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Abstract. Vehicular edge computing (VEC) has emerged as a promis-
ing paradigm to provide low-latency service by extending the edge com-
puting to vehicular networks. To meet the ever-increasing demands of
computation and communication resources, utilizing vehicles as aug-
mented infrastructure for computation offloading is an appealing idea.
However, due to the lack of effective incentive and task allocation mech-
anism, it is challenging to exploit vehicles as infrastructure for com-
putation offloading. To cope with these challenges, we first propose a
container-based VEC paradigm by using efficient, flexible and customized
resources of the vehicles. Then, we present a contract-based incentive
mechanism to motivate vehicles to share their resources with service
requesters (SRs). The optimal contract items are designed for multiple
types of vehicles while maximizing the expected utilities of the SRs.
Numerical results demonstrate that the proposed contract-based incen-
tive mechanism is efficient compared with conventional schemes.

Keywords: Container-based vehicular edge computing · Resource
sharing · Task allocation · Contract-based incentive mechanism

1 Introduction

With the rapid advance of the Internet of Vehicles (IoV), smart vehicles with
vehicular networks access have experienced ever-increasing growth in number
and variety [1,2]. According to the recent report, nearly a quarter billion vehi-
cles will be connected by 2020 [3]. These vehicles with different communication
modes such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) are
regarded as the important component of the future IoT-based infrastructure for
providing various applications and services [4,5]. The emerging vehicular applica-
tions are computation-intensive and have low-latency requirements, such as aug-
mented reality (AR), self-driving, and intelligent navigation service etc. [6]. Unfor-
tunately, this poses huge challenges to the resource-limited vehicles to guarantee
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the low-latency requirements and the quality of service (QoS). To handle the ever-
increasing demands of computation resources, vehicular edge computing (VEC)
supported by container-based technology constitutes a new computation offload-
ing paradigm in vehicular networks and improves the system performance [7,8].

To deal with the ever-increasing demands of computation resources, it is
promising to utilize vehicles as augmented infrastructure with container-based
virtualization for computation offloading. Nowadays, smart vehicles are installed
with powerful computing units, advanced communication devices and sensors [9].
It is practicable to leverage such large amount of on-board resources to per-
form computation offloading in vehicular networks [10]. Furthermore, compared
with heavyweight virtual machines (VM), container-based virtualization tech-
nology is more available in vehicular networks. With the characteristics of short
time implementation, efficient resource utilization and low maintenance cost, the
onboard units (OBUs) customization can be implemented by container-based
virtualization and offers high flexibility in platform management [11]. Existing
studies have exploited container-based virtualization technologies in edge com-
puting. The authors in [11] integrated light weighted virtualization with IoT
edge networks. They presented container-based VEC and exploited task offload-
ing among different vehicles. A parked vehicle edge computing with container-
based virtualization was proposed to utilize the computing resources of parked
vehicles [12]. The authors in [3] proposed a novel architecture for task selection
and scheduling at the edge of network using container-as-a-service.

However, there are still many issues in the implementation of computation
offloading in container-based VEC. First, existing studies assume that the vehi-
cles serve as infrastructure for computation offloading voluntarily [13,14]. How-
ever, this assumption is not available in the practical situation. Because the
vehicles are selfish, they may reject to contribute their onboard resource with-
out any payment. The challenge is to design an efficient incentive mechanism
to motivate vehicles to share their computation resources with SRs. Second, the
information asymmetry between SRs and vehicles is necessary to be considered.
The vehicles can be dishonest, and they are not willing to reveal their private
information to others. The vehicles are intended to maximize their own pay-
offs and cheat SRs by charging more payment. Third, with multiple vehicles
and multiple SRs, it is not easy to design an efficient task allocation scheme to
reduce service delay and maximize the saved delay utility. Thus, it is necessary to
design an efficient incentive mechanism to address the resource sharing and task
allocation problem and overcome the asymmetric information scenario between
vehicles and SRs.

To solve the challenges mentioned above, we propose a contract-based incen-
tive mechanism to encourage the vehicles to share their onboard resources and
help offload tasks from SRs. Furthermore, the proposed novel contract-based
framework solves the task allocation problem. A set of resource-reward contract
items is designed for maximizing the SRs utilities and stimulating each type of
vehicle to accept the contract item that is intently designed for its type. The vehi-
cles with different energy cost efficiency are classified into multiple types. The



118 S. Wang et al.

asymmetric information scenario between SRs and vehicles can be overcome by
solving the contract-based optimization problem. Numerical results demonstrate
that the proposed contract-based incentive mechanism is efficient compared with
conventional schemes.

