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Abstract. A bivariate Fisher–Snedecor F composite distribution with arbitrary
fading parameters (not necessary identical) is presented in this paper. We derive
novel theoretical formulations of the statistical characteristics for the correlated
F composite fading model, which include the joint probability density function,
the joint cumulative distribution function, the joint moments and the power
correlation coefficient. Capitalizing on the joint cumulative distribution function,
the bit error rate for binary digital modulation systems and the outage proba-
bility of a correlated dual-branch selection diversity system, and the level
crossing rate and the average fade duration of a sampled Fisher-Snedecor F
composited fading envelope are obtained, respectively. Finally, we employ
numerical and simulation results to demonstrate the validity of the theoretical
analysis under various correlated fading and shadowing scenarios.
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1 Introduction

More recently, the Fisher-Snedecor F fading channel model has been paid great
attention in the performance evaluation of wireless digital communication systems [1–
9]. This channel model was firstly presented in [1]. It accurately describes the com-
posite impacts of both shadowing components and multipath components on the faded
signal, where shadowing components follow inverse Nakagami-m distribution and
multipath components follow Nakagami-m distribution. Compared to generalized-K
(Nakagami-Gamma) composite fading model, the authors in [1] showed that under
non-LOS (NLOS) and line-of-sight (LOS) environments the Fisher composite fading
model has a better fit to experimental channel measurements, such as wireless body
area networks and device-to-device (D2D) communications. Furthermore, this fading
model can reduce to one-sided Gaussian, Rayleigh and Nakagami-m as special cases in
the absence of shadowing components. In addition, its other advantage is that the
closed-form expressions of its statistical characteristics are more tractable and simpler
than those of generalized-K distribution.

The authors in [2] gave the theoretical formulations of the sum of independent and
non-identically distributed (i.n.i.d.) random variables (RVs) following Fisher-Snedecor
F distribution and applied them in maximal ratio combining (MRC) receivers. The
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performance of physical layer security was investigated over F composite fading
channels in [3]. The authors in [1] further studied the achievable channel capacity and
energy detection-based spectrum sensing in Fisher-Snedecor F fading in [4] and [5],
respectively. In [6], the performance of the selection combining (SC) scheme with i.n.i.
d branches over F composite fading channels was analyzed. Authors in [7] considered
the ergodic capacity of several adaptive transmission strategies and obtained asymp-
totic and exact representations in Fisher–Snedecor F fading channels. The effective
rate (ER) analysis of multiple-input single-output (MISO) systems was presented in i.n.
i.d. and i.i.d. Fisher-Snedecor F fading channels in [8]. In [9], the symbol error rate
(SER) of M-ary quadrature amplitude modulation (M-QAM) and M-ary pulse ampli-
tude modulation (M-PAM), and the average capacity were derived and evaluated in
Fisher-Snedecor F fading channels.

Although the MRC and SC systems over Fisher-Snedecor F composite fading
channel have been investigated in [2] and [6], the authors only considered the i.n.i.d.
fading environments. When the distance between antennas is less than 0.38k in a
diversity system, the received signals could cause correlated each other and lead to a
decrease of the diversity gain, where k is the wavelength of the carrier. To be specific,
this signal correlation usually occurs in relatively small size mobile equipment because
the space between their diversity branches can be too close to keep the received signals
independent. Thus, the correlated analysis of the received signals are crucial in the
performance evaluation of the diversity received systems. Up to now, the correlated
distribution in wireless communication diversity systems has been studied extensively
in the open research works. Nevertheless, most of them only considered either the
correlated small scale fading or the correlated shadowing, such as [10, 11]. For cor-
related multipath and shadowing composite distributions, only a few papers have been
involved. Based on a gamma shadowing distribution, the correlated K distribution
(Rayleigh-Gamma) and generalized-K distribution were investigated in [12] and [13],
respectively. In [14] and [15], the outage probability of SC receivers was studied over
correlated Weibull-gamma fading channels with identical and non-identical fading
conditions, respectively. By using an inverse Gaussian shadowing model, bivariate G
(Rayleigh-inverse Gaussian) fading distribution has been proposed and employed to the
dual-branch SC and MRC diversity receivers in [16]. In [17], the authors obtained the
statistical properties of bivariate Nakagami-lognormal distribution and discussed the
correlation properties under micro- and macro-diversity environments.

