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Abstract. Traditional SDN has one controller, but more recent SDN approaches
use multiple controllers on one network. However, the multiple controllers need
to be synchronized with each other in order to guarantee a consistent network
view, and complicated control management and additional control overhead are
required. To overcome these limitations, Kandoo [5] has been proposed in which
a root controller manages multiple unsynchronized local controllers. However, in
this approach, loops can form between the local controllers because they manage
different topologies. We propose a method for modeling a hierarchical design to
detect loops in the topology and prevent them from occurring using UPPAAL
model checker. In addition, the properties of multiple controllers are defined and
verified based UPPAAL framework. In particular, we verify the following
properties in a multiple controller: (1) elephant flows go through the root con-
troller, (2) all flows go through the switch that is required to maintain security,
and (3) they avoid unnecessary switches for energy efficiency.
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1 Introduction

Software-defined networking (SDN) [1] and network function virtualization (NFV) are
the core technologies for 5G [2]. SDN is used to connect networks of virtual machines
(VMs) in 5G. The 5G core network is deployed in a distributed horizontal cloud form.
Horizontal distributed cloud based on cloud infrastructure by core network functions to
separate control and data transfer functions using SDN and NFV. Each network
function can efficiently cope with explosive increases in traffic by appropriately dis-
tributing control functions to the central cloud and data transfer functions to the edge
cloud. However, in a 5G network using SDN and NFV as core technologies, even if the
independent VNFs do not cause any errors in the central cloud when various appli-
cations are run, collisions can occur due to rule conflict in the edge cloud. Because this
can cause errors across the entire 5G network, verification is necessary.

Our goal is to suggest a formal verification method to ensure the safety and con-
sistency of multiple controllers in SDN. SDN is a technology that separates the network
device control component from the data transfer component using open interfaces, such
as the OpenFlow protocol. Through the SDN controller, which deals with the control
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component, forwarding and packet processing rules are determined, and forwarding
rules are transferred to the lower SDN switches.

The controller plays an important role in the traffic transfer process. Unfortunately,
when network traffic increases rapidly, a single controller cannot handle all of the flow
requests due to a limited controller capacity. If a single controller fails, the switch will
not be able to plan the routing of newly arrived packets, which will affect communi-
cation and applications on the network. As a result, a new modern controller design has
been proposed based on multiple controllers.

A flat design [3, 4] for multiple controllers extends the functionality of the control
plane, but it requires complex controller management and additional control overhead
because the controllers must communicate with each other to ensure a consistent
network. To solve this problem, a hierarchical design has been suggested. This typi-
cally uses a two-tiered controller system consisting of local controllers and a root
controller. A local controller manages switches locally and runs local control appli-
cations, while the root controller manages the local controllers and maintains the global
network. Kandoo [5] is a typical hierarchical controller structure, in which the root
controller communicates with the local controllers to obtain domain information but the
local controllers do not communicate with each other.

However, while the root controller manages each local controller, it does not allow
communication between local controllers. Therefore, loops can form within a local
controller. We propose a method for formal modeling a hierarchical design that
identifies loops in the topology and detects them using simulation in the UPPAAL
model checker [6]. The properties of the multiple controllers are also defined and
verified based this design.

In this paper, we propose a formal modeling and verification framework of three
properties:

• elephant flows going through the root controller that is necessary to verify whether
the flow has reached the root controller.

• all flows passing the switch required to maintain security that the flows must also be
routed to a switch that performs a firewall function for security reasons.

• all flows avoiding unnecessary switches in order to improve energy efficiency.
Many users employ data centers during the day. However, the number of users
decreases after 10 o’clock in the evening. Therefore, instead of using all of the
switches when there are fewer users, the number of switches can be reduced by
selecting an optimal path.

This paper is organized as follows. Section 2 introduces Software-Defined Net-
working, multiple controllers in SDN and UPPAAL Framework. Section 3 presents the
formal modeling of a Hierarchical design for SDN controllers. Section 4 addresses the
formal verification of three properties. Section 5 reviews related literature. We con-
clude the paper in Sect. 6.
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2 Background

2.1 Software-Defined Networking

SDN originated with OpenFlow [7], which was developed as a protocol for future
internet infrastructure control technology [8]. However, it evolved into the SDN
concept centering on the Open Networking Foundation (ONF) [9], which was estab-
lished in 2011. It is now used as the core technology for 5G networks.