The rest of this paper is organized as follows. Section 2 introduces the system
model with network entities in container-based VEC. The contract formulation
and simplification is presented in Sect. 3. The solution is given in Sect. 4. Perfor-
mance evaluation results are shown in Sect. 5 before the paper is concluded in
Sect. 6.

2 System Model

2.1 Network Entities

The system model of container-based VEC is shown in Fig. 1. There are exist-
ing multiple vehicles and multiple SRs in VEC. Due to the limited computation
resources, the potential SRs have great demands for computation resources in
various applications, such as data mining, image processing and natural language
translation. Each SR generates a task which can be offloaded to a vehicle. To
offer low-latency services to the SRs, the vehicles with rich onboard resources
can serve as infrastructure by offloading tasks from SRs. The vehicular con-
tainers deployed on OBUs share hardware infrastructure and host operation
system. Compared with traditional virtual machines (VM), the main benefits of
applying container-based virtualization in OBUs’ resource customization include
light weight, increased performance, higher efficiency, and no need for privilege

Fig. 1. System model of container-based VEC.
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instruction trapping [3]. Each vehicle can accept multiple computation offload-
ing tasks from the SRs, and the vehicular container will allocate computation
resources to the tasks efficiently according to the demands of the SRs. In the
container-based VEC paradigm, the SRs can reduce service delay by offloading
computation tasks to proximate vehicles with rich computation resources. Each
vehicle has freedom to decide whether to accept the tasks from the SRs according
to its utility.

2.2 Utility Functions of SRs

The set of SRs is denoted as I. The tasks from the SRs are described in four
terms as αi = {Tmax

i , λi, si, κi} , i ∈ I. Here, Tmax
i denotes the maximum delay

tolerance of the task, si denotes the size of the task, and κi represents the
amount of required computation resource of unit size of task. The tasks are
delay-sensitive, and the SRs can get utility λiΔti by finishing the task αi, where
λi is the unit revenue of saved delay of task αi and Δti is the saved delay
in completing the task αi compared to Tmax

i . We assume that an orthogonal
spectrum is allocated to each vehicle, and thus we can ignore the co-channel
interference among vehicles. For a single link between the i-th SR and the type-
j vehicle, the signal-to-noise ratio (SNR) at the type-j vehicle can be represented
by

γi,j =
pid

−ε
i,j |hi,j |2
N0

, (1)

where pi is i-th SR’s transmitting power, di,j represents the transmission dis-
tance between the i-th SR and the type-j vehicle, ε represents the path-loss
exponent, hi,j denotes the Rayleigh channel coefficient with a complex Gaussian
distribution and N0 is the power noise. The transmission time for uploading the
task αi to type-j vehicle can be denoted by

tup
i,j =

si

ri,j
=

si

Blog2 (1 + γi,j)
, (2)

where ri,j is the transmission rate between the i-th SR and the type-j vehicle, B
denotes the bandwidth of the link. Because of the fast mobility of the vehicles,
the task uploading process will fail if the vehicles run out of the communication
range of the SRs. According to [14], we denote the dwell time of type-j vehicle
inside the communication range of i-th SR as tdi,j . The task uploading process
will fail if tup

i,j > tdi,j . We assume that the SRs are distributed along the road and
their communication range as a circle with a diameter, and tdi,j can be computed
as

tdi,j =
˜di,j

vj
, (3)

where ˜di,j is the distance between the type-j vehicle and the endpoint of the
i-th SRs communication diameter in the vehicle heading direction [14] and vj
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denotes the average velocity of type-j vehicle. If the task αi is offloaded to type-j
vehicle, the task execution time tcom

i,j is denoted as

tcom
i,j =

κisi

fi,j
, (4)

where fi,j is the amount of computation resources contributed by the type-j
vehicle. The saved delay in completing the task αi compared to the maximum
delay tolerance Tmax

i is given as

Δti,j = Tmax
i − tcom

i,j − tup
i,j , (5)

We introduce a binary variable xi,j as follows,

xi,j =

{

1, if task αi allocated to type-j vehicle,
0, otherwise,

(6)

Similar to [1]. The utility of i-th SR is defined as the revenue minus the payment,
which is written by

Ui =
∑

j∈J
xi,j (λiΔti,j − πi,j) . (7)

where πj
i is the reward paid by i-th SR for the task offloading to the type-j

vehicle.

