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Abstract. Video-based analysis technology has a wide range of appli-
cations in intelligent transportation system (ITS). Vehicle segmentation
and behavior analysis has become an important research area in traffic
video analysis. To solve the problem of 2D video detection technology in
actual traffic video scenes, a bottom-up analysis method is employed to
study the related technical problems. Firstly, M-BRISK descriptor algo-
rithm is proposed for describing local feature points, which based on the
method of original BRISK. Secondly, a 3D feature analysis method based
on rigid motion constraints for vehicle trajectory is proposed. With the
result of camera calibration and the preset back-projection plane, the
2D trajectory points can be back-projected to the 3D space, and the
back projection data of the 2D image can be reconstructed in 3D space.
Thirdly, similarity measure method is proposed for achieving the trajec-
tory clustering. The experimental results show that the proposed method
not only accelerates the speed of clustering method, but also improves the
accuracy of trajectory clustering at some extent. Moreover, the vehicle
motion information contained in the trajectory data can be analyzed to
recognize vehicle behavior. All of these provide an important data foun-
dation for vehicle abnormal behavior detection and the identification of
traffic status levels in traffic scenes.

Keywords: Vehicle segmentation · Feature point detection ·
Trajectory clustering · Behavior analysis

1 Introduction

Vehicle motion segmentation and vehicle behavior analysis are important
research areas in complex traffic video. In the past few decades, with the increas-
ing coverage of traffic video surveillance, a large number of research scholars have
been attracted to the key technology research of traffic video analysis. Nowa-
days, road monitoring equipment has been spread all over traffic junctions and
road sections, and video surveillance has become the most direct and effective
way to monitor the real-time operation of road traffic, as shown in Fig. 1. With
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the development of computer hardware devices, many video analysis methods
[2,7,11,12,25,28,29] for vehicle detection can achieve the requirement of real-
time detection.

Fig. 1. Traffic video scene.
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Fig. 2. Top-down traffic video analysis system model.

There are many key technologies in the intelligent development of traffic
monitoring systems. These methods are used to understand how traffic video
analysis works. In general, it can be summarized into two categories: the top-
down approach and the bottom-up approach. The specific process is shown in
Figs. 2 and 3.

The top-down approach has obvious advantages in high-definition video and
smooth traffic environments. If the vehicle targets are not occluded, these meth-
ods have high detection and tracking accuracy using the appropriate classifier,
but these methods have high computational complexity and low operating effi-
ciency. They may be difficult to meet the requirement of real-time. In addition,
the actual traffic scene is difficult to predict, the mutual occlusion of the vehicle
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Fig. 3. Bottom-up traffic video analysis system model.

and other various environmental factors greatly affect the robustness of these
methods. The bottom-up approach uses a partial-to-integral analysis method
based on the feature point detection of the vehicle target, and gradually com-
pletes the object segmentation process even if the vehicle target is partially
blocked during the motion. That is because the other local feature points still
able to be detected, then the tracking task can be completed. After that, the
behavior analysis method is needed to be performed. Moreover, the detection
algorithm based on the feature point is highly efficient, and can better meet the
real-time requirement in practical applications.

In the bottom-up system framework, researchers are working on various local
features such as edges, corners, parts, and spots. In recent years, the local feature
descriptors have a great development. The typical algorithm is SIFT proposed by
Lowe [16] in 2004. The algorithm uses the gradient information around the fea-
ture point to describe it and use the image pyramid to solve the scale problem.
Thus, SIFT feature descriptor has good scale invariance and rotation invari-
ance. Subsequently, many researchers proposed some improved algorithm, such
as PCA-SIFT [32], GLOH [17], SURF [3], DAISY [27] and so on.

After expressing some apparent features of the moving objects effectively, it is
necessary to use a similarity measure algorithm to perform feature matching on
the video sequence to complete the object tracking process [9]. The common sim-
ilarity measures are including Euclidean distance, Gaussian distance, Block dis-
tance, Hamming distance, Chessboard distance, Manhattan distance, Weighted
distance, Chebyshev distance, Barth Charlie coefficient, Hausdorff distance, etc.
And the simplest should be the Euclidean distance. In the object tracking pro-
cess, if we directly search and match the video scene globally to determine its
optimal matching position, it will inevitably have to deal with a lot of redundant
information, and also greatly increase the computing amount of the computer
and reduce its computing speed. Therefore, it is of great significance to use a
specific search algorithm to estimate and calculate the position of the object in
the next moment to narrow the scope of searching.

One common way is to predict the location of the moving object in the next
frame and find the best matching position in the vicinity area, such as Kalman
filtering [10], extended Kalman filtering [30], and particle filtering. Another way
is to continually optimize the direction of searching to speed up the process of
searching and matching, such as Mean Shift [5] and Camshift [6].

