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Abstract. Simulating large-scale network experiments requires power-
ful physical resources. However, partitioning could be used to reduce the
required power of the resources and to reduce the simulation time. Topol-
ogy mapping is a partitioning technique that maps the simulated nodes
to different physical nodes based on a set of conditions. In this paper,
genetic algorithm-based mapping is proposed to solve the topology map-
ping problem. The obtained results prove a high reduction in simulation
time, in addition to high utilization of the used resources (The number
of used resources is minimum).

Keywords: Network simulation · Topology mapping · Testbeds ·
Genetic algorithm

1 Introduction

Network simulation is an essential step in designing and validating new networking
protocols. The availability of a wide range of network simulators makes it easy for
researchers to run simulation experiments on their machines. Nevertheless, simu-
lating large-scale network experiments on a single physical node requires powerful
resources to assure time feasibility. Partitioning large-scale network simulation on
multiple physical nodes will solve this scalability problem by reducing both the
required resources of the used machines and the simulation time.

The partitioning can be done manually based on the number of accessible
physical nodes. However, manual partitioning consumes time, and it may not
reach an acceptable reduction in simulation time. Another option is the use
of an automatic partitioner provided by some online accessible testbed, where
the testbed automatically partitions the given experiment based on its available
physical nodes.

One of the automatic partitioning techniques is topology mapping, where it
maps each simulated node in an experiment to an available physical node. This
mapping will partition the traffic of the topology into two parts:
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– Simulated traffic: The inner traffic between simulated nodes on the same
physical machine.

– Emulated traffic: The outer traffic between simulated nodes on different phys-
ical nodes, which passes through the real links between the physical nodes.

The main goal of topology mapping is to reduce the simulation time, taking
into account the effect of the emulated traffic on the evaluation of the experiment.

Most of the existing topology mapping solutions fix the number of physical
nodes and work on finding a load-balanced partitioning over them. But from
a testbed viewpoint, it is essential to minimize both the number of occupied
physical nodes and their occupation time. Therefore, other topology mapping
solutions worked on reducing the used resources by penalizing them with an
approximated cost.

In contrast to previous topology mapping solutions that focused on a sin-
gle topology mapping goal, or needed prior step of cost estimation of the used
resources, in this paper, we are proposing a genetic algorithm based solution for
the topology mapping problem that achieves all of the following goals, depending
only on the developed fitness function:

– Minimizing the number of physical nodes used in the simulation by maxi-
mizing their utilization.

– Minimizing the simulation time of the experiment by limiting the amount of
simulated traffic on each physical node to the capacity of the node.

– Limiting the amount of emulated traffic passing through real links to the
capacity of the links. This is to reduce the effect of using the real network on
the evaluation of the experiment.

The evaluation results show that the proposed technique can find mapping
solutions that reduce simulation time by more than 90% for different topology
sizes while keeping the utilization above 95%, which minimizes the number of
used physical nodes.

The paper is organized into six sections. Following the introduction, related
work is surveyed in Sect. 2. In Sect. 3, the topology mapping problem is formu-
lated, while the details of the proposed GA approach is explained in Sect. 4. The
obtained evaluation results are presented in Sect. 5. Finally, in Sect. 6, conclusion
and future works are discussed.

2 Related Work

In the topology mapping problem, the used algorithm needs to search the map-
ping space (between the simulated nodes of a given topology and the available
physical nodes to use) for the optimal mapping that minimizes the simulation
time while satisfying a set of constraints. Searching for that optimal mapping is
an NP-hard problem [1].
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A well-known solution for the topology mapping problem is through the use
of graph partitioning techniques. The minimum graph cut algorithm is used to
partition a given topology on the available workers. Where the load is balanced
over the workers, and the traffic on real links is minimized to prevent the physical
network from being a bottleneck.

Graph partitioning was used for topology mapping in MaxiNet [2], where
Wette et al. used the METIS technique to parallelize the simulation of large
software-defined networks [3]. Similarly, Liu et al. applied graph partitioning in
[4] and used large realistic network architectures for evaluation. Furthermore,
Yocum and Ken et al. compared the minimum graph cut technique to a random
partitioning technique, concluding that the minimum graph cut outperforms
random partitioning [5].