To the best of the authors’ knowledge, the correlated (bivariate) Fisher–Snedecor F
channel model has not been considered in the published research works. Motivated by
the above observation, we study the bivariate Fisher–Snedecor F composite distri-
bution with not necessary identical fading parameters and its applications in this paper.
The statistical characteristics of correlated Fisher–Snedecor F composite distribution
including the bivariate probability density function (PDF), the bivariate cumulative
distribution function (CDF) and the joint moments are derived. Capitalizing on the joint
CDF, the bit error rate (BER) of binary digital modulation schemes and the outage
probability (OP) for a correlated dual-branch SC receiver, the average fade duration
(AFD) and the level crossing rate (LCR) of a sampled Fisher-Snedecor F composited
fading envelope are also given, respectively. Finally, we evaluate the validity of the
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performance analysis by using numerical analysis and simulation under various cor-
related fading and shadowing scenarios.

The remainder of this paper is organized as follows: the closed-form expressions of
statistical characteristics of the bivariate Fisher–Snedecor F composite distribution are
derived in Sect. 2. The performance analysis of a correlated dual-branch SC receiver is
presented in Sect. 3, and Sect. 4 gives the second-order statistics of a sampled com-
posited fading envelope. Numerical and simulation analysis are shown and discussed in
Sects. 5 and 6 outlines the main conclusions.

2 Statistical Characteristics

Let Xi (i = 1, 2) be the channel fading envelopes of Nakagami-m processes, and the
bivariate (joint) PDF between X1 and X2 given from [10, eq. (12)] as

fX1;X2ðx1; x2Þ ¼ 4ð1� qNÞm2
X1
k¼0

ðm1ÞkqkN
k! 1F1½m2 � m1;m2 þ k;

qNm2x22
Y2ð1� qNÞ

�

�
Y2
i¼1

mi

Yið1� qNÞ
� �mi þ kx2ðmi þ kÞ�1

i

Cðmi þ kÞ exp � mix2i
ð1� qNÞYi

� � ð1Þ

where m2 [m1 � 1=2 is the Nakagami-m shaping parameter, Yi is the average fading
power Yi ¼ E X2

i

� �
with E½�� denoting expectation, and qN denotes the power corre-

lation coefficient between X2
1 and X2

2 . Furthermore, 1F1ð�; �; �Þ is the confluent hyper-
geometric function defined in [18, eq. (9.210/1)], ðxÞp is the Pochhammer’s symbol
defined in [18, p. xliii], xð Þp¼ C xþ pð Þ=C xð Þ; with p 2 N, and Cð�Þ is the gamma
function in [18, eq. (8.310/1)].

In composite fading environments, Yi slowly varies when small scale fading is
superimposed on shadowing, and its root-mean-square (rms) can be considered as a
random variable following the inverse Nakagami-m distribution. Based on the pro-
posed signal model in [1], Yi ¼ w2

iXi, where wi is inverse Nakagami-m random
variable, Xi ¼ E R2

i

� �
denotes the mean power of the composite signal envelope Ri,

then the PDF in (1) is conditioned on wi. To model the inverse Nakagami-m distri-
bution, we let the parameter wi ¼ 1=ri, where ri follows Nakagami-m distribution
defined in [10, eq. (12)]. By utilizing a change of random variables, the joint PDF of
inverse Nakagami-m distribution can be obtained as

fW1;W2ðw1;w2Þ ¼ 4ð1� qGÞn2
X1
l¼0

ðn1ÞlqlG
l! 1F1½n2 � n1; n2 þ l;

qGn2w
�2
2

1� qG
�

�
Y2
j¼1

nj
1� qG

� �nj þ lw�2ðnj þ lÞ�1
j

Cðnj þ lÞ exp � njw�2
j

1� qG

" # ð2Þ
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where n2 [ n1 � 1=2 is the inverse Nakagami-m shaping parameter, qG denotes the
power correlation coefficient between w2

