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Abstract. Understanding soil moisture at a small scale is beneficial for pre-
dicting productivity and management of both rained and irrigated agriculture in
mostly smallholder communities. This study aims to accurately represent micro-
watershed scale soil moisture using the optimization capability of SWAT (SUFI2)
model and soil information derived from Sentinel 2 A level 1 C satellite images
with OPtical TRApezoid Model (OPTRAM) andMNDWI. The study was carried
in the 700 ha Awramba watershed in the Upper Blue Nile, Ethiopia. Calibration
and validation of SWAT were performed using in-situ stream flow data to enable
the accurate simulation of water balance components such as soil moisture. The
spectral water index was evaluated using MNDWI from the green band (560 nm)
and short wave infrared band (2190 nm). The Results were evaluated based on the
runoff response n and soil moisture fit to measured values. The runoff fit against
the measured data using Nash Sutcliffe Efficiency (NSE) and R2 criteria is 0.7 is
and 0.75, respectively. The simulated daily soil moisture against the in-situ con-
stant soil moisture provided NSE = 0.51, R2 = 0.77, RMSE = 0.19 and PBIAS
= −0.242. The simulation results indicate that validation of SWAT, OPTRA M
and MNDWI models with in situ soil moisture data leads to acceptable accuracy
with 0.0027 cm3 cm−3, 0.0022 cm3 cm−3 and 0.034 cm3 cm−3 standard errors,
respectively. Furthermore, Sentinel 2A imagery is found to have a higher poten-
tial to simulate soil moisture compared to TDR data. The overall study indicates
satellite-based soil moisture provides an encouraging pathway to setting up soil
moisture-based prediction for smallholder agriculture in Ethiopia.
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1 Introduction

1.1 Background

Globally, 65% ofwater received as precipitation returns to the atmosphere as greenwater
flow and the rest remain in the soil and flow as a runoff. The green water storage (soil
moisture) is the amount of water in the soil profile at the end of a period [1]. Surface
soil moisture controls the partition of rainfall into runoff, infiltration and other hydro-
logical variables. Soil moisture directly influences the rate of evaporation, groundwater
recharge and runoff generation and has an essential influence on climate [2]. Soil mois-
ture can be estimated using in situ networks, hydrological models and remote sensing
technique. However, an integrated approach can overcome the drawbacks of every single
method and produce more big data [3]. Traditional in situ measurements provide valu-
able information at different soil depths. Many field techniques are available including;
gravimetric, tension measuring, neutron probe, Time Domain Reflectometry (TDR) and
capacitance measurements [4]. Hydrological SWAT model can estimate soil moisture
in HRU/sub-basin/level up to vertical root depth (60 cm) of plants. For the data-scarce
region, the model effectively calibrated and validated using stream flow data for the
proper partition of hydrological water balance components [5].

Remote sensing technique enables to monitor soil moisture over a large area. The
recently launchedSentinel two satellite has the potential to improve soilmoisture product
up to a resolution of 10 m. Soil moisture content is a critical hydrological and climatic
variable in various application domains but the retrieval from local direct measurements
of distributed, quantitative and accurate information relative to the moisture level of
soils on a global scale is almost impracticable, due to the high spatial variability of the
target variable, time, and expensive nature of devices. Sustainable agriculture and water
resource management need accurate information on surface soil moisture. Low soil
moisture for sustained periods results in drought and plant water deficit and potentially
leading to wild Fire [6].

Conversely, high soil moisture leads to increased risk of flood. Also, the evaporation
rate is strongly correlated to soil moisture that makes a secure connection between the
land surface and atmosphere [7]. Continuous observation of soil moisture is difficult in
a large area, but we can monitor effectively and conveniently by using remote sensing
technology. Despite the importance of soil moisture, in situ measurement is very difficult
and requires resources, both labour and finance. The only limited area can be controlled
by in situ point observation, which cannot be representative for the broader region.
Nowadays, direct views of soil moisture were restricted to discrete measurements at a
specific location, and such point-basedmeasures do not represent the spatial distribution,
because soil moisture is highly variable both in spatially and temporal scale. The depth
at which soil moisture is sensed by satellites depends on the sensor frequency but usually
does not exceed 30 cm in order to access root zone soil moisture hydrological model
is needed and several approaches have been developed such as techniques based on the
energy balance approach based on thermal infrared soil moisture or simplified water
balanced approaches [8]. Passive remote sensing instruments can be used to determine



296 B. G. Sinshaw et al.

the surface soil moisture with a temporal resolution of different days. The European
Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission [9] and the
National Aeronautics and Space Administration (NASA) Soil Moisture Active and Pas-
sive (SMAP) mission have a low spatial resolution around 25 km. According to [10]
the current Sentinel-2 purpose, active onboard C-band sensor offers regular temporal
coverage (about five days for both A and B satellites) together with a spatial resolution
of 10 m from the optical image.