Other solutions use greedy optimization search to solve the topology mapping
problem. In [6], Galvez et al. proposed a randomized mapping technique named
GreedyMap. It iterates over tasks, and computes a partial cost of the current
mapping state, then chooses the node that minimizes the cost. Another example
is [7], where Hoefler et al. applied two greedy approaches: A greedy heuristic
approach that worked on integrating heavy traffic on the same physical node.
In addition to a graph similarity approach that used the similarity between the
simulation experiment topology and the physical network topology to perform
the mapping.

The mentioned techniques have two main drawbacks: First, they assume the
number of physical nodes to use is fixed and known, without trying to minimize
it. Second, they assume homogeneous workers with similar resources and evenly
partition the experiment load over them. A generalization is needed to allow the
use of heterogeneous physical nodes.

Ricci and Robert et al. proposed a more general solution named assign in [8]
and [9] using simulated annealing algorithm [10], for the Emulab testbed [11]. The
assign solution used a cost function that depends on the amount of traffic on the
physical network. The cost differs based on the physical resources used, where each
resource in the testbed has a fixed approximated cost. Moreover, to minimize the
number of physical resources used, the solution penalizes the cost function with
the number of physical nodes and physical links used in the mapping.

One drawback of the assign solution is the use of fixed approximated costs,
which requires manual setting. Furthermore, the solution targets to minimize
resources usage, without considering reaching the minimum simulation time.

The proposed genetic algorithm uses a fitness function that depends on ana-
lytically computed values of both the utilization of the used resources and the
simulation time of the experiment after mapping, where the utilization part of
the function controls the number of the used resources. Furthermore, the fit-
ness function takes into account the capacity of each used resource, allowing the
use of heterogeneous resources, without the need to fix approximated costs for
them. The proposed technique in this paper overcomes the discussed drawbacks,
with the privilege of reaching the minimum simulation time and the maximum
utilization.
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3 Topology Mapping Problem Formulation

The topology mapping problem, in this work, is defined as follows: Given a
simulation topology of N simulated nodes, and a physical network of P physical
nodes, the problem maps each simulated node n to a physical node p, such that,
the simulation time of the experiment is min, and the utilization of the used
resources is max.
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Physical node 1 Physical node 2

Fig. 1. Two physical nodes are used to simulate a topology of six simulated nodes,
where the partitioning emulates three links using the topology on the real network
interface connecting the two physical nodes.

In Fig. 1, a connected topology of six nodes is simulated on a physical testbed
of two physical nodes (N = 6 and P = 2). As shown in the figure, the mapping
partitions the topology links into simulated links inside the physical nodes, and
emulated links using the physical network between the physical nodes (Table 1).

Next subsections formulate the topology mapping problem in details.

3.1 Simulation Time

As mentioned earlier, there are two types of traffic in the distributed experiment:
The emulated traffic, and the simulated traffic. The simulation time differs based
on the traffic type.

– Emulated Traffic:
Let LR

r be a set of topology links emulated using the real link r. Equation (1)
computes the total amount of traffic passing through r, and (2) estimates
the emulation time of this traffic (in seconds).

TR
r =

∑

l∈LR
r

Tl (1)

τR
r =

TR
r

CR
(2)

Where CR is the capacity of r.
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Table 1. Table of symbols

Symbol Definition

N Number of simulated nodes/Number of genes

L Number of simulated links

n A simulated node/A gene, where n = 1, 2, . . . , N

l A simulated link

T Traffic in Mbps

Tl Traffic on the simulated link l, where l = 1, 2, . . . , L

P Number of all available physical nodes

p A physical node, where p = 1, 2, . . . , P

r A real link

UP Number of used physical nodes

UR Number of used real links

CS Simulation capacity in MHz

CR Real traffic capacity in Mbps

CS
p The simulation capacity of the physical node p

LS
p Set of simulated links on the physical node p

LR
r Set of simulated links emulated on the real link r

T S
p Simulated traffic on the physical node p

T R
r Real traffic passing through the real link r

τ Time in seconds

τS
p Time taken to simulate the traffic on the physical node p

τR
r Time taken by real traffic on the real link r

μ Utilization (%)

μp Utilization of the physical node p

η Population size

i An individual in the population, where i = 1, 2, . . . , η

gi
n The value of the gene n in the individual i

MI Mutation probability of individuals

MG Mutation probability of genes

Gτ Gain in time

Dμ Drop in utilization

F Fitness value

E Above link capacity error

A, B, C Utilization model Constants

α, β, γ Scaling parameters
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– Simulated Traffic:
Let LS

p be a set of topology links simulated inside the physical node p. Similar
to the emulated traffic, Eq. (3) computes the total amount of traffic running
on p.