Behavioral understanding of the moving object can be achieved through the
trajectory pattern analysis. In the process of discriminating the trajectory mode,
trajectory feature extraction and learning method of trajectory pattern are two
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important steps, which have an important influence on the realization of the
trajectory behavior recognition. In terms of trajectory feature selection, Buzan
[8] uses the method of calculating the longest common subsequence to realize the
clustering and retrieval of motion trajectories; based on the Euclidean distance
between trajectories, Hu et al. [31] used multi-level clustering method to perform
equal-dimensional processing on vehicle trajectories in order to solve the clas-
sification problem of trajectories; There are two main methods for learning the
behavior trajectory: neural network-based learning method and unsupervised
clustering-based learning method. Johnson [13] and Sumpter [26] used a self-
organizing feature map (SOM) neural network approach to modeling the spatial
pattern of motion trajectories. Hu et al. [31] used the fuzzy SOM method to
learn the motion trajectory and behavior pattern of the target to realize the
detection and discrimination of abnormal events.

The bottom-up video analysis method can solve the problem of vehicle seg-
mentation in complex traffic scenes, and it has higher operational efficiency.
Therefore, based on the design ideas of this kind of video analysis method, this
paper conducts related research, taking the image local feature points as the
research object, using the tracking matching algorithm to obtain the 2D motion
trajectory of the vehicle feature points, and analyzing the clustering problem
between the trajectories based on the rigid motion constraint. The main contri-
bution of this paper are as following:

• A feature extraction algorithm based on BRISK is proposed for complex traf-
fic scenes. In terms of feature detection, we uses the adaptive FAST algorithm
to detect the feature points in the scale space. In terms of feature descrip-
tion, we constructs a hybrid binary feature descriptor based on BRISK. The
method can not only guarantee calculation rate, but also extract and locate
the feature points effectively.

• A 3D feature analysis method of vehicle trajectory based on rigid motion con-
straints is proposed. Camera calibration is used to build the back projection
data of the image in 3D space. Combined with the idea of back projection, the
relative height between different trajectories is obtained based on the rigid
motion constraint. Then, the estimated values of relevant traffic information
of feature points corresponding to each trajectory in 3D space are further
obtained.

• Using the extracted 3D information estimation of feature point trajectory to
construct a new similarity measure between trajectories, and applying it to
the framework of spectral clustering algorithm to realize the vehicle feature
point trajectory clustering in 3D space.

• Based on the 3D information of vehicle feature point trajectory and its clus-
tering results, the behavior model and semantic analysis of vehicle trajectories
in traffic scene are carried out, and the traffic prevalence of actual roads is
analyzed.

The rest of this paper is organized as follows. An overview of the system
is presented in Sect. 2. Section 3 describes the method of feature extraction. 3D
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feature reconstruction is presented in Sect. 4. Section 5 displays the vehicle tra-
jectory clustering method. Vehicle behavior analysis is given in Sect. 6. Experi-
mental results are reported in Sect. 7 and finally Sect. 8 draws the conclusion.

2 Overview of the System

According to the specific research process of vehicle trajectory extraction and
behavior analysis, the overall technical framework of this paper is shown in
Fig. 4. The research content is mainly divided into three points: vehicle feature
point trajectory extraction, trajectory feature extraction and cluster analysis,
and vehicle behavior analysis. The vehicle feature point trajectory extraction is
the basis of the latter link. It mainly studies the feature point detection and
stable tracking of the vehicle target in the video sequence, and then obtains
the trajectory data of the vehicle feature point in the 2D image plane. The
feature extraction and cluster analysis of the trajectory are based on the camera
calibration of the real traffic scene. The motion characteristics of the vehicle
trajectory in 3D space are obtained by rigid motion constraint analysis, and the
similarity measure is constructed to realize the clustering segmentation. Vehicle
behavior analysis is based on the 3D trajectory to obtain the traffic parameters
in the actual traffic scene, using the prior knowledge to semantically express
the vehicle trajectory, providing a data foundation for further analysis of the
individual vehicle behavior and the traffic flow behavior.
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Fig. 4. Overview of the system framework.
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3 Feature Extraction

In recent years, researchers have proposed several methods for binary feature
description for real-time applications, such as BRIEFF [4], ORB [24], BRISK
[15] and FREAK [1]. In fact, achieving high quality features and maintaining
low computational costs is very challenging. This paper proposes a feature point
detection algorithm based on the improved BRISK algorithm for complex traf-
fic scenes. In the aspect of feature point detection, it uses the adaptive FAST
algorithm mask to detect the feature points of the scale space. In the aspect of
feature point description, it constructs a hybrid binary structure feature descrip-
tor based on BRISK algorithm.

3.1 Feature Point Detector

FAST (Features from accelerated segment test) [22,23] is a corner detection
algorithm proposed by Edward Rosten and Tom Drummond. The most out-
standing advantage of this algorithm is that the computational efficiency is very
high. Its computational speed is as fast as its name, and it is more efficient
than other mainstream algorithms (such as SIFT, SUSAN, Harris). And if the
machine learning method is applied to the FAST algorithm, it can show better
results. The FAST corner detection algorithm is often used for video processing
research due to its speed advantage. The principle of the FAST corner point is: if
a pixel point and a specific number of pixels in its surrounding area are located
in a different area, the pixel point is called a corner point. That is to say, some
attributes are irrelevant. In the case of grayscale images, the gray value of the
point is smaller or larger than the gray value of the point in its surrounding area,
then the pixel may be a corner, as shown in Fig. 5.