Figure 1 shows the SDN frame-
work, which consists of three layers:
the application layer, the control layer,
and the infrastructure layer. The
application layer includes network
applications that can introduce new
network features such as security and
manageability, provide forwarding
schemes, or assist the control layer in
the network configuration. The appli-
cation layer can provide appropriate
guidance for the control layer by
obtaining an abstracted global view of
the network from the controllers.
Examples of network applications
include network management and
traffic engineering, load balancing for
application servers, security and net-
work access control, network testing,
debugging and verification, inter-

domain routing, and network virtualization. The interface between the application
layer and the control layer is known as the northbound interface.

In the lower layer, the control plane is found. This is involved in the programming
and management of the forwarding plane. In order to achieve this, it uses information
provided by the forwarding plane and defines network operations and routing. It consists
of one or more software controllers communicating with forwarding network elements
through a standardized interface known as a southbound interface. OpenFlow, one of the
most commonly used southbound interfaces, primarily considers switches, while other
SDN approaches consider other network elements such as routers. The lowest layer is
the infrastructure layer, which is also referred to as the data plane. It comprises for-
warding network elements. The forwarding plane is primarily responsible for for-
warding data, in addition to local information monitoring and statistics collection.

2.2 Multiple Controllers in SDN

In this subsection, we will introduce the origin of multiple controllers in SDN using
two examples and then summarize two multiple controller architectures: flat and
hierarchical.

Fig. 1. The three-layered SDN architecture
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In one of the earliest SDN designs, a single controller manages the entire network.
This is illustrated in Fig. 2. In this design, packets can arrive at a switch where no
corresponding rule is installed in the flow table; as a result, the switch cannot forward
the packets on its own. The switch then notifies the controller about the packets. The
controller identifies the path for the packets and installs appropriate rules in all of the
switches along that path. The packets can thus be forwarded to their destination [10].

The controller plays an important role in the traffic transfer process. Unfortunately,
when the network traffic is high, a single controller cannot handle all of the flow
requests due to limited controller capacity. If a single controller fails, switches will not
be able to route newly arriving packets, affecting network communication and appli-
cations. As a response to this, the use of multiple controllers was introduced to SDN.

As shown in Fig. 3, a flat design extends the functionality of the control plane but
requires complex controller management and additional control overhead for
east/westbound traffic. This is because controllers must communicate with each other to
ensure a consistent network view. A hierarchical design has been proposed to solve this
problem. It typically uses a two-tiered controller known as a root controller, which

Fig. 2. Flow management of a single controller

Fig. 3. Flat design for multiple controllers
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manages the switches in the local domain, manages local controllers that run local
control applications, and maintains a global network view. Kandoo [11] is a typical
hierarchical controller structure. In Kandoo, the root controller communicates with the
domain controller to obtain domain information, but the local controllers do not contact
each other. Figure 4 shows the basic architecture of hierarchical design. In order to
redistribute any overload of flow requests at one controller, which is a major issue for
single-controller designs, the local controller sends the routing of elephant traffic to the
root controller, and the root controller issues the forwarding rules.

2.3 UPPAAL Framework

UPPAAL modeling for multiple controller consists of a root controller, local con-
trollers, switches, and a host. Simulations can be used to confirm that the modeling
operates as intended. In particular, the safety and reachability of the system can be
verified. As a result of this verification process, users receive either a satisfied or not
satisfied message (Fig. 5). In the paper, the model and its properties are modified
through feedback and verification is run again. For details we refer the reader to [6].

Fig. 4. Hierarchical design for multiple controllers

Fig. 5. UPPAAL framework
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3 Modeling of a Hierarchical Design for SDN Controllers

The controllers within a flat design communicate with each other to ensure consistency,
which can lead to overloads because of a lot of traffic. To improve this, a hierarchical
design has been proposed, in which a logical centralized controller manages the
network-wide state without the local controllers communicating with each other.
Therefore, a hierarchical design requires considerably less control channel bandwidth
compared with normal OpenFlow networks. However, loops can occur in a network-
wide topology because the individual local controllers manage their own switches and
do not share views with each other. Figure 4 shows that each local controller only
manages switches that are linked to them and that only the root controller has the entire
logical view. A loop can be created (e.g., Switch 5 -> Switch 1 -> Switch 3 -> Switch 4
-> Switch 5) if the local controller sends a rule that includes a route (Switch 5 -> Switch
1) at a certain time.