2.3 Utility Functions of Vehicles

If the tasks from SRs are offloaded to the vehicles, there will be energy cost when
the vehicles executes the tasks. For the task αi, i ∈ I, the utility of the type-j
vehicle can be defined as

Vj =
∑

i∈I
xi,j

(

πi,j − ejκisiηfi,j
2
)

, (8)

where ej is the energy cost coefficient, η represents the constant determined by
the switched capacitance of type-j vehicle and ejκisiηfi,j

2 denotes the energy
cost of type-j vehicle when finishing the task αi.
Definition 1. Because the SRs are not aware of vehicles’ private information,
such as energy cost coefficient, the SRs can sort the vehicles into multiple discrete
types. Based on (8), we define the type θi,j as follows

θi,j
Δ=

1
ejκisiη

, (9)

which suggests that the lower energy cost coefficient, the higher type of vehicles.
The set of vehicles’ types is denoted as Θi = {θi,1, θi,2, ..., θi,J} ,∀i ∈ I. The types
of vehicle are sorted in an ascending order and classified into J types, which are
denoted by θi,1 < ... < θi,j < ... < θi,J ,∀i ∈ I.
According to (9), the utility functions of vehicles can be rewritten as

Vj =
∑

i∈I
xi,j

(

πi,j − f2
i,j

θi,j

)

. (10)
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2.4 Social Welfare

Based on (7) and (10), social welfare is defined as the summation of the utility
functions of the SRs and the vehicles, which is denoted by

W =
∑

i∈I

∑

j∈J

xi,j

(

λiΔti,j − f2
i,j

θi,j

)

. (11)

The payment πi,j ,∀i ∈ I,∀j ∈ J are cancelled out in the social welfare. The
social welfare is the profit of saved delay minus the vehicles’ energy cost, which
is equivalent to optimize the whole system’s efficiency, i.e., earning more profits
from saved delay at the less cost of energy cost.

3 Problem Formulation

3.1 Contract Formulation

There exists an asymmetric information scenario between SRs and vehicles, the
SRs can optimize their expected utilities by using the statistical distributions of
vehicles’ types from historical data. The SRs are only aware of the probability
of the vehicles belong to type-θi,j from statistical data. We denote βi,j as the
probability that the vehicles belong to the type-θi,j , and

∑

j∈J βi,j = 1,∀i ∈ I.
By considering the heterogeneity among different vehicles, the SRs offer different
contract items to multiple types of vehicle. The vehicles can accept or reject the
offering contract items according to their utility functions. The contract-based
optimization problem is to optimize the expected utilities of the SRs, which is
formulated as

max
(xi,j ,fi,j ,πi,j)

∑

i∈I

∑

j∈J
Nβi,jUi

s.t.(12a) xi,j ∈ {0, 1} ,
∑

j∈J
xi,j ≤ 1,∀i ∈ I,∀j ∈ J ,

(12b)
∑

i∈I
xi,jfi,j ≤ fmax

j ,∀j ∈ J ,

(12c) tup
i,j ≤ tdi,j ,∀i ∈ I,∀j ∈ J ,

(12d) πi,j − fi,j
2

θj
i

≥ πi,j − fi,j
2

θi,j
,∀i ∈ I,∀j, k ∈ J ,

(12e) πi,j − fi,j
2

θi,j
≥ 0,∀i ∈ I,∀j ∈ J .

(12)

where N denotes the total number of vehicles, and Nβi,j represents the number
of the vehicles that belong to type-θi,j . (12a) indicates that the variable xi,j is
defined as a binary value, and one SR can be allocated with at most one vehicle.
(12b) denotes the limit of computation capacity of the vehicle. The constraint
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(12c) denotes the delay constraints of task uploading. (12d) is incentive compat-
ibility (IC) constraints which ensure that the vehicles can optimize their utilities
by choosing the contract items that are designed for their types. (12e) is individ-
ual rationality (IR) constraints which ensure that each type of vehicle’s utility
is positive.