1 and w2
2. In this paper, we set scale parameter,

Xs, equal to unity.
In [1], the PDF of Fisher–Snedecor F composite envelopes is obtained by aver-

aging the conditional PDF of the Nakagami-m process over the random variation of the
rms signal power. Therefore, the joint PDF of bivariate Fisher–Snedecor F composite
distribution is written as

fR1;R2ðr1; r2Þ ¼
Z1

0

Z1

0

fY1jW1;Y2jW2ðr1 w1;j r2 w2j ÞfW1;W2ðw1;w2Þdw1dw2 ð3Þ

By substituting (1) and (2) in (3), and using [19, eq. (55)], the joint PDF of
bivariate Fisher–Snedecor F distribution can be derived, after some algebraic
manipulations, as

fR1;R2ðr1; r2Þ ¼
X1
k¼0

X1
l¼0

4ðm1ÞkqkNðn1ÞlHqlG
k!l!Bðm1 þ k; n1 þ lÞBðm2 þ k; n2 þ lÞ

� bm1 þ k
1 bm2 þ k

2 r2ðm1 þ kÞ�1
1 r2ðm2 þ kÞ�1

2

1þ b1r
2
1

� �k1 1þ b2r
2
2

� ��k2

� F2 k2;m2 � m1; n2 � n1;m2 þ k; n2 þ l;
qNb2r

2
2

b2r
2
2 þ 1

;
qG

b2r
2
2 þ 1

� �
ð4Þ

where bi ¼ mi 1� qGð Þ= ni 1� qNð ÞXið Þ; i ¼ 1; 2ð Þ; B �;�ð Þ is the Beta function defined in
[18, eq. (8.384.1)], F2 �½ � is the Appell Hypergeometric function defined in [18,
eq. (9.180.2)], k1 ¼ m1 þ kþ n1 þ l, k2 ¼ m2 þ kþ n2 þ l,H ¼ 1� qNð Þm2 1� qGð Þn2 .

To achieve a closed-form representation of joint CDF, we use the infinite series
expressions of the Appell’s function in [18, eq. (9.180.2)]. Based on (4), the corre-
sponding joint CDF of R1 and R2 can be given by

FR1;R2ðr1; r2Þ ¼
Zr1

0

Zr2

0

fR1;R2ðr1; r2Þdr1dr2

¼
X1
k¼0

X1
l¼0

X1
i¼0

X1
j¼0

qkþ i
N qlþ j

G Hbm1 þ k
1 bm2 þ kþ i

2

i!j!k!l!Cðm1ÞCðn1Þ

� ðm2 � m1Þiðn2 � n1ÞjCðk1Þr2ðm1 þ kÞ
1 r2ðm2 þ kþ iÞ

2

Bðm2 þ kþ i; n2 þ lþ jÞðm1 þ kÞðm2 þ kþ iÞ
� 2F1½k1;m1 þ k;m1 þ kþ 1;�b1r

2
1�

� 2F1½k2 þ iþ j;m2 þ kþ i;m2 þ kþ iþ 1;�b2r
2
2�

ð5Þ

where 2F1 �½ � is the Gauss hypergeometric function in [18, eq. (9.100)].
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The joint central moments of the bivariate Fisher–Snedecor F composite distri-
bution can be obtained as

lR1;R2
ðq1; q2Þ ¼E½rq11 rq22 �

¼
Z1

0

Z1

0

rq11 rq22 fR1;R2ðr1; r2Þdr1dr2
ð6Þ

By substituting (4) into (6), and employing [18, eq. (3.194.3)] and the identities
[18, eqs. (9.180.1) and (9.182.11)], after some mathematical manipulations, we have

lR1;R2
ðq1; q2Þ ¼ Bðm1 þ q1=2; n1 � q1=2Þ2F1½�q2=2;�q1=2;m2; qN �

ðBðm2 þ q2=2; n2 � q2=2Þ2F1½q2=2; q1=2; n2; qG�Þ�1

� ðn1X1=m1Þ
q1=2ðn2X2=m2Þ

q1=2

Bðm1; n1ÞBðm2; n2Þ

ð7Þ

By definition, the power correlation coefficient of R2
1 and R2

2 can be expressed as

q, covðr21 ; r22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðr21Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðr22Þ

p ¼ E½r21r22� � E½r21 �E½r22 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½r41 � � E2½r21 �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½r42 � � E2½r22 �

q ð8Þ

where Eðrqi Þ ¼ Bðmi þ q=2;ni�q=2Þ
Bðmi;niÞðmi=niXiÞq=2

is given in [1], i = 1, 2.

