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Abstract. The encrypting ransomware using public key cryptography is almost
impossible to decrypt, so early detection and prevention is more important.
Signature matching technology has low detection rate for unknown or poly-
morphic ransomware, and some intelligent algorithms have been proposed for
solving this problem. Inspired by the Artificial Immune System (AIS), an
improved double-layer negative selection algorithm (DL-NSA) was proposed
which can reduce the number of holes in NSA and increase the detection rate.
To obtain the behavior characteristics (e.g., files read or write, cryptography
APIs call and network connection) of ransomware, a Cuckoo sandbox was built
to simulate the malicious code running environment. After dynamic analysis, the
behavior characteristics of ransomware were encoded to antigens. The improved
double-layer negative selection algorithm has two sets of immune detectors. The
first layer detectors set was generated by the original negative selection algo-
rithm using r-contiguous bits matching. The second layer detectors set was
directional generated holes’ detectors using r-chunk matching with variable
matching threshold. Simulation result shows that comparing with NSA this
algorithm can achieve high-rate space coverage for non-self, and can increase
the detection rate of ransomware.

Keywords: Ransomware � Negative selection algorithm � API call sequence �
Artificial Immune System � Cuckoo sandbox

1 Introduction

Ransomware is one of the most threatening attacks nowadays. In the late 1980s, PC
Cyborg known as the first ransomware has been developed. In recent years, ran-
somware of mobile devices has grown sharply. Ransomware targeting companies or
governments is also rising. Wannacry that hit the headline in May 2017, has affected
more than 200,000 computers in 150 countries, with total damages ranging from
hundreds of millions to billions of dollars [1].

The ransom is usually paid by snail mail, bank transfer or Amazon gift card. With
the popular of cryptocurrencies, nowadays ransom commonly paid by bitcoins. From
2013 to mid-2017, the market for ransomware payments has a minimum worth of USD
12,768,536 [2]. In January 2018, a hospital Hancock Health paid out a $55,000 bitcoin
ransom following a SamSam infection, because paying up was deemed the quickest
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way to get systems back online. But sometimes the victims will not get the decryption
key even paying the ransom.

The crypto ransomware can be most destructive typically using strong encryption
algorithms [3]. Ransomware such as Wannacry utilized combined encryption algo-
rithms of AES and RSA to make the encryption harder to decrypt [4].

The number of ransomware attacks has grown partly because attackers have
adopted Ransomware as a Service (RaaS) [5]. RaaS is available over the dark web, and
RaaS is enabling even the most technically illiterate cybercriminal to extort payments
from victims.

In order to accurately recognize unknown or polymorphic instances, inspired by the
biological immune system to eliminate bacteria, a ransomware detection method based
on an improved double-layer negative selection algorithm was proposed.

The rest of this paper is organized as follows. Section 2 gives an overview of the
related previous work. Section 3 describes the negative selection algorithm and the
problem of undetectable holes. Section 4 introduces the framework and details of the
improved double-layer negative selection algorithm. Section 5 explains the ran-
somware analysis environment and the extraction of behavior characteristics. Section 6
evaluates our ransomware detection algorithm through experiments. Section 7 con-
cludes the paper.

2 Related Work

2.1 Ransomware Detection

In recent years, studies have been carried out on the detection of ransomware attack.
The common malware detection methods include static detection and dynamic detec-
tion. Some researchers investigate machine learning methods for detecting viruses.

Static Detection
Static detection is the analysis of a malware performed without actually executing the
program. Antivirus software mainly uses the signature-based detection method.
Depending on a large number of virus signatures, antivirus software can detect known
viruses, but cannot deal with unknown viruses. Opcodes are widely used for static
detection. Santos et al. [6] proposed a method to detect unknown malware families
based on the frequency of the appearance of the opcodes sequences. Wang et al. [7]
converted the opcodes sequence to an image, and the image is compared with the
image generated from the known malware sample. Zhang et al. [8] proposed a clas-
sification method of ransomware families with machine learning based on n-gram of
opcodes, and TF-IDF is calculated to select feature n-grams which exhibit better dis-
crimination between ransomware families.

