconstruct point cloud data.
Therefore, we need to find the sparse representation of point cloud data under
a certain transformation basis. The so-called sparse representation of a signal
means that the signal can be linearly represented by a small number of basis
vectors in its space, and the basic idea of sparse representation theory based
on an over-complete dictionary can be considered in a condition of reconstruct-
ing the original signal as much as possible to replace the traditional orthogonal
basis by an over-complete basis. The number of rows of the over-complete dic-
tionary is much smaller than the number of columns. The K-SVD algorithm
gradually trains the redundant dictionary that is most suitable for the training
set through iterative operations. That is, we can get the sparse basis of point
cloud data through the K-SVD algorithm described above.

After compressing and encoding the point cloud data by the compressive
sensing method in the encoder, we need to use the reconstruction algorithm at
the decoder to recover the original data as much as possible. In recent years,
many reconstruction algorithms have appeared in the field of compressive sens-
ing. Among many reconstruction algorithms, the orthogonal matching pursuit
(OMP) algorithm is widely used in the field of sparse representation because of
its simple and easy to use. The input of this algorithm is a one-dimensional sig-
nal, that is to say, the one-dimensional signal OMP algorithm can perform sparse
representation better. In this experiment, although the input is the sample signal
matrix, each column of the matrix is a signal, so we adopt this reconstruction
method.

4 Experiment Result

A brief review of the entire experiment process: Five point cloud models, after
acquiring the training data, combine the training data of the five models to
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obtain a large training data, and then use the K-SVD algorithm to train a
common sparse basis for the five models and finally applied to each point cloud
model by compressive sensing. The models used in the experiment is the new test
models given by MPEG 125th conference: Longdress vox10 1300 with 857966
points, Loot vox10 1200 with 805285 points, Queen 0200 with 1000993 points,
Redandblack vox10 1550 with 757691 points, Soldier vox10 0690 with 1089091
points. In the case of compressive sensing, different sample rates and quantization
steps were applied to compare experiments. The specific experimental data and
RD curves are as Fig. 1:

(a) Longdress (b) Loot

(c) Queen (d) Soldier

(e) Rendandblack

Fig. 1. Rate and distortion curves of these five models after encoding and decoding of
the compressive sensing
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From the experimental results, we can see that in the case of high code rate,
the reconstruction effect is better. The higher the sample rate, the better the
reconstruction effect.

5 Conclusion and Prospect

The rapid development of 3D scanning technology makes it possible to efficiently
obtain massive point cloud data to represent real-world objects, but usually the
amount of point cloud data is very large, so compressed encoding and reconstruc-
tion of 3D point cloud has become one of the research hotspots. How to perform
high-efficiency compressed encoding and reconstruction without degrading the
quality of the point cloud model has been a problem that the field is trying to
solve. The compressive sensing theory proposed by Candès et al. in 2006 provides
a new way for compression algorithms.

After studying the theory of compressive sensing and sparse representation
theory, this paper analyzed and processed the scattered and disordered point
cloud data in space, studied its sparse representation method, and used the
octree to fully exploit the information inside its data. The models were spatially
decomposed and finally obtained point cloud data suitable for the theory of
compressive sensing. The work done in this paper can be summarized as follows:

1. Using the octree to achieve the spatial decomposition of the point cloud, and
slicing the points in each cell, which improves the numerical similarity of the
Y-color components of the 3D point cloud data and provides an important
guarantee for sparse representation of three-dimensional point clouds.

2. Using the five models of Longdress vox10 1300, Loot vox10 1200,
Queen 0200, Redandblack vox10 1550, Soldier vox10 0690 in the test models
given by the MPEG 125th conference, an over-complete dictionary of these
five models is trained using the K-SVD algorithm, and by using the dictio-
nary in compressive sensing, both five point cloud models can achieve higher
probability reconstruction.

The next research work mainly includes:

1. Research how to divide the point cloud surface into k-nearest neighbors. In
this paper, we use the octree method to decompose the point cloud, and can’t
guarantee the points in each cell has the same number, and we increase the
amount of data artificially for the cells with insufficient points.

2. For the K-SVD algorithm to train the over-complete dictionary part, research
whether an adaptive optimization algorithm can be used to judge if the iter-
ation has reached convergence. In this paper, we just set the number of itera-
tions to a fixed value and did not judge whether convergence has been reached.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61871342; in part by the National Key
R&D Program of China under Grants 2018YFC0831003; in part by the Shandong
Natural Science Funds for Distinguished Young Scholar under Grant JQ201614; in



Compressive-Sensing Based Codec of the Y Color Component 257

part by the Shandong Provincial Key Research and Development Plan under Grant
2017CXGC1504; in part by the open project program of state key laboratory of vir-
tual reality technology and systems, Beihang University, under Grant VRLAB2019B03;
and in part by the Young Scholars Program of Shandong University (YSPSDU) under
Grant 2015WLJH39.