Then, substituting (7) into (8) and after some straightforward simplifications, the
correlation coefficient can be yielded as

q, 2F1ð�1;�1;m2; qGÞ2F1ð1; 1; n2; qNÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þ n1�1Þðm2 þ n2�1Þ

m1m2ðn1�2Þðn2�2Þ
q ð9Þ

3 Dual-Branch SC Diversity Receiver

In this paper, we consider a correlated dual-branch SC receiver over Fisher–Snedecor
F composite environments. Its equivalent baseband received signal at the ith (i = 1, 2)
antenna can be given by ri ¼ agi þ ni, in which a denotes the complex transmitted
symbol with average energy Ea ¼ E½ aj j2�; ni denotes the complex AWGN (additive
white Gaussian noise) with N0 (single sided power spectral density) which is supposed
identical and uncorrelated to two branches, and gi denotes the complex channel gain
with its magnitude Ri ¼ gij j following a Fisher–Snedecor F distribution. Furthermore,
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the general assumptions are made that only the channel fading magnitude has effects on
the received signal and the phase can be accurately estimated, similar as in [13]. The
instantaneous SNR (signal-to-noise ratio) per received symbol is written as
ci ¼ R2

i Ea=N0, its average SNR can be given as �ci ¼ E R2
i

� �
Ea=N0 ¼ XiEa=N0. In the

following, we will give the OP and the BER analysis of the correlated dual-branch SC
diversity system over Fisher–Snedecor F composite fading, respectively.

3.1 Outage Probability

For a SC receiver, the instantaneous output SNR can be expressed cSC ¼ max c1; c2ð Þ,
its corresponding CDF can be written as FcSC cð Þ ¼ Fc1;c2 c; cð Þ in [20]. By making use
of (5) and this equation, and carrying out a simple transformation of variables, we
obtain the close-form expressions of FcSC cð Þ over correlated Fisher–Snedecor F
composite fading as follows

FcSC ðcÞ ¼
X1
k¼0

X1
l¼0

X1
i¼0

X1
j¼0

qkþ i
N qlþ j

G Ham1 þ k
1 am2 þ kþ i

2

k!l!i!j!Cðm1ÞCðn1Þ

� ðm2 � m1Þiðn2 � n1ÞjCðk1Þck3
Bðm2 þ kþ i; n2 þ lþ jÞðm1 þ kÞðm2 þ kþ iÞ

� 2F1½k1;m1 þ k;m1 þ kþ 1;�a1c�
� 2F1½k2 þ iþ j;m2 þ kþ i;m2 þ kþ iþ 1;�a2c�

ð10Þ

where ai ¼ mi 1� qGð Þ=ni 1� qNð Þ�ci, k3 ¼ m1 þ 2kþm2 þ i.
The OP is the probability that the instantaneous output SNR of SC falls below a

given outage threshold cth in [20]. Utilizing (10), we can obtain the OP by using cth
instead of c as Pout ¼ FcSC cthð Þ.

3.2 Bit Error Rate

By using (10) and the Eq. (12) in [21], we can obtain the average BER as follows

�Pe ¼ qp

2CðpÞ
Z 1

0
expð�qcSCÞcp�1

SC FcSC ðcSCÞdcSC ð11Þ

where the parameters p and q for different digital modulation systems has been given in
[22]. Specifically, p = 1, q = 1 for DPSK (differential phase shift keying), p = 0.5,
q = 1 for BPSK (binary phase shift keying) and BFSK (binary frequency shift keying)
is represented by p = 0.5 and q = 0.5.