Dynamic Detection
Dynamic detection is the analysis of a malware performed while executing the program.
The suspicious program is run in a controlled environment while recording the malicious
operations. Information that can be obtained by dynamic analysis is API calls, system
calls, instructions traces, registry changes, files changes and network connections.
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Ransomware often use packing (such as ASProtect and Themida) and obfuscation
techniques to avoid being detected by static analysis tools. Therefore, dynamic analysis
is indispensable to understand the main features and functionalities of ransomware [9].
Xu et al. [10] introduced a framework for hardware-assisted malware detection based
on monitoring and classifying memory access patterns. Scaife et al. [11] proposed an
early-warning detection system for ransomware that checks for file activities and alerts
the user in case of suspicious activities.

Monitoring the API function calls can be useful for detecting ransomware attacks.
Many researchers agree that ransomware’s typical behavior involves the encryption of
files and showing a ransom message, which can be identified through the ransomware’s
use of API function calls [9, 12, 13].

2.2 Artificial Immune System

Bioscience has been a source of inspiration for innovative solutions to computer sci-
ence and engineering problems for many years. The latest research that has attracted
widespread attention in this field is the Artificial Immune Systems (AIS). AIS is
inspired by biological immunology to solve complex practical problems by simulating
the functions, principles and models of the immune system [14]. It’s highly distributed,
adaptive, and self-organizing nature, together with learning and memory features offer
rich metaphors for its artificial counterpart [15].

AIS has been applied in many research areas, especially to solve many computer
security problems [16, 17], such as intrusion detection [18], malware detection [19] and
spam detection [20].

3 Negative Selection Algorithm and the Problem of Holes

3.1 Negative Selection Algorithm

Negative selection algorithm [21] first proposed by Forrest, is a computational imita-
tion of self/non-self discrimination. It is modeled off the T-cell maturing process that
happens in the thymus. It has been successfully applied to anomaly detection systems.
The negative selection algorithm has two phases [21]: generation of detectors set (see
Fig. 1) and non-self detection (see Fig. 2).

self set
(S)

generate
random

detectors
match? detectors set

(R)no

yes

reject

Fig. 1. Generation of detectors set
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In NSA, elements including detectors are represented by binary strings. U ¼
f0; 1gL represents all binary strings of length L. Define shape space U, self set S and
non-self set N, which satisfy U ¼ N [ S and N \ S ¼ £.

Some of the most widely used matching rules are Hamming distance, r-contiguous
bits, r-chunk, etc. Take r-contiguous bits matching for example. a ¼ a1a2. . .aL and
b ¼ b1b2. . .bL are two strings of length L, a matches b if and only if 9i� L� rþ 1
which meets aj ¼ bj; j ¼ i; iþ 1; . . .; iþ r � 1.

3.2 The Problem of Undetectable Holes

There are a large number of holes exist in anomaly detection system based on negative
selection algorithm, which will affect the detection rate of the algorithm. These holes
are non-self individuals that cannot be recognized by all possible detectors. Holes
(undetectable antigens) also exist in the biological immune system. Hofmeyr [22]
proposed to use multiple representations to reduce the number of holes by using the
MHC mechanism of the biological immune system. Zhang et al. [23] introduced the r-
variable detection algorithm to reduce the number of holes by adjusting the matching
threshold. However, this method uses a randomly generation mechanism when gen-
erating the detectors, which is inefficient for covering holes.

The main reason of holes is the partial matching rules. The matching rules adopted
by negative selection algorithm need a matching threshold, which embodies the
characteristics of the partial matching rules. The matched two strings do not need to be
exactly the same, as long as the degree of similarity is greater than the threshold. Partial
matching can be thought as an approximation or generalization.

There are two types of holes in the negative selection algorithm using r-contiguous
bits matching: crossover holes and length-limit holes [24].

(1) A crossover hole is a “crossover” of certain self strings. The hole h is not in the self
set S, but string h is the cross combination of certain r-step sliding windows of
S. For instance (see Fig. 3), let {S1, S2} = {1010, 0001} be the self set S with the
string length L = 4. Define step r = 2, S1 generates three substrings {10, 01, 10}
and S2 generates three substrings {00, 00, 01}. These six substrings can be com-
bined together into four strings {1010, 1001, 0001, 0010} in the direction of the

test
strings

match?

non-self
detected

detectors set
(R)

yes

self
stringsno

Fig. 2. Non-self detection
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arrow, in which {1001, 0010} are crossover holes, and the corresponding detectors
are impossible to be generated.

