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Abstract. In recent years, crowdsourced testing, which uses collective intelli-
gence to solve complex software testing tasks has gained widespread attention in
academia and industry. However, due to a large number of workers participating
in crowdsourced testing tasks, the submitted test reports set is too large, making
it difficult for developers to review test reports. Therefore, how to effectively
process and integrate crowdsourced test reports is always a significant challenge
in the crowdsourced testing process. This paper deals with the crowdsourced test
reports processing, sorts out some achievements in this field in recent years, and
classifies, summarizes, and compares existing research results from four direc-
tions: duplicated reports detection, test reports aggregation and classification,
priority ranking, and reports summarization. Finally explored the possible
research directions, opportunities and challenges of the crowdsourced test
reports.
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1 Introduction

In 2006, Howe first proposed the concept of crowdsourcing, a distributed problem
solving and production organization model in the Internet environment [1]. The
company or organization outsources the tasks that were carried by the full-time staff to
an unidentified, large-scale group to complete the task through an open Web platform.

Subsequently, in response to this definition, various circles have conducted a
variety of researches on the working forms of crowdsourcing. The application of
crowdsourcing to software testing has also become a new trend. A number of
crowdsourced testing platforms have emerged on the Internet, such as Amazon
Mechanical Turk, Baidu MTC, UTest, MoocTest and so on. Through these crowd-
sourced testing platforms, software testing can shorten the test cycle, increase the
diversity of the test environment, and improve the quality of software products.
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However, due to crowdsourced testing characteristics, crowdsourced testing still faces
many challenges, such as the division of crowdsourced testing tasks, the incentives for
crowdsourced workers, and crowdsourced test reports processing. Due to the large
number of crowdsourced workers testing one software at the same time, and the uneven
level of crowdsourced workers. The number of test reports received by developers is
often large, the duplicate ratio is high, and the quality gap is large. This also makes it
difficult for developers to quickly find effective information from these test reports and
fix bugs based on these test reports.

Therefore, a lot of work is used to study crowdsourced test reports processing, such
as test reports aggregation, classification, prioritization to select higher quality test
reports, and multi-document reports summarization to enhance the efficiency of
developer review reports. This paper retrieves the relevant papers of crowdsourced test
reports processing from the three major databases: IEEE, ACM and SpringerLink,
strives to carry out comprehensive summaries, and discusses the future work of
crowdsourced test reports processing.

2 Background

2.1 Crowdsourced Software Testing

Mao et al. gave a complete interpretation of crowdsourcing work in the field of soft-
ware engineering. They proposed that crowdsourcing software engineering is the
behavior of external software engineering tasks in the form of public convening a large
number of potential, undefined online workers [2].

In software testing, the developer as a task requester uploads the software to be
tested and the test tasks list to the crowdsourced testing platform. After a large number
of crowdsourced workers test it, the feedback is sent to the software developer. The
procedure of crowdsourced software testing is shown in Fig. 1. A large number of
online workers participate in the completion of test tasks, which can provide a good
simulation of real application scenarios and real user performance, with short test
cycles and relatively low costs [3]. These are some of the advantages of crowdsourced
testing over traditional testing. However, due to the large number of crowdsourced
workers required for the test project, the levels of crowdsourced workers involved in
the test task are mixed, so the quality gap between the test reports submitted is also
large. What’s more, the measure of rewarding crowdsourced workers in most crowd-
sourcing platforms is the number of valid reports submitted by workers, which also
leads to crowdsourced workers submitting as many reports as possible. All of the above
reasons have led to the disadvantages of large gap in the quality of crowdsourced test
reports, high duplicate ratio, and a low number of effective reports. Developers often
need a lot of energy and time to review these crowdsourced test reports, and the
efficiency of fixing bugs based on reports is very low.
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2.2 Crowdsourced Test Reports

Unlike traditional test reports, Crowdsourced workers who receive test tasks in
crowdsourced testing are often not professional software testers. Therefore, the length
of the crowdsourced test reports is relatively short, including only the tester’s test
environment, input conditions, results, and whether or not the test passed.

