
Dynamic Maximum Iteration Number
Scheduling LDPC Decoder

for Space-Based Internet of Things

Ruijia Yuan1(B), Tianjiao Xie1,2, and Yi Jin1

1 China Academy of Space Technology (Xi’an), Xi’an, People’s Republic of China
yuanyuanruijia@163.com

2 School of Electronics and Information, Northwestern Polytechnical University,

Xi’an, China

Abstract. For Space-based internet of things (S-IoT) application sce-
nario, a Dynamic Maximum Iteration Number (DMI) scheduling decoder
for LDPC codes is proposed. Distinct from traditional Static Maximum
Iteration Number (SMI) scheduling LDPC decoder using fixed maximum
iteration number, our DMI LDPC decoder has extra circuit to obtain the
dynamic maximum iteration number, which could improves BER perfor-
mance only at the expense of a slightly logic resources and a small ratio
of memories, compared with conventional SMI scheme. Therefore, the
DMI decoder is very suitable for the fluctuation of signal-to-noise ratio
of S-IoT link.

Keywords: Space-based Internet of Things (S-IoT) · LDPC decoder ·
Iteration · FPGA

1 Introduction

The Internet of Things (IoT) [1] is a network application mode for machine-
to-machine communication and interconnection. The space-based Internet of
Things (S-IoT) [2] refers to the coverage of blind areas in remote areas, oceans
and other terrestrial networks, and relies on satellite communication networks
to achieve reliable communication transmission. The terminals of the S-IoT are
widely distributed in land, sea, air, and sky. The propagation delays of various
types of terminals to satellites are not only long but also jagged, resulting in
different signal losses. Therefore, the specificity of the link is that the signal-
to-noise ratio (SNR) fluctuates greatly. Aiming at this channel characteristic
of S-IoT, this paper proposes a variable maximum iterations design for LDPC
decoder. This method can implement dynamic data for each frame of data in the
decoding process according to the actual channel characteristics. The maximum
iterations is allocated for different SNR to improve the BER performance of the
system.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

B. Li et al. (Eds.): IoTaaS 2019, LNICST 316, pp. 235–241, 2020.

https://doi.org/10.1007/978-3-030-44751-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44751-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-44751-9_20

236 R. Yuan et al.

In current decoders [4–8], the iterations of the next block do not start until
a preset maximum iteration number is reached, which is called Static Maximum
Iteration Number (SMI) scheduling decoder in this paper. However, in SMI,
low BER frames of decoder input can be corrected after a small number of
iterations, thus the process circuit is idle. Conversely, that of high BER frames
cannot be corrected until SMI is reached, thus it is potentially harmful to the
overall BER performance of decoder. If the idle time saved by low BER frames
can be effectively used by those high BER frames, the BER performance should
be improved. Traditionally, stopping criteria [4–8] is only used to save energy
in iterative decoders. However, authors in [3] apply this method only for Turbo
soft-input/soft-output decoders and additional three data buffers at the decoder
input is analyzed to increase the average number of iterations.

In this paper, we consider making full use of processing capability of LDPC
decoders. Thus, additional more data buffers are also involved to further increase
the average number of iterations. Moreover, the implementation circuit of gen-
erating dynamic maximum iteration number is also presented in this paper. Our
DMI scheduling LDPC decoder could improve the BER performance while it
maintains nearly the same hardware resources as the existing SMI scheme.