Substituting (10) into (11), and using [23, eqs. (12) and (9)] along with some
mathematical manipulations, (11) can be rewritten as
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Pe ¼
X1
k¼0

X1
l¼0

X1
i¼0

X1
j¼0

qpqkþ i
N qlþ j

G Ham1 þ k
1 am2 þ kþ i

2

2CðpÞi!j!k!l!qk3 þ p

� ðm2 � m1Þiðn2 � n1Þj
Cðm1ÞCðn1ÞCðm2 þ kþ iÞCðn2 þ lþ jÞ

� G0;1:1;2:1;2
1;0:2;2:2;2

0:5�k3�
1�k1;1�ðm1 þ kÞ
0;�ðm1 þ kÞ
			 1�k2 þ iþ j;1�ðm2 þ kþ iÞ

0;�ðm2 þ kþ iÞ
			 a1

q
;
a2
q

				
� �

ð12Þ

where G½� �j j � j�;�� is a bivariate Merjer G-function which is used in [23]. Noted that a
Mathematical code that is provided in [23] is available to calculate it.

4 Level Crossing Rate and Average Fade Duration

As two important examples, The LCR and AFD are often applied to characterize
higher-order statistics of the received signal envelope in small scale multipath and/or
large scale shadowing environments. They are very helpful to design and select error
control techniques and diversity systems since they can provide useful information
about the burst error statistics. The former denotes the expected rate at which the fading
envelope crosses a specified threshold level in a positive (or negative) direction, while
the latter is defined as the average period of time which the envelope stays below this
threshold level. Traditionally, the joint PDF of the continuous fading envelop and its
time derivative has been employed to calculate them. In [24], the authors proposed an
alternative analytical approach that the AFD and the LCR can be obtained based on the
CDF and the bivariate CDF of a sampled random envelope. Recently this approach has
been used to evaluate the LCR and the AFD in a Rician shadowed fading channel in
[25]. In [24], the LCR of a sampled random envelope is written as

LCRðlÞ ¼ PrfR1\l;R2 [ lg
Ts

ð13Þ

where R1 ,R tð Þ and R2 ,R tþ Tsð Þ are correlated and identical random variables, R tð Þ
is the continuous time envelope, l is a specified threshold level and Ts denotes the
sampling period. Moreover, the CDF of R1 and R2 is given as FR xð Þ,FR1 xð Þ,FR2 xð Þ.
Therefore, we can express the compact form of the LCR by using the bivariate CDF of
R1 and R2 and the marginal CDF of R1 as follows

LCRðlÞ ¼ FR1ðlÞ � FR1;R2ðl; lÞ
Ts

ð14Þ

where FR1 lð Þ can been found in [1]. Substituting (5) into (14), the LCR can be obtained
as
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LCRðlÞ ¼ mm1�1
1 l2m1

Bðm1; n1Þðn1X1Þm1Ts
2F1½m1 þ n1;m1;m1 þ 1;�m1l2

n1X1
�

�
X1
k¼0

X1
l¼0

X1
i¼0

X1
j¼0

qkþ i
N qlþ j

G Hbm1 þ k
1 bm2 þ kþ i

2

i!j!k!l!Cðm1ÞCðn1ÞTs

� ðm2 � m1Þiðn2 � n1ÞjCðk1Þl2k3
Bðm2 þ kþ i; n2 þ lþ jÞðm1 þ kÞðm2 þ kþ iÞ

� 2F1½k1;m1 þ k;m1 þ kþ 1;�b1l
2�

� 2F1½k2 þ iþ j;m2 þ kþ i;m2 þ kþ iþ 1;�b2l
2�

ð15Þ

Based on the definition of the AFD in [24], we have the expression of AFD as

AFDðlÞ ¼ PrðR1\lÞ
LCRðlÞ ¼ TsFR1ðlÞ

FR1ðlÞ � FR1;R2ðl; lÞ
ð16Þ

Similar as (15), (16) can be calculated.

5 Numerical Results and Discussion

In this section, we will present various numerical and simulation results under different
correlated Fisher–Snedecor F fading and shadowing scenarios based on the previous
derived analytical expressions. In simulation, we adopted the simulation method
described in [26] to generate two correlated Nakagami-m variables and their inverse
variables with arbitrary fading parameters. The simulations that are obtained via gen-
erating 106 iterations are compared with the analytical results. Simulation results
matched well with the numerical analysis and verify the accuracy of our derivations. In
these figures, the lines represent the numerical analysis and the circle marks stand for
the simulated results.