In addition, as during the test, it is much more convenient to collect the results of
the screenshot than to summarize the results into text, crowdsourced workers often use
a large number of screenshots to help indicate the test results. Therefore, the crowd-
sourced test reports feature short text and rich screenshots [4, 5].

In the crowdsourced testing process, crowdsourced workers submit a large number
of quality test reports, and crowdsourced testing platform auditors or task requesters
will face difficulties in how to effectively integrate and process crowdsourced test
reports [6]. Researchers have put a lot of effort in researching how to detect duplicate
test reports and select higher-quality reports from the reports set.

3 Crowdsourced Test Reports Processing Research

This paper combines the research results of various scholars and summarizes the
researches on crowdsourced test reports into four directions:

Duplicate reports detection. For a large number of test reports submitted by
crowd- sourced workers, duplicate reports in the reports set are detected and further
screened (See Sect. 3.1 for details).
Clustering and classification of crowdsourced test reports. Based on the
duplicate reports detection of the test reports, similar test reports are clustered, or a
classifier is constructed to classify the report (See Sect. 3.2 for details).
Quality assessment and prioritization of crowdsourcing test reports. Automate
testing the content of a test report, conducting a quality assessment, and ranking all
reports according to the quality of the reports within the report set (See Sect. 3.3 for
details).

Fig. 1. The procedure of crowdsourced testing
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Crowdsourced test reports summarization. Multi-text summarization of crowd
sourced test reports to simplify review of test reports (See Sect. 3.4 for details).

The crowdsourced testing reports processing flow is shown in Fig. 2.

3.1 Duplicate Reports Detection

For the duplicate reports detection of test reports, researchers have proposed many
methods to detect, such as using NLP [7–11], constructing discriminant [12], using
information retrieval technology [13, 14] and using Machine learning techniques [12,
15–17].

Using NLP. In 2007, Runeson et al. first proposed the use of Natural Language
Processing to achieve detection of similar defect reports [7]. They first segmented the
reports text, removed all affixes and the stop words, replaced the synonyms. Each
defect report is then characterized, converted into a bag-of-words and modeled as a
feature vector, and each feature is a word of the report. The similarity between defect
reports is calculated by the cosine distance between the feature vectors. Yang et al. used
a combination of information retrieval and word embedding techniques to calculate the
text similarity of the bug title and description part [8]; Rocha et al. used the bug
attribute field calculation [9]; Hindle et al. used software quality context information,
software structure items and system development to calculate the similarity between
reports [10].

In addition to using the textual information of the test report itself, Wang et al.
proposed the use of execution information to aid in the repeated detection of defect
reports, Wang et al. set a similarity discrimination mechanism to determine the simi-
larity between reports [11]. However, some studies have shown that only a small
number of reports contain execution information, so relying on execution information
to assist in detecting duplicate reports is not very effective.

Using Information Retrieval. Information Retrieval (IR) refers to the process and
technology of obtaining information resources from the relevant information source set
according to the needs of information users [13]. Sun et al. proposed a retrieval

Fig. 2. The procedure of crowdsourced test reports processing
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function (REP) to achieve detection of repeated defect reports. REP can not only use
the summary of defect reports and textual similarity of description fields, but also use
non-text fields for similarity analysis [14]; Nguyen et al. combines IR technology and
topic models to achieve repeated reports detection [15]. They first used the BM25
algorithm to calculate the similarity between reports, and also used the topic model for
calculations.

Using Machine Learning. The development of machine learning and artificial intel-
ligence has brought about tremendous progress in the automatic classification of
computers. Sun et al. constructed a discriminant and trained a discriminant model using
a Support Vector Machine (SVM) to retrieve Top-K relevant similar reports from a set.
Liu et al. used Learning to Rank (L2R) technique to build sorting models to achieve
repetitive reports searches, while they also used knowledge in Wikipedia to discover
semantic relationships between words and documents [16]. Banerjee et al. used multi-
label classification to assign multiple duplicate predictions to each report and use fusion
roles to combine the results [17].