2 Static Maximum Iteration Number (SMI) Scheduling
Decoder for LDPC Codes

2.1 LDPC Decoding Algorithm

The typical LDPC decoding algorithm is Sum-Product Algorithm (SPA) [4],
which provides a powerful method for decoding LDPC codes. However, it suffers
from large complexity and is very sensitive to finite word length implementation
[6]. The Min-Sum decoding Algorithm (MSA) [5] is similar to the SPA, just with
an approximation of check node process. The most popular derived MSA used
in hardware implementation is normalized MSA (NMSA) [5], in which at the
i-th iteration the Check Node processing Units (CNU) compute the Check to
Variable (C2V) messages R

(i)
mn as follows:

R(i)
mn = α

∏

n′∈N(m)\n
sign

(
Q

(i−1)
n′m

)
min

n′∈N(m)\n
|Q(i−1)

n′m | (1)

Where normalized factor α is introduced to compensate for the performance
loss in the MSA compared to SPA. Qnm is the Variable to Check (V2C) messages,
N(m) denotes the set of variable nodes connected to check node m. The exclusion
of an element n from N(m) is denoted by N(m)\n.

At the i-th iteration, the Variable Node processing Units (VNU) compute
Q

(i)
nm and Q

(i)
n as the following:

Q(i)
nm = Cn +

∑

m′∈M(n)\m
R

(i)
m′n (2)

Dynamic Maximum Iteration 237

Q(i)
n = Cn +

∑

m′∈M(n)

R
(i)
m′n (3)

Where Qn represent the posterior message corresponding of variable node n.
M(n) denotes the set of check nodes connected to variable node n. The exclusion
of an element m from M(n) is denoted by M(n)\m. Cn denotes the intrinsic
(channel) message associated with variable node n.

Cn = log(P (xn = 0|yn)/P (xn = 1|yn)) (4)

Here both C2V and V2C messages are called extrinsic messages. Decoding
can repeat iteratively until the check equations are satisfied or a preset maximum
iteration number is reached.

2.2 Static Maximum Iteration Number (SMI) Scheduling LDPC
Decoder

Before we present a new DMI scheduling LDPC decoder, timing and its corre-
sponding definitions are first analyzed.

From the above description of LDPC decoding algorithm, it can be seen that
the calculations for each iteration need the channel messages of the intact one
frame. So the incoming data should be stored into a buffer until one frame data
is completely reached. Then the iterative decoding process can be executed.
In engineering, for real-time decoding, conventional iterative decoders usually
employ two independent buffers at the input of decoder. The capacity of each
buffer is set to one frame size. One buffer is filled with current frame coming
from the demodulator and the other is used for the iterative decoding process
for last frame. Afterwards the buffers tasks are switched. As a result this method
effectively avoids the previous frame data being covered with the current frame
data before it is completely processed.

Therefore maximum processing time Tmp of each frame should be no more
than the incoming time of one frame. Here Tmp can be calculated as

Tmp = Im × CI (5)

where Im is maximum iteration number and CI is the clock cycles per iteration.
Figure 1 illustrates the timing of existing SMI method for consecutive data

of LDPC iterative decoder. It can be seen that Tmp (or Im multiples CI) of each
frame is a constant, which approximates to the incoming time of one frame. So
it is a Static Maximum Iteration number (SMI) strategy decoding, where both
we ramf1 and we ramf2 are write-enable signals.

3 Proposed Dynamic Maximum Iteration Number (DMI)
Scheduling LDPC Decoder

In the SMI method, Im is a constant which is proportional to the time of storing
one dataframe (Eq. (5)). Decoding can repeat iteratively Im times until the entire

238 R. Yuan et al.

Fig. 1. The timing of SMI strategy decoding for consecutive data.

Fig. 2. The timing of DMI strategy decoding for consecutive data with F = 4 frames
buffer.

codeword x̂ (one frame) satisfy the parity check equations or the preset Im is
reached. However, some frames terminate the decoding after a small number of
iterations, while other frame cannot be corrected either when Im is reached. If the
iterations frames saved idle time can be effectively used by those big iterations
frames, the BER performance should be improved. By the observation, DMI
strategy is proposed in this section.