(2) A length-limit hole is one that has at least one window that does not exist in self
strings and has some other windows that will match self strings [24]. For instance,
S = {010, 011} with string length L = 3 and step r = 2, in that case string h = 110
is a length-limit hole. The detectors for hole h must be generated by the template
11* or *10, where * denotes 0 or 1. But such detectors will not be generated
because they match self elements.

4 An Improved Double-Layer Negative Selection Algorithm

4.1 The Double-Layer Negative Selection Algorithm (DL-NSA)

The double-layer negative selection algorithm contains two matching processes (see
Fig. 4), which use the mature detector set D and the hole detector set DH respectively.

The First Layer Matching
The set D consists of the mature detectors generated by the original negative selection
algorithm, which can identify most of the non-self strings using the r-contiguous bits
matching.

10 01 10

00 00 01

S1

S2

Fig. 3. Crossover holes

Fig. 4. The double-layer negative selection algorithm
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The Second Layer Matching
The set DH consists of the variable-sized r-chunk detectors generated by the algorithm
that will be introduced in Sect. 4.2. The hole detector set DH is mainly used to cover
holes and improve the accuracy of detection. The number of hole detectors can also be
dynamically adjusted according to the hole coverage requirement.

4.2 The Hole Detectors Generation Algorithm

In the biological immune system, holes represent pathogens that cannot be recognized
by the immune system, and pathogens usually evolve into holes to avoid detection by
the immune system. For computer anomaly detection systems, intrusion behavior and
virus programs are also evolving to seem like normal behavior and procedures. Bor-
rowing the principle of crossover holes, the intrusion behavior makes the detection
even harder by splicing a series of normal operation segments to complete the attack
process. For anomaly detection systems, how to improve coverage of holes is an urgent
problem to be solved.

Variable-Sized r-chunk Detectors
Compared with the NSA proposed by Forrest, this paper introduces variable-sized r-
chunk matching detectors, which can effectively cover the holes in anomaly detection
systems.

The r-chunk matching is defined as follows: a detector d ¼ ði; d1d2. . .dmÞ matches a
string a ¼ a1a2. . .an(m� n) under the r-chunk matching rule, if and only if
aj ¼ dj; j ¼ i; iþ 1; . . .; iþ r � 1(i�m� rþ 1), where i represents the matching starts
position.

The r-chunk matching indicates that when the detector d and the antigen a match
when they have at least r identical contiguous bits from the i-th bit position. The r-
chunk matching reduce the space coverage of detectors by defining start position i and
matching length r, so as to solve the problem of length-limit holes. For example, the
detector d = {1, 11} with r = 2 can successfully detect the length-limit hole h = 110 in
Sect. 3.2.

Meanwhile, the variable-sized r-chunk detectors can cover the space that r-con-
tiguous bits detectors cannot cover. By increasing the matching length r, detection
range of the detector is further reduced to cover holes that are much closer to self
elements. For example, when r = 3 the detector d = {1,100} and d = {1,001} can
successfully detect the crossover holes {1001, 0010} in Sect. 3.2 respectively.

Generation Algorithm of Hole Detectors
Some scholars have proposed methods for discovering holes [25, 26], and we propose
an algorithm of generating holes detectors with variable-sized r-chunk matching based
on the discovered hole set.

Define self set S ¼ fs1; s2; � � � ; sNg which has N elements. Define hole set H ¼
fh1; h2; � � � ; hMg which has M elements. Define the length of element strings is L. Self
set is represented by a matrix as follows:
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S ¼
s1;1 s1;2 � � � s1;i � � � s1;L
s2;1 s2;2 � � � s2;i � � � s2;L
..
.

sN;1 sN;2 � � � sN;i � � � sN;L

2
6664

3
7775 ð1Þ

According to r-contiguous bits, the self set S is divided into L − r + 1 sets by the r-
step sliding window, shown as follows:

S ¼ Sr½1�; Sr½2�; � � � ; Sr½i�; � � � ; Sr½L� rþ 1�½ � ð2Þ

Sr½i� ¼
s1;i � � � s1;iþ r�1

s2;i � � � s2;iþ r�1

..

.
sj;i ..

.

sN;i � � � sN;iþ r�1

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; � � � ; L� rþ 1 ð3Þ

Similarly, the hole set H can also be divided into L − r + 1 sets.