1.2 Objective

1.2.1 General Objective

• The main aim of the study is to simulate soil moisture using SWAT and Remote
Sensing Techniques in Data Scarce Micro-Watersheds.

1.2.2 Specific Objective

• To simulate spatial and temporal soil moisture content using SWAT hydrological
model at sub-basin level

• To generate a time series satellite image-based soil moisture index from Sentinel 2 A
images

• To evaluate satellite-based water index from Sentinel 2 A picture with in situ soil
moisture data.

2 Materials and Methods

2.1 Description of the Study Area

The study was carried out in upper Blue Nile, Ethiopia, in small watershed called
Awramba. Geographically located between 11.886o N–11.9253o N and 37.781o E–
37.806o E having elevation difference between 1887 m and 2305 m above sea level.
It located in the south-east of part Lake Tana, 75 km North West of Bahir Dar city.
Awramba watershed covers an area of 700 ha that receive 1497 mm rainfall depth and
21 oC average temperature (Fig. 1).

Soil type: In Awramba, the type of soil is volcanic in origin range from mainly
clay texture throughout the mid and down slope positions (near the outlet) and clay
to sandy clay soils on the top slopes [22]. More than 99% of the watershed based on
the classification of the Food and Agriculture Organization (FAO) consists of Haplic
Luvisols.
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Fig. 1. Location map of Awramba watershed

2.2 Materials

The materials used for this study were presented in (Tables 1 and 2).

Table 1. Different data sources used for this study

No Type data Source Purpose

1 STRM DEM https://earthexplorer.usgs.gov/ Delineation and slope map

2 Soil MoWRIE Soil map

3 Sentinel 2 image (https://scihub.copernicus.eu/dhus/
# /home)

OPTRAM, MNDWI and LULC
map

4 Weather data Metrological stations Input for the SWAT model

Soil Moisture: In-situ soil moisture measurements were collected seven-day basis over
2017/2018 at 18 representative locations in theAwrambawatershed. In-situ soil moisture
observations collected for SWAT model and satellite soil moisture product validation
purpose. In each site, the measurement was carried out at 10 cm depth using TDR. The
assembledTDRprobe soilmoisture products calibratedwith commonly usedgravimetric
soil moisture content.

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
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Table 2. Different decision support tools used for this study and their purposes

No Software name Purpose

1 Arc GIS 10.1 Preparation of daily soil moisture maps

2 ENVI 5.1 Lee sigma filtering and image enhancement

3 EndNote X6 Citation and references

4 SNAP 6.0 Sentinel 2 image-processing, NDVI and MNDWI

5 Arc SWAT 2012 Act as a GIS interface for SWAT modeling

6 WAGEN.excel macro Weather generator preparation

7 dew02.exe Monthly dew point computation

8 XLSTAT Hydrological data quality

9 SWAT CUP 2012 SWAT calibration, validation and sensitivity analysis

2.3 Soil Moisture Estimation Models

2.3.1 Soil and Water Assessment Tool (SWAT)

It is a physical based semi-distributed basin scale model that uses different data such as
DEM, soil, land use, and climatic data for hydrological and climatological modeling on
the daily or monthly bases [11]. The model includes weather, hydrology, soil properties,
and plant growth, nutrients, and land management practices. The first stage of-of mod-
eling involves watershed delineation. The delineated watershed further subdivided into
hydrologic response units (HRU), which is a unique combination of land use manage-
ment, soil, and slope. Each HRU in the model behaves differently for precipitation and
temperature input [12].

The conversion of sub-basin to the single basin made by changing the threshold
limit in the model. After simulating SWAT output, soil moisture (m3 m−3) determined
by using Eq. 1.1

�SMC =
∑t

i=1
(Rday − Qsurf − Ea − Wseep − Qgw) (1.1)

Where; SWT is the final soil water content (mm), Rday is the simulation time (days),
Ray is the amount of daily precipitation (mm), Qsurf is the amount of daily surface runoff
(mm), Ea is the amount of daily evapotranspiration (mm), Wseep is the amount of water
entering into the vadose zone from the soil profile on a given day (mm), and Qgw is the
amount of return flow on a given day (mm).