3.2 Problem Simplification

It is difficult to solve the optimization problem (12) with so many complicated IC
constraints and IR constraints which are not-convex and coupled among different
types of vehicle. Since the optimization problem (12) is not a convex optimiza-
tion problem, the complicated constraints in optimization problem should be
simplified through following lemmas.

Lemma 1. For any feasible contract (πi,j , fi,j) ,∀i ∈ I,∀j, k ∈ J , πi,j > πi,k if
and only if and θi,j > θi,k, and πi,j = πi,k if and only if θi,j = θi,k.

Proof. Please refer to [15].

Lemma 2. For any feasible contract (πi,j , fi,j) ,∀i ∈ I,∀j, k ∈ J , πi,j > πi,k if
and only if fi,j > fi,k and πi,j = πi,k if and only if fi,j = fi,k.

Proof. Please refer to [15].

Lemma 3. Given that the IC constraints of all types of vehicle are satisfied, if
the utility of the SR is maximized under asymmetric information scenario, the
IR constraints of vehicles can be replaced by

πi,1 − fi,1
2

θi,1
= 0,∀i ∈ I, (13)

Proof. From Definition 1, the types of vehicle satisfy θi,1 < θi,2 < · · · < θi,j <
· · · < θi,J ,∀i ∈ I. According to the IC constraints in (12d), we can obtain

πi,j − fi,j
2

θi,j
≥ πi,1 − fi,1

2

θi,j
≥ πi,1 − fi,1

2

θi,1
≥ 0, (14)

If the IR constraint of type-1 vehicle is guaranteed, the IR constraints of all type
of vehicles are satisfied. This completes the proof.

Lemma 4. The IC constraints of vehicles can be reduced as the local downward
incentive compatibility (LDIC):

πi,j − fi,j
2

θi,j
≥ πi,j−1 − fi,j−1

2

θi,j
,∀i ∈ I,∀j ∈ {2, ..., J} , (15)

and the local upward incentive compatibility (LUIC):

πi,j − fi,j
2

θi,j
≥ πi,j+1 − fi,j+1

2

θj
i

,∀i ∈ I,∀j ∈ {1, ..., J − 1} , (16)
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Proof. Please refer to [16].

Lemma 5. If the utility of SR is maximized, the IC constraints of vehicles can
be reduced as

πi,j − fi,j
2

θi,j
= πi,j−1 − fi,j−1

2

θi,j
,∀i ∈ I,∀j ∈ {2, ..., J} . (17)

Proof. Please refer to [16].

According to Lemmas 3 and 5, the complicated IR and IC constraints can be
reduced. Thus the optimization problem (12) can be rewritten as

max
{xi,j ,fi,j ,πi,j}

∑

i∈I

∑

j∈J
Nβi,jUi

s.t.(18a) xi,j ∈ {0, 1} ,
∑

j∈J
xi,j ≤ 1,∀i ∈ I,

(18b)
∑

i∈I
xi,jfi,j ≤ fmax

j ,∀j ∈ J ,

(18c) tup
i,j ≤ tdi,j ,∀i ∈ I,∀j ∈ J ,

(18d) πi,j − fi,j
2

θi,j
= πi,j−1 − fi,j−1

2

θi,j
,∀i ∈ I,∀j ∈ J ,

(18e) πi,1 − fi,1
2

θi,1
= 0,∀i ∈ I,

(18f) fi,1 ≤ ... ≤ fi,j ≤ ... ≤ fi,J ,∀i ∈ I.

(18)

4 Solution

We solve the optimization problem (18) by using a standard method. We first
resolve the relaxed problem without monotonicity constraint (18f). The solu-
tions are then verified whether to satisfy the monotonicity constraint (18f). By
iterating the (18d) and (18e), we have

πi,j =
fi,1

2

θi,1
+

j
∑

n=2

fi,n
2 − fi,n−1

2

θi,n

=
fi,j

2

θi,j
+

j
∑

n=2

(

1
θi,n−1

− 1
θi,n

)

fi,n−1
2,

(19)

where ∀i ∈ I,∀j ∈ {2, ..., J}. Substitute (18e) and (19) into optimization prob-
lem (18), and all πi,j ,∀i ∈ I,∀j ∈ J can be removed from the optimization
problem (18), which becomes
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max
{xi,j ,fi,j}