Fig. 5. FAST algorithm principle diagram.

3.2 Feature Point Descriptor

The FAST algorithm only performs feature point detection in the image, but does
not further describe the feature points, so it can not apply the feature points
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to the process of image matching and tracking. Therefore, researchers have pro-
posed many feature descriptors based on the feature points of FAST detection,
such as ORB, BRISK, FREAK and so on. Based on the BRISK algorithm, a
hybrid binary descriptor is proposed in this paper. The image pyramid is con-
structed by using the Brisk algorithm in the scale space. Then, the information of
the BRISK algorithm is enriched by the information of the local downsampling.
This method improve the robustness of the original BRISK.

Fig. 6. Sampling mode of BRISK.

The sampling mode of BRISK is shown in Fig. 6. It can be found that the
BRISK algorithm only considers the intensity relationship between the sampling
points, that is, only the pairwise intensity comparison between the sampling
point positions is considered. The local information of the sampling point is lost,
which makes the algorithm unstable. Therefore, the basic idea of this paper is
to construct feature descriptors based on the local information of the sampling
points and the information between the pairs of sampling points to improve the
robustness of the original BRISK.

Let Π be a set of all N sample point positions, for each sample position
pα

i = (xi, yi) ∈ P, uniform sampling of four points S(pα
i ) = {sα

i,k, k = 1, 2, 3, 4}
is performed on a circle of radius R centered on pα

i , where α is the local main
direction, this paper used the Intensity Centroid [21] algorithm to calculate the
main direction of the feature points. According to the LBP operator [19], local
information can be encoded by the gray relationship between the sampling posi-
tion pα

i and each local sampling point sα
i,k. However, this encoding is sensitive

to the center point pα
i , so it was not applied to binary descriptions. In order

to encode local information robustly, this paper uses the gray relation between
local sample points sα

i,k for encoding.
Assuming I(pα

i , σ) is the smoothed gray value of point pi, and σ is the
Gaussian filter variance. For each rotated sample position pα

i , the paired gray
values of the local sample points sα

i,k ∈ S(pα
i ) are compared. A local gradient

binary descriptor is constructed by combining all test results into a binary string,
each bit b corresponding to:
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b =

{
1, I(sα

i,k, σi) > I(sα
i,t, σi)

0, otherwise
∀pα

i ∈ P ∧ sα
i,k, sα

i,t ∈ S(pα
i )

∧k, t = 1, 2, 3, 4 ∧ k �= t

(1)

Since the local sampling position of each sample point has four points, the
dimension of this feature descriptor is N × C2

4 = 6N bits. It should be noted
that the gray scale comparison between local sample points sα

i,k is closely related
to the local gradient operator, because they both consider the gray difference
between the local sample pairs.

The feature descriptor of the above construction encodes the local infor-
mation of the sampling point into a binary string. We further supplements it
with the global information of the sample points, which is encoded by the gray
intensity comparison between the sample points. Use set A to represent the all
combined results of the sample point pairs:

A = {(pα
i ,pα

j )|pα
i ,pα

j ∈ P ∧ i �= j} (2)

Furthermore, a subset B in which it has M pairs of sample points is selected
from A, so that each bit b of the binary descriptor is constructed by:

b =

{
1, I(pα

j , σj) > I(pα
i , σi)

0, otherwise ∀(pα
i ,pα

j ) ∈ B
(3)

In this part, we construct the feature descriptor in a manner consistent with
the original BRISK. The same is that the short-range pairs of sample points
are used to construct the feature descriptor. The difference is that the M-sample
point pairs of the shortest distance are only a supplementary part of the previous
local gradient-based binary feature descriptor. The mixed BRISK descriptor (M-
BRISK) is constructed by the above two steps of binary string.

4 3D Feature Reconstruction

4.1 Inverse Projection Transformation

The imaging process of the camera is a description of the loss of information in
3D real space, and this process is irreversible. At present, most of the methods
for image detection, tracking and behavior analysis are based on 2D image plane.
However, due to the perspective transformation of the camera imaging, the geo-
metrical and motion characteristics inherently of the objects are no longer exist
in the 2D image plane. For example, some geometric features such as symmetry,
parallelism, vertical and circular will be changed due to perspective projection
transformation; the same moving object has obvious scale changes at different
positions in the video sequence; and vehicles with uniform motion in 3D world
space are performed non-uniform motion in the 2D video sequence, and so on.
All of the above situations will make the related algorithms based on 2D image
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facing great difficulties. In order to solve the segmentation problem of vehicles
in complex traffic scenes, it is necessary to extract the 3D information of the
vehicle. This paper proposes a method based on rigid motion constraints for
vehicle 3D trajectory feature analysis.