2.3.2 SWAT Model Calibration and Validation

An automatic SWAT- CUP computer program was implemented for calibration and
validation of the SWATmodel. This program links GLUE, Parasol, SUFI 2, andMCMC
and PSO procedures to SWAT. It enables sensitivity analysis, calibration and validation
of SWAT model parameters. This method uses a Bayesian framework to determine the
uncertaintieswith a sequential uncertainty fitting process inwhich iteration and unknown



Integration of SWAT and Remote Sensing Techniques to Simulate Soil Moisture 299

parameter estimateswere achieved before final forecast. It considers difficulties ofmodel
input, structure, parameters and observed data. Global Sensitivity analysismethod (using
t-Stat and p-Value to assess sensitivity) during the calibration process was to avoid the
equifinality phenomenon.

2.4 Sentinel Image Soil Moisture Estimation

Sentinel-2 is a European wide-swath, high-resolution, multi-spectral imaging mission.
The full mission specification of the twin satellites flying in the same orbit but phased
at 180°, is designed to give a high revisit frequency of 5 days at the equator. Sentinel-2
carries an optical instrument payload that has 13 spectral bands: four bands at 10 m, six
bands at 20 m and three bands at 60 m spatial resolution. The novel optical trapezoid
model is a physical based model designed to estimate soil moisture content from a visual
image by replacing Land surface temperature from a thermal band with a measure
for soil moisture in the optical domain develop OPTRM from flux radiative transfer
model formulate a physical model that exhibits a linear relationship between surface
soil moisture content and SWIR transformed reflectance using Eq. 1.2 [13, 14]

SMI =
θ − θd

θw − θd
= STR − STRd

STRw + STRd
(1.2)

Where STR is the SWIR transformed reflectance, STRd and STRw are STR at θd and θw
respectively. The STR is related to SWIR reflectance, RSWIR, computed using Eq. 1.3

STR = (1 − RSWIR)2

2RSWIR
(1.3)

Based on the assumption of a linear relationship between soil and vegetation water
contents, we expect that the STR-NDVI space forms a trapezoid as well. Therefore, the
parameters of the can are obtained for a specific location from the dry and wet edges of
the optical trapezoid using linear regression system determined using Eqs. 1.4 and 1.5

STRd = id + SdNDVI (1.4)

STRw = iw + sdNDVI (1.5)

The normalized difference water index (NDVI) computed from band 4 (Red) and
band 8 (NIR) using Eq. 1.6;

NDVI = NIR − Red

NIR + Red
(1.6)

Where; NIR is the TOA reflectance value of the NIR band (band 8), and red is the
TOA reflectance value of the red group (group 4). The freely available sentinel -2 Levels
1C dataset is a standard product of TOA reflectance [15].

The NDVI was determined from the contribution of visible and NIR band. Healthy
and well-nourished vegetation absorbs most of the visible wavelengths and reflects a
large proportion of NIR light, whereas sparse plant reflects more visible wavelength
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light and less NIR light. Combining Eqs. 1.4 and 1.5, the soil moisture for each pixel
can be estimated as a function of STR and NDVI determined as Eq. 1.7

SMI =
id + SdNDVI − STR

(id − iw) + (sd − sw)NDVI
(1.7)

Where; id and sd are dry parameters of NDVI – STR scatter plot, in and SW are wet
parameters of NDVI – STR scatter plot and NDVI is the average vegetation index of
the satellite. The Sentinel 2A level 1 C band 12 images with 20 m spatial resolutions
were resample to 10 m resolution with the nearest neighbor method to match the spatial
resolutions of group 4 and 8.

2.4.1 OPTRA MModel Validation and Sensitivity Analysis

The parameter removal sensitivity analyses, according to [16, 17] and [18] were used to
identify the factors that profoundly affect the soil moisture content.

s =
[

SM
N − SM′

n

SM

]
(1.8)

where; S is Sensitivity index analysis associated with the removal of one parameter;
SM is the soil moisture index computed using all the settings; SM′ is the soil moisture
index calculated by excluding one thematic parameter at a time; N a n are the numbers
of parameters used to calculate SM and SM′ respectively.

2.4.2 Satellite Data Bias Correction

The bias from satellite image soil moisture retrieval was removed using cumulative
density function CDF function.