Our framework can detect the occurrence of a loop in advance and modify the
topology to avoid it. Our framework consists of a host, switches, local controllers, and
a root controller. Packets originate from the host. When a flow arrives at the switch, it
looks for a matching entry in the flow table of the switch. If a matching entry is found,
the actions associated with the specific flow entry are executed. If no match is found,
the flow may be forwarded to the local controller. The local controller sends the rule to
the switch according to the inquiry. If an elephant flow, which has 1 M pkt-in per
second, enters a switch, the flow requests forwarding rules from the root controller via a
local controller, and then the root controller determines the action for the elephant flow
and sends it to the local controller. The local controller then issues a forwarding rule to
the inquiring switch. This process decreases the load on the local and root controllers,
preventing the overloading that occurs in a flat design in order to maintain consistency
between the controllers.

3.1 Host Modeling

The host is the starting point for a flow. Each packet in the flow starts with the address
of the origin and the address of the destination. The origin is labeled 0 and the
destination is randomly labeled between 1 and 9 (dst: int [1,9]). Protocol:
int[0,1] sets a normal flow as 0 and an elephant flow as 1 (Fig. 6).

Fig. 6. Model of a host
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When the host has check_send_packet ()
== true, it sends a packet. When this packet
leaves the topology, it sends the next packet.
in_switch [switch_id]! is a channel that
sends packets to a connected switch when the host
creates it. Packets are sent to the switch that cor-
responds to the switch_id by synchronizing
with the switch’s in_switch [switch_id]?.
Channel 0 is synchronized first, and the next switch
is connected when the host is activated.

For example, “host = host (0,0);” shows
that a host with the host ID 0 and the switch ID 0 has
been created.

Packets are abstracted and contain information
about the packet number, source address, destination
address, and protocol. The flow table is abstracted to
have a switch ID, a source address, destination
address, protocol, and an action.

3.2 Switch Modeling

The switch begins in an idle location; after a packet arrives at the switch, it matches the
rule to the flow entry of the flow table to determine the forwarding rule for the packet.
When the channel is synchronized with in_switch[switch_id]?, it first inquires
whether the rule is in the flow table. If there is no rule, it queries the local controller.
The controller provides the rule by adding a new flow entry to the switch’s flow table
(Fig. 7).

Fig. 7. Model of a switch

typedef struct { 
int id;
int src; 
int dst; 
int protocol;

} PACKET;

typedef struct {
int switch_id;
int src;
int dst;

int protocol; 
int action;

}FLOWTABLE;  
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If the switch checks the flow table and finds a matching field, it looks at the
matching flow entry’s action and sends the packet to send_packet(switch_id)
with the next switch. check_last_switch(switch_id) == false will send it
to the next switch at random if it is not the last switch. For check_last_switch
(switch_id) == true, no more switches are connected, and the packet leaves the
topology.

Match_flow_table(switch_id) == false means that, if there is no
matching flow entry in the flow table, request_local_controller [con-
troller_id]! will synchronize with the local controller. Request_lo-
cal_controller_func(switch_id, controller_id) will query the local
controller connected to the switch via switch_id and controller_id.
add_flow_table(switch_id,controller_id) adds a forwarding rule to the
flow table of the switch through the channel of reply_local_controller
[controller_id]? in request_rule_local_controller location. If
match_flow_table (switch_id) == true, send_packet (switch_id)is
sent according to the action of the rule in the flow table, and the switch becomes idle
again.

3.3 Local Controller Modeling

If a packet does not match the flow entry of a switch’s flow table, it queries the
local controller for the rule. This controller has information about the switches. sw0:
int [0,1] means that switch 0 randomly selects 0 or 1. initialize_con-
troller (sw0, sw1, sw2, sw3, sw4, sw5, sw6, sw7) initializes the state of
the switch in the controller. When a query for the forwarding rule comes through the
switch channel local_controller [controller_id]?, whether it is an ele-
phant flow or a normal flow is determined at Identify_traffic location (Fig. 8).

If check_elephant_traffic (controller_id) == true, the local con-
troller again queries the root controller for the rule because an elephant flow has
arrived. Conversely, if check_elephant_traffic (controller_id) ==
false, the local controller makes an urgent transition from a match_rule location
to an add_rule location, and than sands reply_local_controller [con-
troller_id]! channel, and adds a rule to the flow table of the switch via

Fig. 8. Model of a local controller
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add_flow_entry (controller_id). The reply_local_controller
[controller_id]? in the switch and reply_local_controller [con-
troller_id]! transition by synchronizing. Once the local controller has transferred
the rule to the switch, it moves to an idle location.

