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Abstract. Studies have shown that radiologists working together with
Computer Aided Diagnostic software have increased accuracy. Auto-
mated screening software can be used to prioritize X-Rays coming in for
diagnosis. We developed a suite of machine learning algorithms that aim
to improve radiologist performance. It provides suggested diagnostics, a
heatmap showing pathological areas and a bone subtracted version of
the image which helps radiologists to identify fractures. We test different
configurations for our diagnosis model, training it on both normal and
enhanced images, using one or two branches. Our experiments show that
adding enhanced inputs (lung segmented and bone subtracted versions
of the input) increases the performance of our algorithm, which in turn
increases the performance of the radiologist user. This shows that pre-
processing the images before input increases model performance. More
research is needed to find other preprocessing techniques, to refine exist-
ing ones, and to determine the optimal number and type of input X-Rays.

Keywords: Radiology · Deep Learning · X-ray · Segmentation ·
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1 Introduction

In recent years, the decreasing costs and increasing efficiency of medical imaging
equipment have made radiology a central tool in diagnosing diseases all around
the world. X-rays are the most common form of medical imaging, with about
3.6 billion procedures performed yearly [1]. This large number can overcrowd
radiologists, which decreases their diagnostic accuracy and can lead to fatigue [2].

We develop a suite of algorithms that aid radiologists in analyzing x-rays, by:
screening the image and if any pathologies are found attempting to classify them
into one of 13 classes, generating a heat-map of the diagnostic, lung segmenting
the image, and creating a bone subtracted version of the image, which highlights
the bone structure of the patient, making it easier to identify fractures.
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(a) Original x-ray (b) Bone Subtracted (c) Lung Segmented (d) Resulting CAM

Fig. 1. Preprocessing steps and resulting class activation map

1.1 Related Work

CheXNet, described in [3], was not the first published approach to classifying
diseases in X-rays. Many different network architectures have been developed for
this task, such as CNN+RNN network, for exploiting the dependencies between
labels [4], Cascading CNN with different loss functions [5], Attention Guided
CNN [6].

The algorithms mentioned above use the ChestX-ray14 dataset, made avail-
able by [7], the first attempt of offering a large, labeled x-ray public dataset. Two
new improved datasets have been published since: CheXpert [8] and MIMIC-
CXR [9], totaling around 590.000 frontal and lateral chest x-rays.

Automatic lung segmentation has been studied for a long time. [10] used a
gray level thresholding based approach. [11] proposed using a UNet combined
with post processing methods to increase the segmentation accuracy. [12] explore
different loss functions, and encoder pretraining.

Similarly, the field of bone supression has been explored for some time now.
[13] attempt it using regression by k-nearest neighbor averaging, while [14] used
multiple massive-trained artificial neural networks, a variant of fully connected
networks. [15] suggests using Generative Adversarial Networks as a backbone for
this task.

Fig. 2. Dual branch architecture
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2 Our Contribution

In this work we create an end-to-end model for x-ray pathology classification
based on the DenseNet-121 [16] architecture. We train it using custom aug-
mentations on large public datasets, modify the network to support larger,
512 × 512 inputs and add bone subtracted and lung segmented versions of the
inputs to increase accuracy. We propose a new dual branch architecture based on
DenseNet-121 to increase accuracy in cases where lateral images are available.

The augmentation techniques we use to train all of our networks are based
on [17]. We improve them by adding level adjustment, which is relevant for x-ray
diagnostics and is used by radiologists in practice.

We add a stride 2 convolution and a stride 2 max pooling layer at the input
of our DenseNet-121, to quickly reduce the dimensionality of our inputs from
512 × 512 to 128 × 128.

We trained 2 auxiliary models, a lung segmentation one (which increased
our mean AUC by 0.004), and a bone subtraction one (which increases the
average AUC by an additional 0.021). Coupled with our 2 branch architecture,
this increases the mean AUC of our baseline by 0.038. Our current results are
presented in Table 1.

3 Methods

3.1 Lung Segmentation

Lung segmentation is the task of extracting the lung area from an x-ray, removing
areas that are considered irrelevant for diagnosing lung diseases. This can help
radiologists better focus on the part of the image they are most interested in, as
well as make it easier for them to take relevant measurements that they further
use in the process of diagnostics.

Observing that lung segmentation would also reduce background noise for
our pathology classification algorithm and help the model focus on more relevant
areas, we set out to implement a model capable of segmentation (Fig. 1-c).

The model we train is built on a UNet [18] architecture. Instead of opting
for the standard model described in the paper, we decide to use VGG16 [19] as
the encoder and adapt the decoder to it, as [12] suggested. The main reason for
this is that the ImageNet pretraining that can be applied to the VGG16 encoder
improves the performance of the model. Unlike the author, we trained on both
the Montgomery and the JSRT datasets, a total of 800 chest x-rays that were
manually segmented by radiologists. We use data augmentation in the form of
small rotations and translations. Our model achieves a Dice score of 0.96 on the
validation dataset, consisting of 100 randomly sampled images.

One notable aspect of our training’s results is that the model can achieve
similar performance on datasets coming from different data distributions. Every
x-ray generating machine generates radiographs slightly different, data coming
from different machines varying in their distributions. Most of the CAD systems
are not portable from one data distribution to another: the change makes them
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(a) Normal x-ray (b) Normal x-ray
lung segmented

(c) Collapsed lung
x-ray

(d) Collapsed
lung x-ray lung
segmented

(e) Partially col-
lapsed lung x-ray

(f) Partially col-
lapsed lung x-ray
lung segmented

Fig. 3. Limitations of the current lung segmentation algorithm

perform worse if the task they have to perform is non-trivial. The augmentation
that we used, combined with the relative simplicity of the task and the use of
3 wildly different data distributions in the training dataset helped our model
achieve a similar Dice score on other data.