θ = μground + σ sat + σground

2
× Sat − μsat

σ sat
(1.9)

Where; θ is thefinal corrected soilmoisture, theμground ground is in situ soilmoisture,
σsat is the standard deviation of satellite soilmoisture, the σground is the standard deviation
of in situ soil moisture, sat is satellite soil moisture, sat is satellite soil moisture.

2.4.3 Spectral Water Index Extraction Using MNDWI

The spectral Normalized difference water index proposed by [19] designed to maximize
the reflectance of the water body in the green band and minimize the reflectance of the
water body in the NIR band. McFeeters’s NDWI determined as;

NDWI = ρGreen − ρNIR

ρGreen + ρNIR
(2.0)

Where; ρGreen is the TOA reflectance value of the green band and ρNIR is the TOA
reflectance value of the NIR band. Comparing to the raw Digital Numbers (DN), TOA
reflectance is more suitable in calculating NDWI. The freely available Sentinel 2A Level
1C dataset is already a standard product of TOA reflectance. Therefore, no additional
pre-processing is required.
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2.4.4 Model Performance Evaluation

Based on [19], four quantitative statistics were used to assess model performance in
catchment simulation (Table 3).

Table 3. SWAT model performance range

Rank NSE PBIAS RMSE

Very good 1 ≥ NSE ≥ 0.75 PBIS < 10 0 ≤ RMSE ≤ 0.5

Good 0.75 ≥ NSE ≥ 0.65 15 ≥ PBIS > 10 0.5 ≤ RMSE ≤ 0.6

Satisfactory 0.65 ≥ NSE ≥ 0.5 25 ≥ PBIS > 15 0.6 ≤ RMSE ≤ 0.7

3 Results and Discussion

3.1 Land Use Land Covers Classification

Thirty-four ground truth spatial points were used to classify pixel based land use land
cover classification.

According to Table 4, the image classified in to four major classes; agriculture
(3.53 km2), forest (2.21 km2), grassland and shrubs (1.16 km2) and village (0.067 km2).
Agriculture was the dominant type of land use practice which covers half of the total
area of the watershed. The study had an overall classification accuracy of 85.5% and a
kappa coefficient of 80% that indicated very good classification (Fig. 2).

Table 4. Performance evaluation of Sentinel 2 for land LULC classification

Land use Producer
accuracy
(%)

Omission
error (%)

User
accuracy
(%)

Commission
error (%)

Overall
accuracy
(%)

Kappa
coefficient
(%)

Cultivated 82 18 90 10 85 80

Village area 100 0 83 17

Forest land 71 29 71 29

Grass land 91 9 91 9
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Fig. 2. Land use of Awramba classified from sentinel two images

3.2 SWAT Model Configuration

The SWAT model has configured with DEM 30 m resolution and discredited based on
the maximum areal threshold value into 330 Hydrological Response Unit (HRU) and 35
sub-basins to get detail information about the topographic characteristics. Themaximum
area of the sub basin was 1.732 Km2 (sub basin 32), and the minimum was 0.0164 Km2

(sub basin 8). The HRUs were defined using land use, soil and slope with a threshold
value of 10%, 20%, 10% respectively [20]. The input tables were defined based on the
daily time step climatic data collected from within and around the watershed with their
relevant location files. The model was run from 2013–2017 seasons by considering 2013
data to warm up the model and the rest three and one year’s data were considered as
calibration and validation at the outlet point using stream discharge daily observation.

During the simulation of the SWAT model, there was a discrepancy between mea-
sured data and simulated results. Therefore, to minimize this inconsistency, selecting
sensitive parameters which affect the outcome and the extent of variation is mandatory
for better hydrological modeling. Global sensitivity analysis in SWAT CUP 2012 is the
favorite tool to show the rank and relative sensitivity. In the present study, initially, 30
parameters were used to know the status of each parameter. Among the 30 benchmarks,
the top nineteen parameters were used for the calibration and validation process. Param-
eter sensitivity and ranking in SWAT CUP was measured using the t-stat and p-values.
Where t-stat is the coefficient of a parameter divided by its standard error. The p-value
is used to determine the significance of the sensitivity. Parameters are significant for
a larger absolute t-stat and lower p-values. The T-stat measures sensitivity with larger
absolute values, while the P-value considers zero cost to determine sensitivity [21]. A
more significant p-value suggests that changes in the predictor values are not associated
with changes in the response variable.
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3.3 Sensitivity Analysis, Calibration and Validation of SWAT Model

According to Global sensitivity analysis result indicates that curve number II, alpha base
flow recession constant, and groundwater delay were the three top sensitive parameters
that determine the water balance of Awramba catchment. The sensitivity rank is in line
with [20, 22] tested in the upper BlueNile basin. Curve numbermethod is one of themost
popular ways for computing the runoff volume from a rainstorm. Soil and groundwater
parameters are found to be the most sensitive parameters in lowland catchments [23]
(Table 5).