TS
p =

∑

l∈LS
p

Tl (3)

Assuming a discrete-event simulator such as NS3 [12], each bit in the simu-
lated traffic consumes at least two CPU clock events, ignoring the processing
time: A sending event, and a receiving event. Given that, Eq. (4) estimates
the simulation time of this traffic (in seconds).

τS
p =

2 × TS
p

CS
p

(4)

Where CS
p is the simulation capacity of the physical node p.

Figure 2 compares the experimentally measured time and the analytically
computed time using (4). Although the experimental time is longer than the
analytical time, due to ignoring the processing time in the analytical formula,
both times approximately follow the same behavior. Consequently, the ana-
lytical time is a valid estimation of the real-time needed to simulate a given
amount of traffic.

Fig. 2. The experimental simulation time measured VS the analytical simulation time
computed using (4)

The total simulation time of an experiment is the maximum time needed by
both the simulated traffic and the emulated traffic, given by (5).

τ(UP ) = Max(τS
1 , τS

2 , . . . , τS
UP

,
τR
1 , τR

1 , . . . , τR
UR

) (5)
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Where UP is the number of physical nodes used in the mapping, and UR is
the number of real links used.

3.2 Utilization

Figure 3 shows the relation between the amount of traffic running on a physical
node and the utilization of the node, which is described by (6). The Constants
A, B, and C were estimated using Regression.

μp = A − B × eC×TS
p (6)

Where TS
p is the simulated traffic using the physical node p.

The overall utilization is computed using (7), Where UP is the number of
physical machines used in the experiment.

μ(UP ) = Min(μ1, μ2, . . . , μUP
) (7)

Fig. 3. The experimentally measured utilization VS the analytically computed utiliza-
tion.

4 Genetic Algorithm Approach

A genetic algorithm [13] uses the idea of evolution to enhance the searching path
of reaching the goal. It starts with an initial population of individuals, where
an individual is a chromosome that consists of a set of genes. Each iteration
the best individuals in the current generation are elected to produce new ones,
supposedly, closer to the goal. The algorithm uses a fitness function to measure
how fit is an individual, where the higher the fitness of an individual, the closer
it is to the goal and the higher its election probability.
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The proposed chromosome in this work is of length N , where each gene in
the chromosome represents a simulated node. The value of the gene represents
the physical node to be used to simulate the corresponding simulated node. Each
gene has a value in the range [1, P ], where P is the number of available physical
nodes in the testbed.

4.1 Initial Population

Let the number of individuals in the population to be η. Initially, η individuals
are generated by random. For each gene in an individual, a physical node is
chosen by random using (8).

gi
n = rand(1, P ) (8)

Where gk
n is the gene represents the simulated node n of the individual i.

4.2 Crossover and Mutation

A new generation consists of η new children. To produce a new child, the parents
are chosen randomly from the top half of the current population where the
population is sorted based on the fitness of the individuals. A child takes half of
its genes from one of the parents, and the second half from the other parent.

Genetic algorithm uses mutation to produce new random genes that might
lead to better solutions, instead of only depending on inherited genes from
parents. In this GA work, a percentage of MI% of the produced children are
mutated. For each mutated child, MG% of its genes are rechosen by random
from the set of available physical nodes.

4.3 Individual Evaluation and Fitness Function

To measure how fit is an individual (mapping solution), the algorithm needs
to compute the following values: The number of physical machines used (UP ),
the traffic to be simulated on each physical node p (TS

p ), and the traffic passing
through each real link r (TR

r ). The fitness of an individual depends on how much
reduction in simulation time it gives, compared to simulating the whole topology
on a single physical node, taking into account the reduction in utilization caused
by using more physical nodes.

Equation (9) gives the amount of reduction in simulation time, which repre-
sents the gain of a given mapping.

Gτ (UP ) = 1 − τ(UP )
τ(1)

(9)

Where τ(1) is the time taken to simulate the whole topology on a single
physical node (UP = 1).

Equation (10) gives the amount of drop in utilization, which represents the
loss of a given mapping.
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Dμ(UP ) = 1 − μ(UP )
μ(1)

(10)

Where μ(1) is the utilization of simulating the whole topology on a single
physical node (UP = 1).