In order to analyse how to use the saved idle time in DMI strategy, the
timing of the DMI decoding with F = 4 frames buffers is demonstrated as an
example in Fig. 2. Here the number of frames buffer F is an integer greater than
2. Because four buffers are utilized, each data frame can be retained in buffer
for other three incoming frames time until a new data frame arrived. Therefore,
the maximum iteration number prolongs three times more than the existing of
buffering two frames case, i.e., maximum iteration number is increased up to
(F − 1)× Im. Moreover, in the worst case, each frame can iterate minimum
one frame incoming time, i.e., maximum iteration number is not less than Im,
which guarantees the BER performance of DMI not worse than that of SMI.
This iterative time allocation method makes full use of idle time of that early
termination frames to optimize the utilization of circuit resources. As a result
maximum iteration number of DMI is dynamic, denoted Imd, which has a range
from Im to (F − 1)× Im, as shown in Fig. 2.

The main difference between SMI and DMI strategies are that the former has
a predetermined constant Im before the decoder is started, while for the latter
its Imd of current frame should be calculated by the last previous frame. In fact,
SMI specifies F = 2, which is a special case of DMI.

Dynamic Maximum Iteration 239

2.6 2.8 3 3.2 3.4 3.6

E
b
/N

0
(dB)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
it

E
rr

or
 R

at
e

SMI I
m

=17

DMI I
mc

=17-34

SMI I
m

=34

DMI I
mc

=17-51

SMI I
m

=51

Fig. 3. BER curves of SMI and DMI for CCSDS 4/5 LDPC code

4 Simulation Results

In order to assess the performance of the above two scheduling decoding algo-
rithms, SMI and DMI, LDPC codes in the CCSDS standard [9] was employed.
AWGN channel is considered. In order to obtain a tradeoff between complexity
and BER performance, the NMSA is used for check-node update. Normalization
factor α is set to be 0.75.

The BER performance versus Eb/N0 for the existing SMI and the new DMI
are demonstrated in Fig. 3. It depicts the performance of SMI in solid lines with
Im = 17, 34 and 51, respectively. In order to make some comparisons with SMI,
the DMI scheme with F = 3 and F = 4 frames buffer, corresponding Imd =
17–34 and 17–51, respectively, are also illustrated in dashed lines in the same
figure.

In Fig. 3, it can be seen that, At BER of 10−6, our DMI with Imc = 17–
34 achieves the approximate BER performance as that of SMI with Im = 34.
The similar observations can be made that DMI with Imc = 17–51 achieves the
approximate BER performance as that of SMI with Im = 51.

5 Implement Results

Based on the proposed architectures described in previous sections, we imple-
ment the CCSDS LDPC decoder. Q = 6 bits quantization scheme is adopted in
our implementation. We choose the Xilinx Vertex5 xc5vlx330-1ff1760 device as
the target FPGA.

240 R. Yuan et al.

Table 1. Resources utilization statistics of SMI and different DMI decoders

Iterations SMI 17 SMI 34 DMI 17–34 DMI 17–51

Slices 12182 24364 12497 12497

Buffers 2 frames 4 frames 3 frames 4 frames

Throughput 160 Mbps 160 Mbps 160 Mbps 160 Mbps

Through the ISE10.1 place and route simulation, plus 5ns constraint, the
decoder designed with the four maximum iterations shown in Table 1 can satisfy
the constraint. The clock frequency of the decoder can be set to 200 MHz. The
memory buffers the input frame data and the output decoded result data to
ensure that the data of the input and output decoders are continuous. Assume
that the input decoder clock is clkin, and the output decoder clock is clk (ie, the
clock at which the decoder operates), so the relationship between the throughput
of the decoder and the system clock is clk×CodeRate, for 4/5 rate LDPC (5120,
4096), as shown in Table 1, fixed maximum 34 iterations is about twice as large
as FPGA logic resources fixed by a maximum of 17 iterations, but encoded at
a bit error rate of 10−6 The gain can be increased by 0.3 dB. It can be seen
that for a fixed maximum number of iterations, FPGA resources can be used in
exchange for high coding gain; iterative 17–34 times, iterations 17–51 times and
fixed maximum 17 iterations account for the same FPGA logic resources. The
throughput is the same, but the iteration is 17–34 times faster than the fixed
maximum 17 iterations. When the bit error rate is 10−6, the coding gain can
be increased by 0.3 dB, which is equivalent to the fixed maximum 34 iterations,
and the iteration is 17–51 times. The fixed maximum 17 iterations can increase
the coding gain by 0.35 dB at a bit error rate of 10−6, achieving a coding gain
comparable to a fixed maximum of 51 iterations.