H ¼ Hr½1�;Hr½2�; � � � ;Hr½i�; � � � ;Hr½L� rþ 1�½ � ð4Þ

Hr½i� ¼
h1;i � � � h1;iþ r�1

h2;i � � � h2;iþ r�1

..

.
hj;i

hM;i � � � hM;iþ r�1

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; � � � ; L� rþ 1 ð5Þ

Calculating the difference set Hr½i� � Sr½i�. If exist Hr½i�ðjÞ ¼ hj;ihj;iþ 1 � � � hj;iþ r�1

that does not appear in the self set Sr½i�, then Hr½i�ðjÞ can generate r-chunk matching
detector dr;i ¼ fi; hjg to detect the hole hj.

The hole detectors generation algorithm based on variable-sized r-chunk is descri-
bed as follows:

• Step 1: Define self set S and element length L;
• Step 2: Calculate the hole set H according to the EHANDP algorithm [26];
• Step 3: According to the step r of the sliding window, divide S and H into L − r + 1

sets respectively, and the initial r-chunk matching length is r ¼ r0.
• Step 4: Calculate Dr½i� ¼ Hr½i� � Sr½i�; i ¼ 1; 2 � � � L� rþ 1. For the non-empty set

Dr½i�, generate the holes detector set Dr ¼ fdr;ig and delete the holes that can be
covered by Dr from H.

• Step 5: Determine whether there are still some holes in H, and if so, increase the
matching length r by 1 and the value of r is r0; r1 � � � to maximum L in turn, then go
to Step 3; Otherwise, the set of hole detectors DH ¼ Dr0 [Dr1 [ � � � can cover all
holes, and the algorithm ends.

The above algorithm is exemplified as follows.
Given a self set S = {01001, 00001, 10100, 11101} with r-contiguous bits matching

where r = 3 and L = 5. Calculate the hole set H = {00000, 01000, 10101, 11100}
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according to the EHANDP algorithm. Let the initial r-chunk matching length r0 = 3,
and divide S and H into L − r0 + 1 = 3 sets as follows:

S3½1� ¼
010
000
101
111

2
664

3
775; S3½2� ¼

100
000
010
110

2
664

3
775; S3½3� ¼

001
001
100
101

2
664

3
775 ð6Þ

H3½1� ¼
000
010
101
111

2
664

3
775;H3½2� ¼

000
100
010
110

2
664

3
775;H3½3� ¼

000
000
101
100

2
664

3
775 ð7Þ

H3½1� � S3½1� ¼ ; ð8Þ

H3½2� � S3½2� ¼ ; ð9Þ

H3½3� � S3½3� ¼ f000g ð10Þ

H3½3� � S3½3� can generate r-chunk detector d = {3,00000}, which can detect holes
00000 and 01000.

Then, there are still two holes in H = {10101, 11100}. In order to further detect the
remaining holes, let r1 = r0 + 1 = 4, divide S and H into L − r1 + 1 = 2 sets.

S4½1� ¼
0100
0000
1010
1110

2
664

3
775; S4½2� ¼

1001
0001
0100
1101

2
664

3
775 ð11Þ

H4½1� ¼ 1010
1110

� �
;H4½2� ¼ 0101

1100

� �
ð12Þ

H4½1� � S4½1� ¼ £ ð13Þ

H4½2� � S4½2� ¼ f0101; 1100g ð14Þ

H4½2� � S4½2� can generate detectors d = {2,10101} and d = {2,11100} with
matching length r1 = 4, which can detect holes 10101 and 11100. So far all the holes in
H can be detected.
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5 Ransomware Analysis and Feature Extraction

5.1 API Call Sequences of Ransomware

The behavior features of ransomware are extracted in a virtual environment named
Cuckoo Sandbox that automated the task of analyzing malicious file [13]. In our virtual
analyzing environment, some types of fishing files (e.g., jpg, doc, xls, pdf, sql, etc.) are
intentionally placed in different directories to trigger the encryption operation of ran-
somware. Most of the ransomware’s implementation of cryptographic algorithm (e.g.,
RSA and AES) is depended on CryptoAPI that is included in Windows [27].

According to the function of different system calls, we define sixteen categories of
API functions. We list some API functions examples of six typical categories that are
chosen from the total sixteen categories, shown as Table 1.