The goal of the algorithm is to maximize the gain and minimize the loss.
Many forms of the fitness function were tested, starting from dividing Gτ by
Dμ, passing through many normalization problems. Until reaching the fitness
function that gave the best performance in terms of simulation time and utiliza-
tion. The final fitness function is defined in (11), where α is a scaling parameter
that controls the minimization in simulation time against lowering the utiliza-
tion. β is a function that represents a normalization factor between the gain and
the loss.

F (UP ) = E × [α × β(UP ) × Gτ (UP ) − (1 − α) × Dμ(UP )] (11)

For individuals that do not match the maximum link capacity condition,
instead of ignoring them, their fitness value is penalized by the amount of
exceedance in traffic over the limited capacity as shown in (12), where the γ
parameter represents the penalization factor. This way, the algorithm can ben-
efit from the infeasible solutions if they can lead to a better feasible solution.

E = γ × (1 − Max(TR
1 , TR

2 , . . . ,TR
UR

) − CR

CR
) (12)

4.4 Parameters Setting

The value of some parameters such as η, MI , MG, and γ, is set using parameter
tuning, where the values that achieve the best performance in terms of simulation
time and utilization are the values used in the final model. The value of the
scaling factor α depends on the following:

– The privileges that are given by the testbed to the user. As a privileged user
can use more resources to reduce the simulation time with (α > 0.5).

– The cost of the physical nodes used. As (α < 0.5) for expensive resources.

For large-scale experiments, the simulation time in seconds (which has no
upper limit) is much higher than the utilization (which has a maximum value
of 100%). According to (9) and (10), the time gain could be much less than
the utilization loss. Hence, the fitness function tends to maximize the utilization
more than reducing the time. The normalization parameter β described in (13),
is used to overcome the dominance of the utilization part.

β(UP ) =
τ(UP )
μ(UP )

(13)
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4.5 Minimum Graph Cut

A simulation topology is a weighted graph, where the traffic passes through a
link represents the link’s weight. Consequently, the proposed GA-based mapping
could benefit from the minimum graph cut technique to enhance the initial
population of the algorithm. If there are P available physical nodes, the number
of used machines in the final solution Up is in the range [1, . . . , P ]. The algorithm
uses the minimum graph cut technique to find a minimum cut for each possible
value of Up, then the found solutions are added to the initial population of the
GA.

Despite the high complexity of the minimum graph cut algorithm (O(N3)
[14], it can be afforded. The running time of the minimum graph cut is ignored,
compared to the high convergence time of the GA.

5 Evaluation

This section describes the evaluation procedure and the obtained results of the
GA-based mapping compared to other techniques.

5.1 Tuning and Testing Procedures

Random topologies are generated for tuning and testing purposes as follows:

– The number of links in the generated topology is in the range [N−1, N(N−1)
20 ],

where N is the number of simulated nodes.
– The traffic passing through each link is in the range [1, 1000] Mbps.

a- Tuning. The following procedure is used to tune the parameters:

– Tuning used three categories of topology size: Small topologies of 10 simu-
lated nodes, medium topologies of 50 simulated nodes, and large topologies of
100 simulated nodes. Ten random topologies are generated in each category.

– A set of possible values is defined for each parameter to be tuned.
– For each combination of values of the tuned parameters, the GA-based map-

ping uses these values to find a solution for the random topologies generated
for tuning purpose.

– The final GA-based mapping uses the combination that gives the highest
average time gain while minimizing the average utilization loss.

b- Testing. For testing, ten random topologies with sizes {10, 20, 30, . . . , 100}
simulated nodes, are generated using the same procedure described earlier.
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5.2 Environment and Parameters Configuration

The proposed GA-based mapping is evaluated using the CRC testbed [15].
Table 2 defines all the used parameters based on the CRC testbed and based
on the performed parameter tuning.

All the computations are performed on the CRC testbed server (Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20 GHz).

Table 2. Parameters configuration

Parameter Value

P 25 physical nodes

CS
p 4390 MHz

CR 1000 Mbps

A 1

B 0.8899

C 0.004197

η 2000 individuals

MG 0.5

MI 0.05

α 0.5

γ 0.5

5.3 Comparing GA-Based Mapping to Single Machine Simulation

The effect of using the GA-based mapping is first compared to not using topology
mapping, and simulating the whole topology on a single node. As shown in Fig. 4,
applying the GA-based mapping reduces the simulation time by more than 90%,
while keeping the utilization above 95%.