Camera calibration is the important part for obtaining the 3D parameters
of objects based on video/image. However, the trajectory clustering and behav-
ior analysis under the monocular camera is based on the vehicle feature point
trajectory in 3D space. It is an important precondition for the subsequent algo-
rithm to obtain the transformation between the 2D image and the 3D space.
The working process of the camera model is:

λp = K
[
R T

]
PW = HPW (4)

where, H = K
[
R T

]
, p = [u, v, 1]T , PW = [XW , YW , ZW , 1]T , λ is the scale

factor, K is the camera internal parameters, R and t compose the external
parameter matrix of the camera. The internal and external parameters can be
calculated accurately by the recovery method of vanishing points [14].

Camera imaging is a perspective projection process from 3D space to 2D
image. Conversely, the transformation process of mapping 2D image to 3D
space is called inverse perspective mapping (IPM). In order to obtain recon-
structed images with perspective effects through back-projection transforma-
tion, researchers can only use existing constraints and prior knowledge to make
certain reasoning and estimation [20]. A common method is to first use the trans-
formation relationship and the constraints to achieve the location mapping, and
then fill the data. In order to describe this inverse transformation process more
clearly, the mapping process is marked as:

pI = F · PW (5)

where F represents a transformation matrix of the 3D world coordinate system
and the 2D image coordinate system. If a certain image coordinate pI and one of
its coordinate value in the 3D world coordinate system are known, for instance,
if the actual height ZW of the coordinate point is known, the specific position
PW in the 3D world which corresponding to pI can be obtained. The process is
expressed as:

PW = F−1 · (PI

⊕
ZW ) (6)

In terms of mathematical theory, if the pixel points in the 2D image plane
are back-projected into the 3D world coordinate system directly, unique solu-
tion can not be obtained owing to the uncertain scale parameter. However, if a
certain dimensional coordinate parameter in the 3D space is determined, the 3D
coordinate corresponding to the 2D pixel coordinate can be obtained uniquely.
Therefore, we can preset a back-projection plane in 3D space, that is, to deter-
mine information of a certain dimension, so that the data of inverse projection
transformation can be obtained on the back-projection plane.
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Fig. 7. Rigid motion constraint.

4.2 Rigid Motion Constraint

This section simulates the motion trajectories of feature points on a rigid body
in 3D space, and they are back-projected onto several back-projection planes
paralleling to the road surface. In the actual scene, the height range of the
vehicles have a certain limitation. Generally, the height of vehicles is no more
than 4 m. Therefore, the 3D information of the vehicle trajectory points can
be obtained indirectly. Specifically, we use the enumeration method to test the
trajectory height information to reconstruct the trajectory information in 3D
space, and use the rigid motion constraints to calculate the height relationship
between different reconstructed 3D trajectories.

D(Ph1
fi , Ph2

fj ) = D(Ph1
Fi , P

h1
1i ) − D(Ph2

Fj − Ph2
1j ) h1, h2 = 0, . . . , 4 (7)

where, D(Ph1
Fi , P

h1
1i ) is the displacement of the feature point pi during F frame

in 3D space, Ph1
fi is reconstructed 3D trajectory from the 2D trajectory point pfi

with the height information h1, and D(Ph1
fi , Ph2

fj ) is the displacement difference
of the two reconstructed 3D trajectories. Figure 7 shows the relationship between
the displacement differences of two trajectories in an ideal case (without tracking
error) using the height enumeration method. It can be found that the heights of
the two trajectories and their displacement are on the same plane:

ah1 + bh2 + c = Diff (8)

If the two trajectories belong to the same car, the displacement value is the
same, that is, the Diff is zero. Therefore, the height relationship of the two
trajectories can be obtained:

ah1 + bh2 + c = 0 (9)
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4.3 3D Information Reconstruction

Based on the idea of back-projection transformation, we set the vehicle moving
direction (ie, the road direction) as the YW direction, and constructed multiple
back-projection planes parallel to the Y direction. Then, we reconstructed the
3D trajectory information from the 2D trajectories with the known enumeration
value of ZW . According to Eq. 4, (XW , YW ) can be calculated as follows:

YW =
A − B(H31u − H11)

(H32u − H12)(H31v − H21) − (H32v − H22)(H31u − H11)

XW =
A − YW (H32u − H12)(H31v − H21)

(H31u − H11)(H31u − H21)

(10)

where, A = (ZW H13 + H14 − v(ZW H33 + H34))(H31v − H21), B = ZW H23 +
H24 − v(ZW H33 + H34). Thereby, it is possible to recover the 3D trajectory of
the vehicle target at different height planes. As shown in Fig. 8(a), we simulated
the trajectory of the same vehicle in an ideal state. The 2D image projection
in the calibration scene is shown in Fig. 8(b). It can be found that the feature
point trajectories of different heights have different pixel displacement and pixel
speed. Therefore, the 3D trajectory can be estimated by constructing the dif-
ferent projection planes of different heights as shown in Fig. 8(c). Using these
trajectory information and the motion characteristics of the rigid objects, this
paper attempts to analyze the real position information and a series of 3D fea-
tures of vehicles in 3D space, such as the actual speed, acceleration, displacement,
driving direction, etc.