3.4 Root Controller Modeling

The root controller handles the path of an elephant flow, so the overloading of the local
controllers is reduced. As shown in Fig. 9, after the system starts, initialize_
controller (sw0, sw1, sw2, sw3, sw4, sw5, sw6, sw7) initializes the
state of the switch in the root controller.

When request_root_controller? occurs at an idle location, the root
controller searches for the matching rule. If there is a matching rule, it transitions to
add_rule location and then adds the rule to add_flow_entry(). In addition,
replay_root_controller! synchronizes with the replay_root_con-
troller? of the local controller and then becomes idle.

The root controller can handle elephant flows of more than 1 MB, which not only
improves the performance of the system but also distributes a lot of traffic to the SDN
controller.

3.5 Simulation of Hierarchical Design

After modeling the proposed hierarchical design, we run simulations. Analyzing the
results, some problems in the model set-up can be observed. As can be seen in Fig. 10,
a loop is created in the simulation and a deadlock occurs.

The destination of an elephant flow can be determined through the root controller.
Compared to a normal controller, the root controller is 550 times more bandwidth
efficient for control plane loads in an element flow detection scenario. The control plane
loads are based on the number of nodes in the network [5]. Therefore, it is necessary to
verify whether the flow has reached the root controller. In addition, flows must also be
routed to a switch that performs a firewall function for security reasons. It is thus
necessary to verify that the flow passes through this switch.

It is also important to verify that a flow does not pass through switches that it does
not need to. Many users employ data centers during the day. However, the number of
users decreases after 10 o’clock in the evening. Therefore, instead of using all of the
switches when there are fewer users, the number of switches can be reduced by
selecting an optimal path.

Fig. 9. Model of the root controller
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The problems we found with the simulation were as follows. First, a loop occurs in
the topology and this needs to be avoided in SDN topology. Second, a flow must pass
though Switch 1, which functions as a firewall. However, there is a flow that does not
pass Switch 1. Third, the fastest route needs to be implemented for energy efficiency.
However, during modeling, even though a flow only needs to follow the route Switch 0
-> Switch 1 -> Switch 3 -> Switch 4 -> Switch 5 -> Switch 7, it also passes Switch 2
and Switch 6. We thus revise the topology of the verification framework to avoid these
three problems.

A loop is found in the simu-
lation and a deadlock occurs
(Fig. 10). Therefore, we created a
revised topology in which the
loop does not occur. The
check_loop () function determi-
nes whether a loop has occurred
by checking switch_buffer
[switch_id] .time>10 and,
in the improved model, no loop
occurs.

In addition, the flow also passes through Switch 1, which it must do for security
purposes. In addition, switches that do not need to be included in the route for energy
efficiency purposes have been removed from the route.

Fig. 10. Simulation of the model

bool check_loop(int switch_id)
{ 

if (switch_buffer[switch_id].time > 10)
return true;

else
return false;

} 
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4 Verification of the Hierarchical Design

In our study, the verification framework specifies and verifies each property with TCTL
[6]. The query language in TCTL consists of path formulae and state formulae. State
formulae describe individual states, whereas path formulae quantify the paths or traces
of a model. Path formulae can be classified into reachability and safety [6]. UPPAAL
framework that we propose verifies three properties in hierarchical controller: (1) ele-
phant flows go through the root controller using reachability (2) all flows go through
the switch that is required to maintain security using safety, and (3) they avoid
unnecessary switches for energy efficiency which shows through safety.

4.1 Reachability

Reachability properties are often used when designing a model to perform sanity
checks and validate the basic behavior of the model [6]. The following formulae verify
that the reachability of the root controller is true:

E<> (switch_buffer[0].protocol == ELEPHANT_TRAFFIC) &&

(root_controller.match_rule)

They ask whether a given state formula can possibly be satisfied by any reachable state,
in particular, whether ELEPHANT_TRAFFIC reaches the root_controller.-
match_rule state. Figure 11 is verification results which is ‘Property is
satisfied’. In other words, the elephant traffic reaches the root controller.

4.2 Safety

Safety is based on the concept that “something bad will never happen.” In UPPAAL,
this is formulated positively, e.g., something good is invariantly true. Let P be a state
formula. We express that P should be true in all reachable states with the path formula
A[] p whereas E[] P says that there should exist a maximal path such that P is always
true [6].