3.2 Clustering and Classification of Crowdsourced Test Reports

Due to the working mode of crowdsourced testing, each test project will receive a large
number of test reports. Therefore, how to effectively cluster and classify a large number
of test reports is the focus of various scholars.

Clustering of Crowdsourced Test Reports. Clustering of crowdsourced test reports
is the aggregation of similar reports into a cluster according to a similarity algorithm to
condense a large number of scattered test reports into one cluster. Similar reports
generally contain similar, identical bugs, so clustering similar reports can effectively
classify test reports of the same type into the same reports cluster.

Wang et al. used a method of clustering and reclassification to process the crowd-
sourced test reports [18]. They first performed feature extraction on the test reports,
including textual information, the sentiment orientation score of the reports and the
experience of the crowdsourced workers as characteristics, and clustered using the
K-means algorithm. Subsequently, the training data is constructed from the most
similar clusters to construct the classifier, which can mitigate the impact of local bias on
the classification effect.

The test reports submitted by the crowdsourced workers often have the following
problems, the invalid problem, that is, the reports includes many non-error test reports
and empty test reports that do not contain error information; the imbalance problem,
that is, due to the difference between the worker levels, there is a big gap between
language description and quality of the reports; multi-bug problem, that is, some
workers submit reports containing multiple bugs, which need to be grouped into dif-
ferent clusters. In order to solve these problems, Jiang et al. proposed a new framework
called the Test Report Fuzzy Clustering Framework (TERFUR) [19]. They first con-
struct a filter to remove invalid reports, and then build a preprocessor to solve the test
reports description too short. Finally, propose a two-stage merging algorithm to cluster
redundant reports and multiple bug reports.
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In response to the short text and rich screenshots of the crowdsourced test reports,
Feng et al. divided reports into two parts, a text description part and a screenshot part
[20]. The text description part is processed using NLP technology to obtain the distance
vector between the text histogram and the text; the screenshot part distance is obtained
by using the Spatial Pyramid Matching (SPM) [21] technique for the screenshot
part. The two-part matrix is combined to obtain a mixed distance matrix. Hao et al.
used this method to obtain the distance between test reports and cluster the reports
using the Hierarchical Agglomerative Clustering (HAC) method [4]. Also, because in
the case where such a cluster is not known in advance, the HAC can be adaptively
clustered by setting a threshold value without first defining the number of clusters. The
method proposed by Yang et al. is also using SPM to obtain the text and screenshot
distance matrix, but in the clustering method selection, they chose a different way [22].
After obtaining the similarity value between all reports, they first choose two reports’
similarity values. Then, they compare the first report in the remaining test reports with
the existing two cluster representatives. This report is inserted if the similarity value is
greater than or equal to the threshold they defined. In a cluster with a higher similarity
value, if the similarity value is smaller than the threshold, a new cluster will be added.
The next one is compared to similar values for the three existing clusters. In the
comparison of similarity values and thresholds, if the similarity value is higher, it is
added to the cluster of higher similarity values, otherwise, it is represented as a new
cluster, so reciprocating until all the reports are traversed again.

In the selection of text clustering methods, Wang et al. used K-means clustering, but
this method needs to pre-define the number of clusters that need to be clustered. Wang
et al. use element silhouette to determine the number of clusters. The number of
candidate K is set to 1–1000 to determine the best solution [18]. While Hao et al. used
HAC to determine the number of clusters based directly on the threshold distance
value, simplifies the process of clustering parameter setting [4]. However, in the
method of image matching, the SPM method used in the papers above treats the
features of different regions equally, and does not take into account the difference in the
characteristics of different regions. What’s more, this method does not fully play the
role of the text information in the screenshot, and should be considered in future
research.

Classification of Crowdsourced Test Reports. The classification of crowdsourced
test reports is that the researchers extract features from the test reports set according to
the features that need to be extracted, and construct a classifier from the extracted
features. Reports repeatability testing, severity prediction, and bug triaging are avail-
able according to the capabilities of the classifier.