Fig. 8. 3D information reconstruction.

From the above, the specific algorithm for 3D feature extraction of vehicle
trajectories in traffic scenes is as follows:

• Calibrate the camera in the traffic scene and obtain the transformation matrix
H;

• Use enumeration method to set the back projection planes of different heights
in the range of 0–4 m, and back-project the 2D trajectories on to the different
back projection planes;
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• Calculate the velocity V (i, h) of each feature point trajectory on different
inverse projection planes, where i represents the i-th trajectory and h repre-
sents the height of the back projection plane;

• Use the K-mean algorithm to achieve the clustering analysis, and classify the
trajectory data by velocity difference;

• Perform the histogram statistics on V (i, h) of each set of trajectories, and use
the velocity interval with the highest frequency as an estimated value of the
real velocity in 3D space;

• Calculate height information of each cluster by using the spatial relationship
and the estimated velocity;

• Reconstruct the position information of the feature points in the 3D space by
combining the height information of each cluster.

5 Trajectory Clustering

5.1 Clustering Algorithm

The similarity measure is an important basis for data mining techniques such
as data classification, clustering and abnormal behavior recognition. This paper
constructs a new similar measure relationship between the trajectories using 3D
information of feature point trajectories and applies it to the spectral clustering
algorithm.

The specific implementation steps of the algorithm are as follows:

• Construct a similarity matrix W between the trajectories according to the
similarity measure between the trajectory data;

• Calculate its normalized Laplacian matrix L = D− 1
2 (D − W )D− 1

2 ;
• Calculate the eigenvalues {λi, i = 1, 2, · · · , n} and eigenvectors {Ei, i =

1, 2, · · · , n} of L;
• Calculating an indication feature vector Qi corresponding to Ei;
• Perform the K-means clustering using the feature vectors corresponding to

the first k minimum eigenvalues of Q.

5.2 Similarity Measure

Based on the 3D feature analysis of the vehicle feature point trajectory, we per-
formed 3D feature extraction for each feature point trajectory, and constructed
an attribute feature vector F = (H,V,X, Y ) that can represent each trajectory
information, where H represents the relative height between the trajectory and
the reference trajectory, V indicates the 3D velocity of the trajectory recon-
structed by the trajectory set T , and (X,Y ) represents the 3D coordinate of
the trajectory point at a certain time. F covers not only the feature information
inherent of each trajectory, but also the relative positional relationship between
the trajectories. Therefore, we use the trajectory set T to extract the eigenvec-
tor F corresponding to each trajectory, and combine the Gaussian similarity
calculation model to construct a new similarity measure S:
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S(Ti, Tj) = exp(−d2(FTi
, FTj

)
2σ2

) (11)

where, d(FTi
, FTj

) is the Euclidean distance of the attribute feature vector
extracted by any two trajectories in the trajectory set T , FTi

is a 1 × 4 fea-
ture vector which includes four parameters of the trajectory, and σ is the scale
factor.

Since the research object of this paper is the vehicles, the distribution of
feature points on the same vehicle is limited. It means that the X coordinate
range of feature point trajectory in the same vehicle can not exceed the width of
the vehicle itself. Using this property, the similarity matrix W between vehicle
trajectory sets is further constructed by:

W (Ti, Tj) =

⎧⎨
⎩exp(−d2(FTi

,FTj
)

2σ2 ) d(XT f
i
,XT f

j
) ≤ ξ

0 otherwise
(12)

where, ξ is a threshold parameter according to the actual outer contour size
standard of the road vehicle, but since the reconstructed trajectory 3D informa-
tion is an estimated value, there is a certain error between estimated value and
the real value.

In the case of a given set of trajectories, the construction process of the
similar matrix is as follows:

• Calculate the 2D velocity v = {v1, v2, . . . , vn} of each 2D trajectory of the
trajectory set, and select the trajectory with the minimum 2D velocity vp as
the reference trajectory Tp;

• Calculate the relative height between each trajectory and the reference tra-
jectory.

• Use the enumeration method to construct different heights of the back pro-
jection planes in the range of 0–4 m to recover each trajectory in 3D space;

• Calculate an estimated velocity of each trajectory in 3D space and the spatial
position of the feature point at the current frame;

• Construct the attribute feature vector FTi
= (Hi, Vi,Xi, Yi) of each trajec-

tory;
• Calculate the similarity matrix W between the trajectory data set T using

the Eq. (12);

6 Vehicle Behavior Analysis

6.1 Vehicle Individual Behavior Analysis

In this section, the 3D information of the vehicle trajectory is used to further
analyze the behavior pattern of the individual vehicle in traffic scene, so as to
detect the abnormal behavior of the vehicle. Many related threshold information
are contained in this section, and for a determined traffic scene, the associated
threshold information is the same. These threshold information is dependent on
theoretical calculations and empirical values.
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Over-Speed and Low-Speed Driving. According to China’s Road Traffic
Safety Law, the highway sections should identify the limits of their driving speed
clearly. For example, the maximum speed of vehicles on the highway cannot
exceed 120 km/h, and the minimum speed cannot be lower than 60 km/h.