5.4 Comparing GA-Based Mapping to Other Mapping Techniques

Finally, to evaluate the GA-based mapping approach, the algorithm is compared
to the following:

– The minimum graph cut technique described in Sect. 4.
– A random mapping approach that randomly maps simulated nodes to phys-

ical nodes. There are two possible random solutions: 1- The first feasible
mapping found by the search. 2- The algorithm keeps searching randomly
for a time equal to the time taken by GA-based mapping to converge, and
the best mapping found is considered.
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Fig. 4. The performance of the proposed GA-based mapping compared to the single
machine simulation

Figure 5 illustrates the comparison between the GA-based mapping and the
mapping techniques mentioned in four aspects: The simulation time of the exper-
iment, the utilization of the physical nodes, the number of used physical nodes,
and the running time of the used technique.

a- Simulation Time
Figure 5a shows that the GA-based mapping achieves the lowest simulation time
for all topology sizes. On the other hand, the minimum graph cut technique
fails to find a feasible mapping for large topologies (N > 40), and therefore its
simulation time is almost the same as simulating the whole topology on a single
node. Thus the number of physical nodes used by the minimum graph cut for
large topologies is fixed to one or two nodes only as shown in Fig. 5c.
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Fig. 5. A Comparison between the different topology mapping techniques
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Fig. 6. Running time comparison

b- Utilization
As shown in Fig. 5b, all of used topology mapping techniques gives high utiliza-
tion for large topologies, and that is due to the limit of the available physical
nodes, as they cannot use more nodes. For smaller topology sizes, the GA-based
mapping gives the highest utilization.

c- Number of Physical Nodes
Ignoring the drop in the minimum graph cut curve caused by its failure to find
feasible solutions, Fig. 5c shows that the GA-based mapping approximately uses
the minimum number of physical nodes. For large topologies (N > 70), all of the
techniques almost use all of the available physical nodes. However, the GA-based
mapping is better in terms of simulation time and utilization, as shown in Fig. 5a
and b.
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d- Running Time
Figure 6 compares the running time of the three topology mapping techniques.
As shown in Fig. 6a, the minimum graph cut technique takes the lowest time
to find the mapping for all topology sizes, but running the overall experiment
using minimum graph cut takes the longest time, almost the same as running
the whole topology on a single physical node without partitioning, as shown in
Fig. 6b.

The first feasible solution found by the random search takes low time for
small and average topology sizes, but it takes a very long time, or it even might
not converge to find a feasible mapping for large topologies.

For the GA-based mapping, it takes higher convergence time than both the
minimum graph cut and the random search technique for small topologies, but it
achieves the lowest overall time for large topologies. Furthermore, the GA-based
mapping finds the mapping that gives the best utilization of the used physical
nodes.

6 Conclusion and Future Works

This work proposes a genetic algorithm-based solution for the topology mapping
problem and designs a fitness function that allows the GA-based technique to find
the mapping that minimizes the simulation time and maximizes the utilization.
Furthermore, Simulation time and utilization are estimated using new proposed
analytical methods, without actually running the simulation.

As shown in the evaluation, GA-based mapping gives the best simulation
time and the best utilization for all topology sizes. On the contrary, both the
minimum graph cut and random search approach are not able to find a feasi-
ble solution for large topologies. Although the GA-based mapping takes a long
time to converge for large topologies, the overall experiment time is less than
the experiment simulation time on a single machine. Furthermore, Minimizing
the simulation time is more important than minimizing the running time, as
the testbed server is always available to run the topology mapping search, while
the testbed nodes must be reserved to run the simulation. The running time
of the GA-based mapping technique can be afforded given the simulation time
reduction and the utilization benefits achieved.

Many future works could be done to enhance the proposed GA-based map-
ping. Improving the fitness function to include more testbed parameters will
improve the found solutions; parameters such as the cost of the physical nodes,
and the number of concurrent topology mapping requests. Furthermore, develop-
ing an advanced method to benefit from infeasible solutions could also improve
the performance of the algorithm. Finally, enabling the algorithm to handle par-
allel topology mapping requests will allow for better time and resources man-
agement.
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