Wang et al. constructed a classifier for text features, sentiment features, and expe-
rience of workers in the results after clustering [18]. Later, they focused on the cross-
domain issues faced by the crowdsourced test reports classifier [23]. Test reports in
different fields often have their own special professional terms, and directly use dif-
ferent areas of test reports to build classifiers. These words will make the accuracy of
the classifier reduced, so Wang et al. first trained a Stacked Denoising Autoencoders
(SDA) model and generated advanced features of the reports based on the textual
information of the reports, and finally trained the classifier on the advanced feature
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vector. In this way, the cross-domain problem in the crowdsourced test reports clas-
sifier training can be solved. They also proposed the Local Information Based Active
Classification (LOAF) to classify true faults from crowdsourced test reports [24].
LOAF recommended a small number of instances that provide the most information in
the local community, and continually asks users about their tags and then classifies
them. LOAF utilizes an active learning approach that greatly reduces the amount of
data that needs to be labeled and simplifies the annotation work required to build a
classifier.

Wang et al. used text information and image information for classification too, but
unlike [4, 22], they did not use SPM to calculate screenshot information. Instead, a
SETU framework was proposed that combines information from screenshots and
textual descriptions to detect duplicate population test reports. SETU extracts four
types of features to characterize screenshots (image structure features and image color
features) and text descriptions (TF-IDF features and word embedding features) and
designs a hierarchical algorithm to detect four-based repeat similarities the scores come
from four characteristics.

3.3 Quality Assessment and Prioritization of Crowdsourced Test Reports

In software engineering, it is very important to obtain software defect information from
the defect reports for repair. The quality of the defect reports is also very important for
the inspection reports [26, 27]. In the crowdsourced testing, although the crowdsourced
test reports contain less information than traditional defect reports, due to its large
number, how to conduct automated quality assessment of crowdsourced test reports to
select higher quality reports and give priority to crowdsourced test reports is very
important for the processing of the test reports.

Quality Assessment for Crowdsourced Test Reports. In the quality assessment for
reports, some classification-based work has achieved the ability to classify reports
according to reports quality. The classifier constructed by CURES [18], it’s criteria for
judging test reports are text features, emotional parameters, and worker experience. The
text feature is the description of the bug by the crowdsourced workers. The sentiment
parameter is a score of −5 to 5, because studies have shown that the reported senti-
mental tendency may reflect the subjective feeling of the bug; the workers’ experience
is divided into the number of reports submitted, the number of true faults reported, and
the proportion of true faults in the submitted reports. LOAF is the use of active learning
methods to continuously learn the reports containing the true faults, so as to classify the
reports [24].

Chen et al. proposed a framework for mobile applications called TERQAF [28].
They defined a series of indicators to measure the ideal properties of the test reports,
and summarized the values of all the indicators to determine the test by using the step
conversion function to judge the quality of the reports. To the best of the author’s
knowledge, this is also the first work to investigate the quality of test reports and to
address the quality assessment of test reports.

Prioritization of Crowdsourcing Test Reports. For how to sort crowdsourced test
reports, Feng et al. proposed a combination of risk strategy and diversity strategy
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considerations [29]. After modeling the test reports to vector, they first considered the
risk strategy, that is, selecting the report with the highest risk value; Then considered
the diversity strategy, that is, selecting the report with the largest distance from the
selected report matrix in the candidate reports. Finally, they combined the two
strategies and continually select reports to enter the reports set to complete the sorting
task.

Feng et al. used text information and screenshot information, through the NLP and
SPM to obtain the distance matrix [20]. They use a diversity strategy, when a developer
reviews a report, the next one pushed is the one that is the most distant from the current
review report. This strategy allows developers to find more errors in a short period of
time.

For traditional test reports, Yu et al. trained neural network-based test reports pri-
ority prediction model [30], they added an additional layer in the neural network to
learn the relationship between the severity and tester, used evolutionary learning to
adapt to the addition of new features, and reused data between similar projects as an
initial training set for new projects to speed up the training process.