It can be seen that this section can save about half of the slice resources
with the same coding gain and the same throughput than the fixed maximum
iteration number of decoding schemes. In addition, for the buffer of input and
output, BRAM is adopted in FPGA. In order to improve the utilization of BRAM
resources, we use dual-port BRAM, which can buffer one frame with A and B
ports of dual-port BRAM respectively. Therefore, buffering 3 frames and The
number of BRAMs used to buffer 4 frames is the same, so iterative 17–51 times
is more advantageous than FPGA iterations 17–34 times.

6 Conclusion

In this paper, to improve the code gain of LDPC decoder, we propose a DMI
scheduling LDPC decoder architecture, which achieves better BER performance
than the existing SMI decoder. Base on the proposed architecture, the FPGA
implementation result shows the hardware resources of CCSDS decoder is a
slightly more than that of SMI case. The proposed DMI scheduling LDPC

Dynamic Maximum Iteration 241

decoding strategy is a promising candidate for space-based IoT link with big
fluctuation of signal-to-noise ratio.

Acknowledgment. This research was supported by National Natural Science Foun-
dation of China under Grant 61801377.

References

1. Feltrin, L., et al.: Narrowband IoT: a survey on downlink and uplink perspectives.
IEEE Wireless Commun. 26(1), 78–86 (2019)

2. Qian, Y., Ma, L., Liang, X.: Symmetry chirp spread spectrum modulation used in
LEO satellite internet of things. IEEE Commun. Lett. 22(11), 2230–2233 (2018)

3. Vogt, J., Finger, A.: Increasing throughput of iterative decoders. Electron. Lett.
37(12), 770–771 (2001)

4. MacKay, D.J.C., Neal, R.M.: Near Shannon limit performance of low density parity
check codes. Electron. Lett. 33(6), 457–458 (1997)

5. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M.P.C., Hu, X.Y.: Reduced-
complexity decoding of LDPC codes. IEEE Trans. Commun. 53, 1288–1299 (2005)

6. Wang, Z., Cui, Z., Jin, S.: VLSI design for low-density parity-check code decoding.
IEEE Mag. Circuits Syst. 11, 52–69 (2011)

7. Nguyen-Ly, T., Savin, V., Le, K., Declercq, D., Ghaffari, F., Boncalo, O.: Analysis
and design of cost-effective, high-throughput LDPC decoders. IEEE Trans. VLSI
Syst. 26(3), 508–521 (2018)

8. Lu, Q., Fan, J., Sham, C.W., Tam, W.M., Lau, F.C.M.: A 3.0 Gb/s throughput
hardware-efficient decoder for cyclically-coupled QC-LDPC codes. IEEE Trans. Cir-
cuits Syst. I, Reg. Papers 63(1), 134–145 (2016)

9. CCSDS 131.1-O-2: Low density parity check codes for use in near-earth and deep
space applications, September 2007

	Dynamic Maximum Iteration Number Scheduling LDPC Decoder for Space-Based Internet of Things
	1 Introduction
	2 Static Maximum Iteration Number (SMI) Scheduling Decoder for LDPC Codes
	2.1 LDPC Decoding Algorithm
	2.2 Static Maximum Iteration Number (SMI) Scheduling LDPC Decoder

	3 Proposed Dynamic Maximum Iteration Number (DMI) Scheduling LDPC Decoder
	4 Simulation Results
	5 Implement Results
	6 Conclusion
	References