Table 5. SWAT parameters used for calibration and their sensitivity ranks in Awramba

Parameter File Fitted Min Max t P Sensitivity

Name Extra Value Value Value Stat Value Rank

R__CN2 mgt −0.165 −0.2 0.2 −29.2 0 1

V__ALPHA_BF Gw 0.104 0 1 −0.28 0.78 2

V__GW_DELAY Gw 164.583 0 500 1.51 0.14 3

V__GWQMN Gw 1437.5 0 5000 −0.16 0.88 4

R__ESCO hru 0.188 0 1 1.55 0.12 5

R__ESCO bsn 0.671 0 1 −0.64 0.52 6

R__CH_N2 rte 0.021 0 0.3 −0.03 0.98 7

R__CH_K2 rte 95.104 5 130 −1.77 0.08 8

R__SOL_AWC sol 0.283 −0.2 0.4 0.13 0.9 9

R__SOL_BD sol 0.138 −0.5 0.5 2.54 0.01 10

3.4 SWAT Stream Flow Modeling

Stream discharge in Awramba watershed was collected from 2013–2017 for watershed
management evaluation purpose in daily time step. The rating curve developed by [22]
from 2013–2015 was used to estimate the discharge in 2016 and 2017. To evaluate the
SWAT model performance stream-discharge relationship at gage station historical time
series data from 2013–2017 is considered. Calibration and validation were performed
on measured stream flow from a gagging station for the year 2014–2016 and 2017
respectively (Tables 6, 7 and Fig. 3).

Table 6. Daily stream flow modeling statistical performance

Flow (m3/s) p-factor r-factor R2 NSE PBIAS RMSE

Calibration 1 0.64 0.75 0.7 −2.1 0.55

Validation 0.98 0.49 0.91 0.9 −9.7 0.31
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Table 7. Monthly stream flow model performance

Flow (m3/s) R2 NSE PPBIAS RMSE

Calibration 0.98 0.94 −16.432 1.07

Validation 0.97 0.96 −0.07367 1.075
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Fig. 3. Monthly stream flow (m3/s) during calibration and validation versus monthly rainfall
depth (mm)

3.5 SWAT Soil Moisture Modeling

The moisture content was calibrated and validated by stream flow data due to lack
of long term gagged soil moisture data at sub-basin level because the simulation of
soil moisture content using SWAT model is highly dependent on simulation of runoff
generation process [24].

As indicated in (Fig. 4) SWAT model results the amount of soil moisture reduces
from 2014–2017 with annual rainfall depth (Table 8).
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Fig. 4. SWAT monthly soil moisture during calibration and validation by using Stream flow data
from 2014–2017

Table 8. Water balance of Awramba watershed using SWAT model (2014–2017)

Year Rainfall PET ET Q_GW WYLD SM Q

(mm) (mm) (mm) (mm) (mm) (mm) m3/s

2014 1713.92 1233.6 560.3 355.96 1124.49 119.34 795

2015 1171.05 1339 569.6 193.4 575.22 98.34 447

2016 1505.53 1287.7 537.9 295.66 946.73 107.72 662

2017 1599.3 1306.7 597.4 281.52 972.35 105.15 649

Mean 1497.45 1291.7 566.3 281.64 904.7 107.64 638

The rainfall depth in 2014 was 1713 mm respond an average soil moisture value
of 119.33 mm. In 2015 season, the rainfall depth was 1171.05 mm response 98.34 mm
amount of water stored in root depth of the plant. The amount of rainfall in 2016 and
2017 were 1505 mm and 1599 mm, which responses 107.72 mm and 105.14 mm soil
moisture content. SWATmodeling results indicated the amount of soil content around the
watershed was determined by the amount of rainfall value directly. Both hydrological
variables reduced with time, especially in 2015 there was a small amount of rainfall
annually; as a result, the amount of water stored and available for plants were lower than
the rest years. But, the partition of soil moisture from the total rainfall was higher in 2015
because the soil can absorb the incident rainfall by reducing runoff generation potential.
SWAT model calibration using stream flow data improve the soil moisture product in
daily time step.