Therefore, the speed limit value of the road section can be obtained for the
determined road section of highway. If Vi > Vα, the vehicle is judged to be
over-speed; if Vi < Vβ , the vehicle is determined to be low-speed, where Vi is the
estimated value of the real speed of the i-th vehicle, Vα and Vβ are the maximum
speed and the minimum speed of the road section respectively.

Retrograde. The camera has a fixed installation position and angle in the
traffic scene. Firstly, we determine the correct driving direction of the road man-
ually based on the driving direction of the vehicle in the traffic video. Then, we
use camera calibration technology to obtain the 3D position information of the
direction marking line and its direction vector. As shown in Fig. 9, one direction
vector can be set in the two-lane road section, and two or more correct direction
vectors should be set according to the actual situation.

Fig. 9. Setting of the correct driving direction.

According to the 3D trajectory information of the vehicle feature point, the
motion vector (Xf

i , Y f
i ) of each frame can be determined, and the information

of the X direction is used to select the correct driving direction of the road for
retrograde event discrimination. If (XR, YR) indicates the correct direction of
the road, the direction angle of the vehicle can be obtained:

θ̄ =
1
m

m∑
i=0

| arccos(
XRXf

i + YRY f
i√

X2
R + Y 2

R

√
(Xf

i )2 + (Y f
i )2

)| (13)

IsRetrograde =

{
true θ̄ ≥ α

false θ̄ < α
(14)

where, (Xf
i , Y f

i ) is the direction of motion of the i-th trajectory in the same cat-
egory at the f frame, and α is the empirical threshold. In the actual application
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process, the fault tolerance of the algorithm needs to be considered. The vehicle
behavior cannot be judged according to the data at a certain moment. Instead,
it should be counted whether the direction angle of the vehicle motion satisfies
the retrograde condition for a period of time. This paper counts the number l
that the vehicle direction angle is greater than the empirical threshold α for a
period of time. If l > β, we consider the vehicle as a retrograde vehicle.

Parking. If an abnormal parking event occurs, the feature point trajectory of
the vehicle has obvious characteristics. It is embodied in a state in which the
speed of the vehicle gradually decreases to zero, and the position information
tends to be constant. The discriminating rules are as follows:

• If V f
k < ξ, the counter of abnormal speed is incremented by 1.

• If Isstop > η, the vehicle has an abnormal parking event.

where, V f
k indicates the instantaneous speed of the k-th cluster of the vehicle at

the f -th frame, ξ is the minimum speed threshold and η is the speed anomaly
threshold.

Abnormal Lane Change. The lane change behavior of the vehicle occurs more
frequently in actual traffic, while the road is divided by solid lines (white solid
line, yellow solid line, double yellow solid line). These solid lines are forbidden
to be touched during the driving.

For the normal driving vehicle, its movement trend is along the direction of
the lane line, that is, its motion trajectory is approximately parallel with the
road marking line. However, there is a certain angle between the trajectory of
the vehicle in which the lane changing behavior occurs and the road marking
line. Therefore, this paper uses the following method to determine the abnormal
lane change behavior of the vehicles:

• For a specific traffic road, camera calibration is performed manually to obtain
the actual 3D space coordinates of the solid line marker line on the road;

• Calculate the variance in the X direction using the 3D trajectory information
of the vehicle feature points in each category:

S̄ =
1

mn

m∑
t=1

n∑
i=1

(Xt(i) − X̄t)2 (15)

• If S̄ > γ, it is considered that the driving behavior of the vehicle is a lane
change, and it is necessary to further judge whether the behavior is a violation
of the rules. If |Xt(i)−XRoad| < ε, it regards the vehicle as violation of rules.

where, Xt(i) represents the X coordinate of the i-th point of the t-th trajectory
in 3D space, X̄t is the average of the X coordinates of the t-th trajectory; XRoad

indicates the X coordinate of the solid line marker on the road in 3D space; γ,
ε are the experience threshold, which can be determined based on the specific
scene.
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Traffic Flow Behavior. In this section, the 3D information of the vehicle
motion trajectory and the clustering results are used to calculate the traffic flow
and traffic flow speed of a certain road section, which can be used to evaluate
the real-time traffic status.