Switch 7 must be passed through for security purposes:

E[] sw7.idle and sw7.match_rule and sw1.send_rule and sw1.request_rule_

local_controller

Fig. 11. Result of reachability verification
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Packets do not pass through Switches 2 and 6 for energy efficiency purposes:

E[] not(sw2.idle and sw2.match_rule and sw2.send_rule and

sw2.request_rule_local_controller and sw2.send_rule) and not

(sw6.idle and sw6.match_rule and sw6.request_rule_local_controller and

sw6.send_rule)

Figure 12 is verification results which is ‘Property is satisfied’. In other
words, all flows avoid the Switches 2 and 6 in order to improve energy efficiency.

5 Related Work

Other authors have employed models to verify SDN design. For example, NICE [11] is
a model checking tool that uses the symbolic execution of event handlers to identify
representation packets that exercise code paths on the controller. NICE detects pro-
gramming errors such as no forwarding loops, no blackholes, direct paths, and no
forgotten packets in testing unmodified controller programs in a NOX controller.

Frenetic [12] is a high-level programming language for OpenFlow applications
running on top of NOX. Frenetic allows OpenFlow application developers to express
packet processing policies at a higher level than the NOX API. Frenetic also has the
network language define the formal semantics for OpenFlow rules and improves
NetCore [13] by adding a compiler.

Kazemian et al. [14] allows the static checking of network specifications and
configurations to identify important classes of failure, such as reachability failure,
forwarding loops, and traffic isolation and leakage problems. A framework using
formalism, referred to as header space analysis (HSA), looks at the entire packet header
as a concatenation of bits. Hassel, which is a library of HSA tools, analyzes a variety of
networks and protocols. The model developed by Kazemian et al. was the starting point
for the Reitblatt et al. [15] model.

Reitblatt et al. [15] developed a formal model of OpenFlow networks and proved
that consistent updates preserve a large class of properties. The formal model is made
up of the notion of consistent network updates when transitioning between configu-
rations. The model identified two distinct consistency levels, per-packet and per-flow,
and presented general mechanisms for implementing the two levels in SDN using
OpenFlow. The verification tool, which is an implemented prototype that reduces the
overhead required to perform consistent updates, checks the correctness of the con-
troller software.

Fig. 12. Result of safety verification
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Canini et al. [16] introduced a formal model describing the interaction between the
data plane and a distributed control plane that consists of a collection of fault-prone
controllers. In addition, Kang et al. [17] introduced a framework in which the con-
sistency between a specification and its implementation is checked by dead-lock
detection in the parallel composition of two different pACSR processes generated from
two entities in different forms, one in the rule and the other in the OpenFlow table.

Xiao et al. [18] introduced the modeling and verification of SDN with multiple
controllers to apply Communicating Sequential Processes (CSP). Using the model
checker Process Analysis Toolkit (PAT), they verified that the models satisfied three
properties: deadlock freeness, consistency, and fault tolerance. They plan to investigate
other architectures, such as Kandoo.

Our study differs from the others mentioned above in that our verification and
simulation identifies loops generated by the SDN in the hierarchical design of multiple
controllers and receives feedback from the UPPAAL framework to remove these loops.
It also verifies that elephant flows pass through the switch required to maintain security,
that they do not pass through switches that are not required, and finally that they pass
through the root controller.

6 Conclusion

SDN, a core technology of 5G communication, uses multiple controllers in a single
network. However, synchronizing multiple controllers in order to ensure a consistent
network view is problematic. Complex controller management and additional control
overhead are also an issue. Therefore, a hierarchical controller structure has been
proposed to manage asynchronous local controllers with many root controllers.
However, when the root controller manages each local controller, loops can form
between the local controllers because they manage different topologies.

We have modeled a hierarchical design that can extract loops that occur in these
topologies. In addition, the three properties of the multiple controllers are defined and
verified based on a simplified version of TCTL. The properties that must be validated in
the multiple controllers are identified, including that elephant flows go through the root
controller, pass through the security switch, and avoid unnecessary switches to improve
energy efficiency. We also explained how reachability and safety can be verified.

Future research should focus on systems that automatically detect loops in a
hierarchical design, and modeling and verification should be applied for the occurrence
of collisions between rules in VNFs for the 5G core technologies SDN and NFV.
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