3.6 Sentinel 2 Satellite Soil Moisture Estimation Methods

A physically-based trapezoidal space termed the “Optical TRApezoid Model” (OP-
TRAM) to estimate surface soil moisture remote from Sentinel two satellites based on
optical data only [13]. The concept is based on the pixel distribution between STR-NDVI
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spaces, where STR is the SWIR transformed reflectance, and NDVI is the Normalized
difference vegetation index, thereby replacing LST in the conventional trapezoid model.
Considering a linear relationship between soil moisture content, SMI (0 for completely
dry and 1 for saturated soil) and STR [25] Normalized Difference Vegetation Index
(NDVI): Most vegetation indices combine information contained from the red and near-
infrared (NIR) spectral bands [26]. The index was higher in the rainy season and lowered
in the dry season (April and May) (Fig. 5).

Fig. 5. Normalized difference vegetation index map

3.6.1 Shortwave Infrared Transformed Reflectance (STR) Map

Shortwave infrared transformed reflectance (STR) is one of the parameter used to deter-
mine the soil moisture status of a soil by replacing the land surface temperature (NDVI,
LST) in thermal triangular model with a linear relationship between (NDVI, STR) in
optical tripartite model because LST is computed from thermal band of the satellite
imagery (Fig. 6).
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Fig. 6. STR maps from SWIR band

STRmap in the study area varies both spatially and temporally in 2017 season. Most
of the STRmap result reveals that the highest elevation part of the watershed has a lower
value of STR whereas lower elevation part of the basin was the higher value of STR like
that of land surface temperature (Table 9 and Fig. 7).

Table 9. Daily OPTRA M parameters

Date NDVI NDVI STR STR id iw sd sw

max min max min

2-Jan-17 0.75 0.05 1326 239.5 190.5 1142.98 76.23 457.37

11-Feb-17 0.59 0.01 1450.5 287 262.88 1328.6 79.63 402.44

23-Mar-17 0.4 0.06 1242 455.5 433.27 1181.4 98.13 267.58

22-Apr-17 0.64 0 1528 350 317.18 1384.71 102.03 445.44

11-Jun-17 0.66 −0.08 3226 211.5 194.82 2971.51 57.01 869.62

1-Jul-17 0.58 0.12 1616.5 306 272.46 1439.3 95.6 505.02

21-Jul-17 0.58 0.09 2013.5 290 287.89 1510.18 24.63 871.84

30-Aug-17 0.55 0.13 2013.5 291 261.46 1809.06 87.89 608.14

29-Sep-17 0.79 0.15 1487.5 111.5 108.89 923.47 16.86 721.71

9-Sep-17 0.77 0.12 1280 154 128.62 1069.02 57.14 474.91

9-Oct-17 0.78 0.13 1823 221 182.88 1508.52 83.5 688.77

29-Oct-17 0.82 0 1266 203 173.66 1083.03 71.38 445.15

28-Nov-17 0.63 0.16 1719 212.5 183.71 1486.1 32.69 588.31

28-Dec-17 0.67 0.05 1591.5 233 206.28 1408.97 74.24 507.13
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STR = 2250.NDVI + 133.0
R² = 0.694

0

500

1000

1500

2000

2500

3000

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ST
R

  

NDVI  

Sd 

SW

iw

id 

Fig. 7. Standardized rating curve between NDVI and STR

3.6.2 Sensitivity Analysis of Optical Trapezoidal Model Parameters

The highest variation index with mean −7.97 associated with soil moisture index value.
Soil moisture index also sensitive to STR and NDVI with a mean variation index value
of −1.09 and −1.01 respectively next to iw. It is less susceptible to Sd and Sw with a
mean variation of 0.19 and 0.02, respectively (Table 10).