5.2 n-gram Feature Selection

To extract features from API call sequences the n-gram model is used. API function
names are treated as words of n-gram, and extract the n-gram features from both the
ransomware samples and benign samples [16].

Information gain (IG) is used as a feature selection method. Let x be the n-gram
feature, yi 2 y be one of the k class sample labels (i.e., k = 2, ransomware or benign),
and the IG(x) be the IG weight for feature x, calculated as follows [16].

Table 1. Categories of API functions

Categories Description Examples of API functions

Crypto Encryption and decryption of data CryptEncrypt
CryptDecrypt
CryptHashData

File File operations, such as read, write, delete, et al. Writefile
MoveFileEx
DeleteFile

Process Process and thread operations NtOpenProcess
NtAllocateVirtualMemory
NtTerminateProcess

Service Service operations, such as create, start and stop OpenSCManager
OpenService
StartService

System System operations LdrLoadDll
NtQuerySystemInformation
SetWindowsHookEx

Misc Other miscellaneous operations GetComputerName
GetUserName
GetTimeZoneInformation
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IGðxÞ ¼ HðyÞ � HðyjxÞ

¼ �
Xk
i¼1

pðyiÞ logðpðyiÞÞ

þ pðxÞ
Xk
i¼1

pðyijxÞ logðpðyijxÞÞ

þ pð�xÞ
Xk
i¼1

pðyij�xÞ logðpðyij�xÞÞ

ð15Þ

Compute the IG value for each n-gram feature, and the larger the IG value is, the
more information the feature contributes for classifying ransomware and benign
samples. The feature set F ¼ ff1; f2; � � � ; fNg is composed of the top N features based on
IG values.

5.3 Feature Vector Encoding

Based on the feature set F ¼ ff1; f2; � � � ; fNg, each sample will be encoded to a feature
vector v ¼ ðv1; v2; � � � ; vNÞ, where vi represents whether the n-gram feature fi appears in
the API call sequences of the sample. If fi appears then vi is 1, otherwise vi is 0.

The feature vectors are treated as binary strings in the DL-NSA. The training
benign samples are encoded to self set S, the training ransomware samples are encoded
to antigens which are used for generating mature detector set D. The test samples (both
benign and ransomware) are encoded to feature vectors and then be distinguished by
the detectors of DL-NSA.

6 Experimental Design

6.1 Collation of Ransomware and Benign Samples

We collect 2,000 ransomware samples of the popular ransomware families, such as
CryptoWall, Wannacry, Cerber, etc. We also gather 1,000 benign samples. These two
types of samples are both equally divided into two collections: training samples col-
lection is used for immune detectors generation, and test samples collection is used for
validating the detection effect.

6.2 Experimental Results and Analysis

Distribution of Hole Detectors
The training samples collection contains 500 benign samples, and these samples are
analyzed in Cuckoo sandbox. All the benign samples are encoded to feature vectors
v ¼ ðv1; v2; � � � ; vNÞ which compose the self set, and in our experiment let N = 30. For
the first layer of DL-NSA using r-contiguous bits matching with the matching length r,
we can obtain all the holes. Then, according to the hole detector generation algorithm
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we proposed, the second layer variable-sized r-chunk hole detectors of DL-NSA are
generated. The distribution of different matching threshold of hole detectors is shown
as Fig. 5.

We choose three matching length values (i.e. r = 10, 14, 18) of the first layer mature
detectors. The number of hole detectors is first increased and then decreased along with
the increasing of the matching threshold of hole detectors. With the increase of r, the
total number of hole detectors is decreased, and the peak of the curves shift right. This
experiment indicates that the hole detectors of the second layer are affected by the
matching length of detectors of the first layer.

Detectors’ Proportion of the Two Layers Affects the Detection Rate
The non-self space is divided into two parts: detectable space and hole space according
to whether the elements in non-self space can be detected by the r-contiguous bits
matching of the first layer. Non-self space coverage includes two aspects: detectable
space coverage and hole space coverage. In this part, we will analysis the detectors’
proportion of the two layers how to affect the detection rate.

First, we build a non-self space dataset of 2,000 elements, which are the feature
vectors extracted from ransomware or random generated. The non-self space dataset
contains 1,000 detectable elements and 1,000 hole elements.