3.4 Crowdsourced Test Reports Summarization

Text summarization has always been a hot issue in the field of NLP research. Text
summarization is technically divided into extractive summarization and abstractive
summarization, which is divided into single-document summarization and multi-
document summarization from the abstracted document format. In the traditional test
reports processing, because of its long text, it contains more information, single-
document and multi-document summarization are both needed. However, the charac-
teristics of the crowdsourced test reports are that the amount is large and the text is
short. Therefore, the summarization work for the crowdsourced test reports is mainly a
multi-document summarization.

In traditional test reports processing, Mani et al. applied four well-known unsu-
pervised summarization algorithms for the error reports summarization in order to solve
the problem that the supervised method requires manual annotated corpora and the
generated digest may be biased toward training data [31]. To build a more efficient
automatic summarizer to summarize bug reports, [32, 33] investigated whether the
current conversation-based automatic summarizer is suitable for bug reports, and they
found that the quality of the generated summary is similar to the summary generated by
email or other conversations. They also trained an automatic summarizer for the bug
reports, and achieved good results.

For the crowdsourced test reports summarization, Hao et al. clustered the reports
firstly [4]. In each cluster, the PageRank algorithm is used to find a report with the
largest amount of information as the main report, and the rest is used as the candidate
reports. Separated the sentence with the screenshot in the candidate reports and cluster
again. In each cluster, PageRank is used to sort the sentences and screenshots, and then
the selected sentences are added to the master report to assist the review according to
the set summary compression ratio. Jiang et al. first investigated the existing methods
of attribute construction in Mining Software Repositories (MSR). Then, a new method
called Crowd-Attribute is proposed to infer the valid attributes of the bug reports
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summary from the crowdsourced workers to generate reports data. Jiang et al. used
Crowd-Attribute to construct 11 new attributes and proposed a new supervised algo-
rithm, Logistic Regression with Crowdsourcing Attributes (LRCA) [34].

Currently, methods for crowdsourced test reports summarization are mostly
extractive, multi-document summarization. Researchers use certain rules to extract the
information they need from a large number of test reports and combine them into a
single test report that helps developers to review submitted test reports more quickly.

4 Summary

This paper reviews the processing methods of crowdsourcing test reports in recent
years. From the crowdsourcing test reports, duplicate reports detection, reports clus-
tering and classification, report quality assessment and prioritization, and crowdsourced
test reports summarization, we summarize the work in the four directions above. We
can find that the quality of the report itself is uneven due to the large difference in the
level of crowdsourced workers, which will affect the results of the crowdsourced test
reports. And in the crowdsourced test reports processing, the methods currently used by
researchers are more traditional, and the processing of text and screenshots is relatively
simple. Therefore, future research on the processing of crowdsourced test reports can
focus on the following points:

(1) Using more advanced NLP models and image processing methods to process
the reports:

In recent years, NLP technology has developed rapidly. Based on the pre-trained
model, BERT, XLNet have achieved excellent results in tasks such as text classifica-
tion, reading comprehension, and short text matching, but the current text features
extraction in crowdsourced test reports processing still uses a more traditional
approach. Similarly, the current analysis of screenshots for crowdsourced test reports,
the only documents available for review are the SPM method and the extraction of
image structure and color. Therefore, how to use the more advanced NLP model and
image processing method to process the crowdsourced test reports is the research
directions that researchers can choose.

(2) Constructing a recommendation system that combines the processed, classified
test reports with the developer information. And assign bugs based on developer
professionalism:

Using clustering and classification methods can effectively bring together reports
with similar characteristics, and similar reports often reveal the same bugs. In software
engineering, different bugs are generally fixed by different developers. Therefore,
pushing a test report that is highly relevant to a professional based on the developer’s
professional information can make it more efficient for developers to review the
reports.

(3) Generating test case based on the processed test reports:
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Mattia et al. proposed a method for automatically generating test cases based on
bug reports of mobile applications. They used a combination of program analysis and
natural language processing to generate executable test cases from bug reports, which
can be correctly applied to most reports [35]. How to use the processed large-scale
crowdsourced test reports to generate the corresponding test cases is also worth
studying.
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