Table 10. Map removal sensitivity analysis statistical value of the OPtical TRApezoidal Model

Date NDVI STR id iw sd sw

2-Jan-17 −1.02 −1.08 −0.77 −30.1 0.03 0.2

11-Feb-17 −0.94 −1.1 −0.76 −8.05 0.02 0.12

23-Mar-17 −0.91 −1.23 −0.73 −2.99 0.03 0.08

22-Apr-17 −0.96 −1.12 −0.76 −6.7 0.03 0.14

1-Jul-17 −0.98 −1.09 −0.77 −11.2 0.02 0.16

29-Sep-17 −1.23 −1.03 −0.79 4.12 0 0.42

9-Oct-17 −1.07 −1.06 −0.78 16.14 0.02 0.24

29-Oct-17 −1.03 −1.08 −0.77 −54.1 0.03 0.21

28-Nov-18 −0.99 −1.05 −0.78 41 0.01 0.18

28-Dec-17 −0.97 −1.07 −0.77 −27.9 0.02 0.16

Average −1.01 −1.09 −0.77 −7.97 0.02 0.19

Sensitivity rank 3 2 4 1 6 5



Integration of SWAT and Remote Sensing Techniques to Simulate Soil Moisture 309

3.6.3 Soil Moisture Index Map

Mapping soil moisture index in small watershed level is difficult due to satellites poor
resolution and quality of imagery. The Sentinel 2 A levels 1 C image has 13 spectral
bands that can detect our environment in the different spectral band from 443 nm–
2190 nm. Group 4 (665 nm) and band 8 (740 nm) were used for normalized difference
vegetation index (NDVI) computation in sentinel application platform(SNAP Version
6.0), and the short wave infrared (SWIR) band 12 (2190 nm) was used for computing
STR in band math. Finally, the soil moisture mapping process were done using OPtical
TRApezoidal Model after calculating the daily dry edge (id and Sd) and wet edge (iw
and Sw) parameters in linear regression program using Microsoft excel solver. The daily
time series dry and wet edge parameters are presented in Table 11 below (Fig. 8).

Table 11. Spatial and temporal MNDWI product in Awramba watershed
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SM_2 −0.38 −0.38 −0.25 −0.34 −0.21 −0.1 −0.14 −0.01 −0.24 −0.28 −0.31 −0.34 −0.24

SM_3 −0.25 −0.22 −0.2 −0.23 −0.22 −0.07 −0.13 −0.02 −0.18 −0.25 −0.35 −0.34 −0.19

SM_4 −0.39 −0.26 −0.27 −0.39 −0.18 −0.23 −0.22 0 −0.2 −0.19 −0.43 −0.43 −0.25

SM_5 −0.29 −0.18 −0.24 −0.3 −0.2 −0.12 −0.15 −0.01 −0.24 −0.31 −0.39 −0.32 −0.22

SM_6 −0.26 −0.13 −0.18 −0.22 −0.18 −0.12 −0.03 −0.01 −0.18 −0.25 −0.3 −0.28 −0.17

SM_7 −0.3 −0.25 −0.18 −0.3 −0.18 −0.18 −0.17 −0.03 −0.11 −0.2 −0.33 −0.32 −0.2
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SM_11 −0.22 −0.21 −0.18 −0.25 −0.16 −0.12 −0.11 −0.03 −0.15 −0.21 −0.3 −0.28 −0.18
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SM_13 −0.29 −0.23 −0.2 −0.28 −0.16 −0.1 −0.13 0.06 −0.19 −0.23 −0.34 −0.32 −0.19

SM_14 −0.38 −0.15 −0.26 −0.36 −0.17 −0.25 −0.14 0.02 −0.19 −0.29 −0.4 −0.4 −0.23

SM_15 −0.21 −0.18 −0.14 −0.21 −0.2 −0.13 −0.09 −0.01 −0.15 −0.2 −0.23 −0.22 −0.16

SM_16 −0.28 −0.19 −0.19 −0.29 −0.16 −0.1 −0.16 −0.01 −0.21 −0.25 −0.27 −0.25 −0.19

SM_17 −0.31 −0.25 −0.2 −0.28 −0.18 −0.26 −0.14 −0.03 −0.11 −0.11 −0.18 −0.13 −0.19

SM_18 −0.25 −0.21 −0.19 −0.28 −0.29 −0.23 −0.14 0.04 −0.17 −0.22 −0.24 −0.21 −0.2

Mean −0.3 −0.22 −0.21 −0.29 −0.19 −0.15 −0.14 −0.01 −0.17 −0.23 −0.31 −0.3 −0.2
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Fig. 8. Daily soil moisture maps estimated using OPTRAM

3.6.4 Bias Correction

There is a discrepancy in estimating soil moisture form sentinel 2 A satellite image.
To account any bias between the two sets of data is removed using a simple cumulative
density function (CDF) that the standard deviation of both the ground station data and the
satellite data. The percentage bias was estimated at −0.094, which is very insignificant.