The total number of detectors of DL-NSA is N, including mature detectors of the
first layer and hole detectors of the second layer. Define the percentage of hole detector
is p. For the first layer, r-contiguous bits matching is used with the matching length is
10, and the number of mature detectors is N1 ¼ N � ð1� pÞ. For the second layer,
variable-sized r-chunk matching is used, with the initial matching length r = 10, and
the number of hole detectors is N2 ¼ N � p. If N2 [NH , that means N2 is greater than
the actual total number of holes, then let N2 ¼ NH and N1 ¼ N � NH .

Fig. 5. Distribution of hole detectors
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As shown in Figs. 6 and 7, the detection rate of hole space and detectable space both
increase gradually with the increase of the total number of detectors. When the total
number of detectors is fixed, the larger p is, the higher detection rate for the hole space
and the lower detection rate for the detectable space.

When p = 0, DL-NSA degenerates to the original NSA, and the system has a high
detection rate for the detectable space, but the hole space detection rate is 0.

When p = 1, the first layer detector is generated only when the actual maximum
number of hole detectors reaches. As can be seen from Fig. 7, when p = 1, the
detection rate of detectable space increases slowly in the first half, because only the
hole detectors are generated which can cover a small area of detectable space. When
N[NH , the detection rate of detectable space increases rapidly.

Ransomware Detection
This section compares the ransomware detection performance of NSA proposed by
Forrest and r-adjustable negative selection algorithm (RA-NSA) [23] with DL-NSA
proposed in this paper.

Fig. 6. Hole space detection rate

Fig. 7. Detectable space detection rate
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For NSA algorithm, the matching length of detectors is set to 10 and the number of
detectors is N.

For RA-NSA algorithm, the initial matching length of detector is set to 10, the upper
limit of matching length is 25, and the number of detectors is N.

For DL-NSA algorithm, the total number of detectors is N, and the percentage of
hole detectors is p. For DL-NSA algorithm, in order to ensure high performance in both
detectable space and hole space, p = 0.1 is chosen.

As shown in Fig. 8, the detection rate of ransomware shows an upward trend,
especially in the initial stage. When the number of detectors is greater than 10,000, the
detection rates of the three algorithms tend to be stable. When the number of detectors
is small, the coverage space of detectors in NSA algorithm is the largest, so the
detection effect of NSA is the best. When the number of detectors is large, DL-NSA
algorithm has better coverage of non-self space, especially for hole elements, so the
detection effect is the best, up to 96%.

In the practical application of ransomware defense, it is suggested that the combi-
nation of NSA and DL-NSA should be used, determined by system requirement of the
detection speed and accuracy. If high detection speed is demanded, fewer detectors
should be used to achieve more non-self space coverage. At this time, the use of NSA
before the intersection of two curves (NSA and DL-NSA) can guarantee the speed
while having a higher detection rate. If high detection accuracy is demanded, more
detectors should be used, especially to cover the hole space better. At this time, using
DL-NSA after the intersection of two curves (NSA and DL-NSA) can achieve a higher
detection rate of ransomware.

Fig. 8. Ransomware detection
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7 Conclusion

Ransomware has attracted wide attention from government, security companies and
scientific researchers. In order to effectively identify ransomware, the main work of this
paper is as follows.

(1) An API call sequences feature extraction and selection method of ransomware is
proposed. The Cuckoo sandbox is used for monitoring the sensitive behaviors such
as file reading and writing, data encryption and so on, during the execution of the
ransomware.

(2) A method of generating hole detectors with variable-sized r-chunk matching is
proposed. The original NSA is improved, and a DL-NSA model is constructed by
introducing a double-layer detectors.

(3) The improved DL-NSA is applied to the detection of ransomware. By adjusting the
proportion of two-layer detectors, better ransomware detection effect of ran-
somware can be achieved.

Although some ransomware recovery and decryption tools have been released by
security companies, most ransomware cannot be cracked in fact. Therefore, in the
defense of ransomware, the prevention in advance and file backup are more important.
The confrontation between security companies and ransomware writers will continue.
The application of cryptographic algorithms will make the confrontation more intense.
Higher-strength cryptographic algorithms and more complex combinations of crypto-
graphic algorithms will appear. So we must get prepared, and put forward the method
of analysis, detection and protection for ransomware.
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