References

1. Garrote, L., Rosa, J., Paulo, J., et al.: 3D point cloud downsampling for 2D
indoor scene modelling in mobile robotics. In: IEEE International Conference on
Autonomous Robot Systems & Competitions. IEEE (2017)

2. Mousavian, A., Anguelov, D., Flynn, J., et al.: 3D bounding box estimation using
deep learning and geometry (2016)

3. Mekuria, R., Blom, K., Cesar, P.: Design, implementation and evaluation of a point
cloud codec for tele-immersive video. IEEE Trans. Circuits Syst. Video Technol.
27, 828–842 (2016)

4. Du, Y., ShangGuan, W., Chai, L.: Particle filter based object tracking of 3D sparse
point clouds for autopilot. In: 2018 Chinese Automation Congress (CAC), Xi’an,
China, pp. 1102–1107 (2018)

5. Wang, H., et al.: The research of chemical plant monitoring base on the internet
of things and 3D visualization technology. In: 2013 IEEE International Conference
on Information and Automation (ICIA), Yinchuan, pp. 860–864 (2013)

6. Schnabel, R., Klein, R.: Octree-based point-cloud compression. In: Eurographics.
Eurographics Association (2006)

7. Mekuria, R., Blom, K., Cesar, P.: Design, implementation, and evaluation of a point
cloud codec for tele-immersive video. IEEE Trans. Circuits Syst. Video Technol.
27(4), 828–842 (2017)

8. Tu, C., Takeuchi, E., Miyajima, C., Takeda, K.: Compressing continuous point
cloud data using image compression methods. In: Proceedings of the IEEE Intel-
ligent Transportation Systems (ITSC), Rio de Janeiro, pp. 1712–1719 (2016)

9. Cui, L., Xu, H., Jang, E.S.: Hybrid color attribute compression for point cloud
data. In: Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME), Hong Kong, pp. 1273–1278 (2017)

10. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory 52(2), 489–509 (2006)

11. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
12. Candès, E.: Compressive sampling. In: International Congress of Mathematics,

Madrid, Spain, pp. 1433–1452 (2006)
13. Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121

(2007)
14. Metzler, C.A., Maleki, A., Baraniuk, R.G.: From denoising to compressed sensing.

IEEE Trans. Inf. Theory 62(9), 5117–5144 (2014)
15. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations

over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)
16. Ma, L., Bai, H., Zhang, M., Zhao, Y.: Edge-based adaptive sampling for image

block compressive sensing. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 99–A(11), 2095–2098 (2016)



258 W. Wang et al.

17. Wang, Y., Bai, H., Zhao, Y.: Image reconstruction from patch compressive sensing
measurements. In: 2018 IEEE Fourth International Conference on Multimedia Big
Data (BigMM). IEEE Computer Society (2018)

18. Athira, V., George, S.N., Deepthi, P.P.: A novel encryption method based on com-
pressive sensing. In: International Multi-conference on Automation. IEEE (2013)

19. Baselice, F., Ferraioli, G., Matuozzo, G., et al.: Compressive sensing for in depth
focusing in 3D automotive imaging radar. In: 2015 3rd International Workshop
on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote
Sensing (CoSeRa). IEEE (2015)

20. Bai, H., Wang, A., Zhang, M.: Compressive sensing for DCT image. In: Interna-
tional Conference on Computational Aspects of Social Networks. IEEE (2010)

21. Wang, D.W.D., Zhang, L.Z.L., Vincent, A., et al.: Curved wavelet transform for
image coding. IEEE Trans. Image Process. 15(8), 2413–2421 (2006)

22. Cheng, G.Q., Cheng, L.Z.: A new image compression via adaptive wavelet trans-
form. In: International Conference on Wavelet Analysis & Pattern Recognition.
IEEE (2007)

23. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11),
4311–4322 (2006)

24. Sahoo, S.K., Makur, A.: Dictionary training for sparse representation as general-
ization of K-means clustering. IEEE Signal Process. Lett. 20(6), 587–590 (2013)


	Compressive-Sensing Based Codec of the Y Color Component for Point Cloud
	1 Introduction
	2 Acquisition of Training Data
	3 Over-Complete Dictionary Training of Point Cloud Based on K-SVD Algorithm
	3.1 K-SVD Algorithm
	3.2 Compressive Sensing Theory

	4 Experiment Result
	5 Conclusion and Prospect
	References