Firstly, we show the OP as a function of the average SNR with the outage threshold
cth ¼ 3 dB over correlated F composite fading channels in Fig. 1. In numerical
analysis and simulation, seven different combinations of the multipath parameters (m1

and m2), the shadowing parameters (n1 and n2) and the correlation coefficients
(qG and qN ) are considered. It can be seen from Fig. 1 that the OP gets better as the m-
parameters increases with the same shadowing parameters ðn1 ¼ 5; n2 ¼ 6Þ and the
same correlation coefficients ðqG ¼ qN ¼ 0:5Þ by comparing the red line (where the
dash line denotes m1 ¼ 0:5 and m2 ¼ 0:8, the dot line denotes m1 ¼ 2 and m2 ¼ 3)
with the black line (m1 ¼ 1:2 and m2 ¼ 1:5 as a benchmark). It is because the small
scale fading has impact on the slope of the OP performance, namely, the lager the value
of m, the lager the curve slope. On the other hand, the shadowing parameters and the
correlation coefficients have impact on the coding gain of the OP performance in high
SNR region, where the coding gain is considered as the shift degree of OP or bit
(symbol) error rate line to the left versus SNR in a log-log scale. When the shadowing
parameter n gets larger from heavy shadowing to light shadowing, the code gain
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Fig. 1. Outage probability of the dual-branch SC system as a function of the average SNR with
cth ¼ 3 dB over correlated F composite fading channels (Color figure online)
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Fig. 2. Average BER of DPSK of the dual-branch SC system as a function of the average SNR
over correlated F composite fading channels (Color figure online)
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increases by comparing the green line (where the dash line denotes n1 ¼ 0:5 and
n2 ¼ 0:8, the dot line denotes n1 ¼ 25 and n2 ¼ 28) with the black line (n1 ¼ 5 and
n2 ¼ 6 as a benchmark), where the other parameters keep the same as those of the
benchmark line. However, the code gain changes less as the correlation coefficients
decrease by comparing the blue line (where the dash line denotes qG ¼ qN ¼ 0:2, the
dot line denotes qG ¼ qN ¼ 0:8) with the black line (qG ¼ qN ¼ 0:5 as a benchmark)
in Fig. 1.

Secondly, in Fig. 2, we illustrate the average BER of DPSK as a function of the
average SNR with the same parameters as those used in Fig. 1. As expected, this figure
also confirms our results that is shown in Fig. 1.

Thirdly, Fig. 3 demonstrates the LCR � Ts as a function of the specified lever l with
Xi ¼ 1 i ¼ 1; 2ð Þ in the moderate shadowing scenarios. As it was expected, when the
value of m increases, the LCR decreases by comparing the green line with the black
line (as a benchmark) in Fig. 3, which shows that fades take place less frequently.
Moreover, the shape of LCR gets narrower and falls rapidly on both sides as the value
of m increases. This is because m characterizes the fast fading of the instantaneous
signal envelope. On the contrary, the correlation coefficients show less effect on the
LCR at lower threshold levels whereas the LCR decreases as the correlation coefficients
grows at higher threshold levels. In Fig. 4, the ADF/Ts is plotted under the same
scenarios as Fig. 3. Since LCR and AFD are inversely proportional, some similar
conclusions can be also obtained. It is interesting that these curves show a floor effect at
lower threshold levels.
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Fig. 3. LCR � Ts of the sampled correlated F composite fading envelope as a function the
specified threshold lever l with Xi ¼ 1; n1 ¼ 5; n2 ¼ 6 (Color figure online)
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6 Conclusions

In this paper, we investigated a correlated Fisher–Snedecor F composite distribution
with arbitrary fading parameters. The novel theoretical representations including the
bivariate PDF, the bivariate CDF, the joint moments and the power correlation coef-
ficient for this distribution were derived. Based on the bivariate CDF, we analyzed the
OP and the BER of different binary digital modulation schemes for a correlated dual-
branch selection diversity receiver and evaluated the LCR and the AFD of a sampled
Fisher-Snedecor F composited fading envelope. Simulation results matched well with
the numerical analysis and verified the validity of the theoretical expressions under
various correlated fading and shadowing scenarios.
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