Traffic Flow. In order to fully consider the time series of the trajectory points
during the motion, previous clustering results is combined to filter the trajectory
data of the current frame, so the attribute feature extraction and cluster analysis
are only carried out for the newly added trajectory data. It not only reduces the
amount of calculation, but also improves the accuracy of clustering of newly
trajectory data in some extent. The specific strategy can be described as:

• Set the time interval t of the clustering based on the video rate. That means
cluster analysis is performed on the feature point trajectory in the current
interest region every interval t frame;

• The trajectory data is filtered twice before each run of the clustering algo-
rithm. One is to screen out trajectory data that meets a certain length; the
other is to filter out the new trajectory data.

• Count the clustering results obtained each time, then the traffic flow per hour
or day of the road section is obtained.

Traffic Flow Speed. In order to facilitate the measurement and calculation,
this paper selects the interval average speed as the measurement index of the
traffic speed. In the selected observation section, several instantaneous moments
are selected at fixed time intervals, and the average value of the instantaneous
speeds of all vehicles at that moment is calculated by using the vehicle feature
point trajectory 3D information. The specific formula is as follows:

v̄s =
1

MN

N∑
k=1

M∑
i=1

sk(i)
�t

(16)

where, �t is the time interval of adjacent frames, sk(i) is the distance during
the time interval between the current frame and the previous frame at the ith
feature point of the kth vehicle.

7 Experimental Results

In this section, we evaluate the performance of the proposed system. In Sect. 7.1,
the performance analysis of feature descriptor is evaluated. The trajectory clus-
tering results on the different traffic videos are shown in Sect. 7.2. Section 7.3
performs the application results of vehicle behavior analysis.
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7.1 Performance Analysis of Feature Descriptor

The performance indicators of the feature descriptors were evaluated using the
recall and 1 − precision curves proposed in [18]. This paper compared the M-
BRISK descriptor with the SURF, ORB, BRISK and FREAK descriptors. Since
SURF is a classic fast descriptor, ORB, BRISK and FREAK are recently pro-
posed binary descriptors. For fair comparison, image blocks of the same size
(31 × 31) are set for all test descriptors and the different images of Oxford
dataset are used for correlation test. The original picture of the data set is shown
in Fig. 10. Each group of images has different changing factors, including fuzzy
processing, rotation and scale change, perspective change, illumination change,
and image compression. Figure 11 shows the experimental results of different
descriptors for different impact indicator.

Fig. 10. Test images.

For all cases, the M-BRISK descriptor is better or at least comparable to the
descriptors of all other tests. This is because the discrimination of the descriptor
can be improved by the combination of the local features and the information
between them. As can be seen from Table 1, M-BRISK runs at the same rate level
as the ORB, BRISK and FREAK algorithms, and they are all much faster than
the SURF. In summary, the M-BRISK algorithm can achieve higher performance
with high speed, and it suitable for real-time applications.
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Fig. 11. Experimental results of different descriptors for each set of image pairs.

Table 1. Running time.

Methods SURF ORB BRISK FREAK M-BRISK

Running time (ms) 0.404 0.026 0.038 0.032 0.040

7.2 Trajectory Clustering Results

We collects 1000 sets of vehicle trajectory data from 20 road sections of Hangzhou
Jinqu highway for clustering algorithm test, and the trajectory datasets contains
different numbers of vehicle targets, including 2 vehicles, 3 vehicles, 4 vehicles, 5
vehicles, etc. Some experimental results of clustering the trajectory set are shown
in Fig. 12. It can be found that even if the vehicle has a common speed or partial
occlusion, the algorithm can effectively cluster the feature point trajectories
belonging to different vehicles. In addition, this paper analyzes the clustering
results of the 1000 sets of data based on the number of vehicle targets, and
compares them with the traditional method based on 2D trajectory methods.
The results are shown in Table 2.

Table 2. Clustering precision.

Number of vehicle 2 3 4 5

3D trajectory clustering accuracy (CP ) 94.75% 93.54% 89.17% 87.63%

2D trajectory clustering accuracy (CP ) 90.18% 85.21% 78.32% 69.67%



200 X. Wang et al.

Fig. 12. Vehicle feature point trajectory clustering result.

Fig. 13. Vehicle real-time velocity analysis.

In order to better evaluate the clustering effect of the proposed method,
we analyzed the relevant experimental results quantitatively and defined the
accuracy of the clustering. The specific formula is as follows:

CP =
1
N

N∑
i=1

ti
ni

× 100% (17)

where, N is the number of trajectory data sets with the same number of vehicles,
ti is the number of trajectory classified correctly for the i-th trajectory data set,
ni is the total number of trajectory included in the i-th trajectory data set.

7.3 Vehicle Behavior Analysis

Vehicle Individual Behavior. By reconstructing the 2D trajectory informa-
tion in 3D space, the real velocity of each trajectory can be estimated, and then
the real-time real velocity of the vehicle object can be estimated, so that we can
draw the velocity curve of the vehicle target at each moment in order to deter-
mine whether it occurred over-speeding, low-speeding or parking events. The
following is a specific experimental analysis based on specific trajectory data.



Vehicle Feature Point Trajectory Clustering and Vehicle Behavior Analysis 201

Table 3. Vehicle real-time velocity.