∑

i∈I

∑

j∈J
Nβi,jxi,j

[

λi

(

Tmax
i − κisi

fi,j
− si

ri,j

)

−
J−1
∑

j=1

⎛

⎝

1
θj

i

J
∑

n=j

βi,n − 1
θi,j+1

J
∑

n=j+1

βi,n

⎞

⎠ fi,j
2 − βi,J

θi,J
fi,J

2

⎤

⎦

s.t.(20a) xi,j ∈ {0, 1} ,
∑

j∈J
xi,j ≤ 1,∀i ∈ I,

(20b)
∑

i∈I
xi,jfi,j ≤ fmax

j ,∀j ∈ J ,

(20c) tup
i,j ≤ tdi,j ,∀i ∈ I,∀j ∈ J ,

(20)

First, we can use standard convex optimization tools in [17] to solve it to get
fi,j

∗. Then πi,j
∗ can be calculated by (18e) and (19). After that, we need to

check whether the solutions satisfy the monotonicity constraint (18f). If the
solutions ̂fi,j

∗,∀i ∈ I,∀j ∈ J satisfy the monotonicity constraint (18f), the
solutions are our optimal solutions. However, if the solutions ̂fi,j

∗,∀i ∈ I,∀j ∈ J
do not satisfy the monotonicity constraint (18f), the solutions are infeasible
solutions. Thus, we need to make some adjustments as follows. Since Ui,∀i ∈ I
are concave functions on ̂fi,j

∗,∀i ∈ I,∀j ∈ J , the infeasible solutions can be
replaced by feasible solutions iteratively [18]. When there exists an infeasible
solution

{

̂fi,m
∗, ̂fi,m+1

∗, ..., ̂fi,n
∗
}

, set

fi,j
∗ = arg max

{f}

n
∑

s=m

Us, i ∈ {m,m + 1, ..., n} , (21)

After obtaining the feasible solutions fi,j
∗,∀i ∈ I,∀j ∈ J , we can derive the

optimal price pi,j
∗ as follow

πi,j
∗ =

⎧

⎪

⎨

⎪

⎩

fi,1
∗2

θi,1
, j = 1,

fi,j
∗2

θi,j
+

i
∑

n=2

(

1
θi,n−1

− 1
θi,n

)

f i,n−1
∗2, j = {2, 3, ..., J} .

(22)

Then, xi,j
∗ can be calculated iteratively by the constraints (20a), (20b) and

(20c). So far, we have derived the optimal contract (fi,j
∗, πi,j

∗),∀i ∈ I,∀j ∈ J
which can optimize the expected utilities of the SRs and satisfy the IR and IC
constraints.
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Table 1. Simulation parameters

Parameter Setting

Radius of the SRs communication coverage 200 m

Number of SRs I 15

Number of vehicles’ type J 10

Bandwidth of SRs B 10 MHz

Transmission power of SRs pi 30 dBm

Noise power N0 −114 dBm

Path loss exponent ε 3.4

Maximum delay tolerance Tmax
i 8−10 s

Mapping from bit to cycles κi 1 ∗ 103 − 1.5 ∗ 103 cycle/bit

Size of task si 3 ∗ 106 − 4 ∗ 106 bit

Saved delay profit coefficient λi 0.1−1

Effective switched capacitance η 10−28

Energy cost coefficient ej 0.1−1

Velocity of vehicles v̄j 2−20 m/s

Maximum computation resource of vehicle fmax
j 2.5−3 GHz

5 Numerical Results

Type of vehicle
1 2 3 4 5 6 7 8 9 10

U
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eh

ic
le

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Type=3
Type=5
Type=7
Type=9

Fig. 2. Utility of vehicle versus type of vehicle.
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We consider a two-lane two directional road randomly distributed with 10
vehicles and 15 SRs. We assume that the SRs are distributed along the road and
their communication range as a circle with a diameter. The number of vehicle
types is equal to the number of vehicles. Without loss of generality, the vehicle
types are following a uniform distribution. In our simulation, we first give an
analysis about the feasibility (IC and IR constraints) of the proposed contract-
based incentive scheme. Second, we conduct the comparisons of social welfare
with different types of vehicles. Finally, we compare the social welfare by varying
the number of SR. For comparisons, the numerical results are performed by solv-
ing the problem by using the proposed contract-based scheme under asymmet-
ric information scenario (CA), contract-based scheme under complete informa-
tion scenario (CC) [16], Stackelgerg game scheme (SG) [19] and take-it-or-leave
scheme (ToL) [20]. The system performance is being simulated using MATLAB
with system parameters in Table 1.