3.6.5 Spectral Water Index Extraction Using MNDWI

The average product of spectral water index is less than−0.013 cm3 cm−3 thus indicates
that water is not the dominant land use coverage. Spectral water index approaches to
zero in the rainy season especially July – end of September and lowers in the dry season
in November – May. The average value of MNDWI (−0.212) was more significant than
the average NDVI (0.3). The result is agreed with a five years analysis of MODIS image
in the vast central plain of the United States (NDVI = 0.5 and NDWI = 0.3) [27]. The
time series MNDWI data in (Fig. 9) indicates that water index was higher in the rainy
season (June – September) and decline starting the dry season from October – May.
The water index has a similar pattern with soil moisture time series data extracted from
Sentinel 2 A image, but the product of soil moisture is higher than 0 cm3 cm−3, and
MNDWI is less than 0.

3.7 Model Accuracy Assessment

A comparison between SWAT, OPTRA M soil moisture and MNDWI spectral water
index with in situ soil moisture measured at 10 cm depth data is depicted in Fig. 9.
The result indicates that validation of three models with in situ soil moisture data gen-
erally leads to acceptable accuracy having 0.0027 cm3 cm−3 and 0.0022 cm3 cm−3
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and 0.034 cm3 cm−3 standard errors respectively. Overall, the accuracy of sentinel two
images using OPtical TRApizoidal Model and SWAT hydrological model are grater
then MNDWI spectral water index. All models were agreed with result of soil moisture
content less than 0.04 cm3 cm−3 standard error [13] (Table 12).
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Fig. 9. Time series soil moisture product in TDR, SWAT, MNDWI and OPTRAM

Table 12. Model evaluation

Model NSE R2 PBIAS RMSE

SWAT 0.51 0.77 −0.24 0.19

OPTRAM 0.61 0.73 0.19 0.025

MNDWI 0.75 −7.98 0.81 132.83

According to the common performance criteria’s OPTRAM is relatively the best
method to estimate soil moisture in the catchment.

4 Conclusions and Recommendation

4.1 Conclusion

SWAT model sensitivity analysis, it indicated that CN2, ALPHA_BF, GWQMN and
ESCO were the most sensitive parameters and has a great impact on stream flow and
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soil moisture content. The new OPtical TRApezoid Model (OPTRA M) proposed in
this study offers a novel approach to satellite-based remote sensing of soil moisture.
OPTRA M has been derived based on the linear relationship between STR and surface
soil moisture in bare or vegetated soils. OP-TRAM parameters for a given area can be
determined either based on the pixel distribution with-in the STR-NDVI space or with
least square regression of the model to field observations. The achievable prediction
accuracy of OPTRA M is comparable with the TDR probe. OPTRA M using sentinel
2A level 1C image performwell having NSE (0.61), R2 (0.73), PBIAS (0.19) and RMSE
(0.025). TheESASentinelDataHub at the level 1Cprocessing level (Top-of-Atmosphere
radiance) MNDWI spectral index extracted from green (560 nm) and SWIR (2160 nm)
bands. NDVI and MNDWI values are well correlated even though the mean vegetation
index was less than 0.49, whereas the MNDWI spectral index was less than−0.013. But
in all cases, the spectral index has higher reflectance in summer season and low in the dry
season. The overall results revealed that SWAT, OPTRA M and MNDWI were capable
of simulating soil moisture in daily base. The spatial variation of soil moisture was
higher in the TDR probe, and the temporal variation was higher for the MNDWI model.
The satellite soil moisture underestimates the In-situ and SWAT modeled moistures.
The result indicates that validation of three models with in situ data generally leads to
acceptable accuracy having 0.0027 cm3 cm−3 and 0.0022 cm3 cm−3 and .034 cm3 cm−3

standard errors respectively.

4.2 Recommendation

Soil moisture estimation using SWAT semi distributed hydrological model will give
accurate result with stream flow data with successful calibration and validation. The
depth of soil moisturemeasurement can be reduced to 5 cm and better approximation can
be foundwith the satellite. Formulating universal dry andwet edge parameter is essential
for the better optical trapezoidal model using long termNDVI and STR indexes. Sentinel
2 soil moisture product using visual trapezoidal model should be used to calibrate and
validate hydrological models for soil moisture estimation. Even though MNDWI is
designed to extract the water body, the index also used to monitor soil moisture status.
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