Objects Real-time velocity (m/s)

Vehicle 1 −33.2 −33.0 −32.9 −32.6 −32.9 −33.2 32.3 −32.1 −32.2 −32.0 −31.7

Vehicle 2 27.9 28.5 27.6 27.8 27.1 27.87 28.5 27.8 27.5 27.2 27.8

Vehicle 3 −28.0 −25.4 −26.2 −26.5 −25.7 −24.6 −26.6 −24.1 −26.3 −28.3 −26.1

Table 4. Direction angle of the vehicle in real time.

Objects Direction angle (◦)

Vehicle 1 0.038 0.043 0.045 0.578 0.800 0.484 0.029 0.103 0.625 0.182 0.333

Vehicle 2 0.021 0.016 0.078 0.051 0.338 0.110 0.386 0.245 0.311 0.086 0.028

Vehicle 3 0.315 2.383 1.509 4.215 3.121 0.705 2.065 3.174 3.322 1.419 2.373

As shown in Fig. 13, Fig. 13(a) is the 2D trajectory data extracted from the
vehicles of a highway section, Fig. 13(b) is the result of cluster analysis, and
Fig. 13(c) is the real-time velocity curve. The partial data results of the real-
time velocity at the same time are shown in Table 3, wherein the sign indicates
that the running direction of the vehicles, the speed of the upstream vehicle is
marked as positive, and the speed of the descending vehicle is marked as negative.
Based on the estimated real-time velocity of the vehicles, it can be used as a
discriminating indicator whether the vehicle has over-speed or low-speed driving.
For retrograde behavior, it is necessary to observe its real-time motion vector to
determine whether it has retrograde behavior, as shown in Table 4. In addition,
if an abnormal parking event occurs, the velocity curve of the vehicle is as shown
as Fig. 14, where its trajectory velocity will continue to approach for a period of
time. For the behavior such as lane change, in addition to the direction angle, the
offset in the X direction is needed to be considered. As shown in the trajectory
data of Fig. 15, we can observe the driving direction angle of the real-time. As
shown in Table 5, it can be found that the direction angle of the vehicle become
larger and larger, and the variance of the corresponding trajectory data in the
X direction is also larger than the preset. Thus, the vehicle in Fig. 15 is judged
as abnormal lane change behavior.

Table 5. Direction angle of the vehicle in real time.

Direction angle (◦) Variance

Trajectory 1 5.01 5.49 6.40 4.69 10.57 6.75 9.45 8.51 9.95 10.1 0.54

Trajectory 2 6.08 6.34 7.28 5.42 8.57 6.91 7.71 7.17 9.01 9.46 0.52

Trajectory 3 5.24 5.95 5.40 5.07 9.37 6.93 9.11 7.55 9.73 10.41 0.50

Trajectory 4 5.02 5.75 7.46 5.12 9.28 6.44 9.48 8.76 10.94 08.92 0.55

Trajectory 5 5.35 6.24 5.99 6.43 6.27 5.23 7.43 6.47 7.92 7.95 0.54
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Traffic Flow Behavior Analysis. This section used the real-time data
obtained by the proposed method to analyze the traffic flow and traffic flow
speed of a highway section, which can provide the data support for the real-time
traffic status. This paper took the monitoring video of Jinqu highway as the test
data, and analyzed the traffic flow and traffic flow speed data of the K362 road
sections at 30 min intervals from 6:30 to 18:00 on May 16, 2017. According to
the obtained real-time traffic flow parameters, we drawn the real-time parame-
ter curves and observe the time-varying rule of each traffic parameter visually,
as shown in Fig. 16. It can be seen that on May 16th, the traffic volume of the
K362 section of the Jinqu highway was small, and the traffic flow was large in the
afternoon. Meanwhile, the traffic flow speed of the whole day is at a reasonable
range. Therefore, the traffic condition of this road section is good and smooth.

Fig. 14. Vehicle parking analysis.

Fig. 15. Trajectory data of lane change.

Fig. 16. Traffic flow data of No. 362 section of Hangzhou Jinqu highway on May 16,
2017.
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8 Conclusion

In this paper, the problems of vehicle feature point detection, trajectory extrac-
tion, rigid motion constraint, trajectory clustering and vehicle behavior analysis
are studied. We constructed a mixed binary descriptor using the local gradient
of the sample point position and the intensity comparison between the sample
points. The algorithm has strong robustness in the face of image blur, rotation,
scale, viewing angle and illumination changes, and can meet the needs of practi-
cal applications in real-time. In order to better solve the segmentation problem
of moving vehicles in complex traffic scenes, this paper proposed a method based
on rigid motion constraints for vehicle 3D trajectory feature analysis, and con-
structed a new similarity measure between trajectory sets. It is applied to the
framework of the spectral clustering algorithm to realize trajectory clustering
in 3D space. In addition, this paper uses the obtained 3D information of the
vehicle trajectory and its clustering results to analyze the vehicle behavior in
the specific traffic scenes.
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