Type of vehicle
1 2 3 4 5 6 7 8 9 10

S
oc

ia
l W

el
fa

re

0.22

0.24

0.26

0.28

0.3

0.32

0.34

CC
CA
SG
ToL

Fig. 3. Social welfare versus type of vehicle.

The feasibility of IR and the IC constraints of the proposed contract-based
scheme under asymmetric information scenario is shown in Fig. 2. A SR (i.e., i =
10) is selected randomly. Figure 2 shows that the utilities of type-3, type-5, type-
7, and type-9 vehicles when the vehicles select all the contract items (πj

i , f
j
i ), i =

10, j ∈ J offered by the i-th SR. We can observe that the utility of each type of
vehicles can maximize its utility when the vehicles select the contract item that is
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designed for their types, which suggests the IC constraints are satisfied. Further,
the utilities of vehicles are non-negative when they choose the best contract
item that fits their corresponding types, which means that the IR constraints
are guaranteed. After the vehicles select the contract items, the types of vehicles
will be known by the SRs. Therefore, the information asymmetry between SRs
and vehicles can be overcome.

We illustrate social welfare with respect to different types of vehicle under
four schemes in Fig. 3. We set the threshold type of ToL scheme is 5. It can be
seen from Fig. 3 that the social welfare achieved by all schemes increase with
type of vehicle. It is profitable to employ higher type of vehicles to help execute
computation tasks from SRs. The higher type of vehicles are with higher energy
efficiency to share resources with SRs. Furthermore, the CC scheme achieves the
maximum value of social welfare as the upper bound. The social welfare achieved
by the proposed CA scheme is better than SG scheme and ToL scheme. Due to
the information asymmetry between SRs and vehicles, SRs have no acknowl-
edgment of the type of vehicle, the designed IC constraint-based CA scheme
can only bring a approximate optimal social welfare, which is upper bounded
by CC scheme under complete information scenario. The SRs are fully aware of
the types of vehicle under complete information scenario and tries to extract all
profit from the vehicles. The gap between social welfare and that of CA scheme
increases along with the type of vehicles.

Number of SRs
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Fig. 4. Social welfare versus number of SRs.
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Figure 4 shows the performance of social welfare as a function of the number
of SRs under all four schemes. It can be observed from Fig. 4 that social wel-
fare achieved by all four schemes increase with the number of SRs. As shown
in Fig. 4, the CC scheme gives the highest performance of social welfare among
all four schemes, followed by the CA scheme, SG scheme and ToL scheme. That
because SRs extract revenue from the vehicles as much as possible under com-
plete information scenario, and less benefits are left to the vehicles. While in CA
scheme, vehicles have limited contract items to select from SRs under asymmet-
ric information scenario. However, the vehicles have freedom to optimize their
own utility in SG scheme, and they can reserve more benefits from SRs. There-
fore, the social welfare achieved by contract-based scheme are better than that of
SG scheme. ToL scheme achieves the lowest social welfare among four schemes.
The reason is that any vehicle whose type larger than the threshold type will
reject the contract offered by SRs. In this case, only the vehicles higher than the
threshold type can achieve non-negative utilities.

6 Conclusion

In this paper, we propose a container-based VEC paradigm with efficient and
flexible customization of vehicles’ resources. Then, we present a contract-based
incentive mechanism to motivate vehicles to share their computation resource
and help offload tasks from SRs. The proposed novel contract-based framework
solves the task allocation problem among multiple vehicles and multiple SRs. To
overcome the asymmetric information scenario between the SRs and the vehi-
cles, a set of resource-reward contract items are designed for maximizing the
SRs expected utilities while ensuring the IR and IC constraints of the vehi-
cles. Finally, numerical results show that the proposed contract-based incentive
mechanism is more effective than the traditional schemes.
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