A problem with this model, however, is that in case of lung obstruction, it
will only partially segment the lungs. This can lead to downgraded performance
down the line and is a good topic for further research. An example is shown in
Fig. 3.

3.2 Bone Subtraction and Suppression

Bone subtracted x-rays are versions of the original images that strongly empha-
size the skeletal tissue. They are useful in clinical settings as they help radi-
ologists spot fractures and calcification signals, which can be hard to identify
on the simple radiograph. They also present the advantage of being subtractive
from the original radiograph, which leads to bone suppressed x-rays, in which
the bone structure is not visible and the soft tissue can be seen better. Refer to
Fig. 4.

The images are produced with the help of ‘Dual Energy’ enabled x-ray
machines. Those expose the patient to two waves of radiation in an extremely
fast sequence. The first wave has a higher dosage, while the second one is lower
in intensity. This is the mechanism that allows the hardware to produce the bone
subtracted image, and it is the most reliable way to obtain them (Fig. 1-b).
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(a) Original x-ray (b) Bone Subtracted (c) Bone Supressed

Fig. 4. Bone subtraction and supression on an image from the ChestXRay-14 dataset

Our motivation for generating bone subtracted images with the help of arti-
ficial intelligence is that the method can yield an accuracy close to the one men-
tioned above while solving two major problems that standard hardware poses.
The first one is that the second irradiation doesn’t need to happen if using artifi-
cial intelligence, and the second is that ‘Dual Energy’ hardware is more expensive
and not available as much as classic x-ray machines are.

To achieve the same effect as hardware techniques, we collect an anonymized
dataset of 350 bone subtracted x-rays from the Oradea County Hospital. We use
them to train a Conditional Deep Convolutional Generative Adversarial Network
that can create a bone subtracted image. We start with the architecture of [15],
and add [20]’s self attention, spectral normalization and update the discriminator
and generator with the Two Times Update Rule (TTUR).

Doctors look after the contour of the bones when searching for fractures: thus,
the resolution of the final image is extremely important. Our model benefits from
adding a progressive multi-scaling strategy that helps it retain more of the exact
structural information presented in the original radiograph.

After training our model and testing it on real cases, we conclude that the
artificial intelligence, GAN technique can solve another problem that the hard-
ware version encounters in practice: motion artifacts. The sequence of exposures
of the ‘Dual Energy’ equipment is extremely fast, but the heart beating or slight
movements of the patient can add artifacts to the image. While the full dataset
that we have also contains artifact-broken images, we eliminate those and train
on the 350 that contain little to no artifacts. The GAN model learns only from
images without major artifacts and can generate artifact free bone subtracted
images.

3.3 Pathology Classification

The most time consuming and important task of a radiologist with regards to
x-ray analysis is diagnosing the study: identifying pathologies in the images at
hand. Inspired by [3], we create an end-to-end classification model trained and
validated on the official splits of the CheXPert and MIMIC-CXR datasets to
help doctors with this difficult task.
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We test multiple architectures like ResNet, Inception, VGG, and DenseNet.
We conclude that DenseNet works best for our task and decide to use a DenseNet-
121 architecture with 512 × 512 RGB image inputs as a baseline. The choice
for a larger input image size slows down the training of the network, but the
decision was driven by multiple consulations with radiologists. They suggested
that smaller images do not retain enough detail on incipient pathologies or on
ones that are well hidden.

Debugging neural networks is a notoriously difficult task, and artificial intelli-
gence algorithms applied to clinical tasks have to be consistently stable and well
tested before used in real scenarios. To see that the algorithm correctly links
diagnostics to their appearances in the radiography, we explain its classification
results by using the CAM [21] visualization technique. Some results are shown
in Fig. 5.

We conclude that using this visualization method has two other benefits
besides helping with debugging. It strengthens the doctor’s trust in the CAD
system, as he can see that the diagnostics the software suggests have good rea-
soning behind them, and it also guides doctors, after they gain trust in the
model, to faster navigate the important areas of a radiographs.

We evaluate the model using the AUROC score (see Table 1), as it is the
most widely used for quantifying results in this task.

Our baseline starts with ImageNet dataset pretraining. Because x-rays are
very different from the images in the Imagenet [22] dataset, we decide to aban-
don the ImageNet transfer learning used by [3]. Instead, we develop a binary

(a) Airspace Opac-
ity pathology

(b) Airspace Opac-
ity heatmap

(c) Lung Lesion
pathology

(d) Lung Lesion
heatmap

(e) Cardiomegaly
pathology

(f) Cardiomegaly
heatmap

(g) Effusion pathol-
ogy

(h) Effusion
heatmap

Fig. 5. Examples of pathologies and generated heatmaps



114 C. Avramescu et al.

classification algorithm trained on the ChestX-ray14 dataset and use it to ini-
tialize the weights from our model. This greatly improves the speed at which the
model reaches good performance and increases its AUROC score.

The binary classification model can tell normal radiographs apart from those
that contain anomalies, without the ability to specify the exact anomaly that
it encounters. While its main use was that of pretraining for our classification
algorithm, we discuss possible use-cases with radiologists and reach the consen-
sus that it is suitable for patient triage in highly dynamic and time-sensitive
environments.

We train a binary classification algorithm and use it to initialize the weights
of our model. The images resulting from our lung segmentation and GAN models
provide valuable information to radiologists in real-world cases, so we decide to
test if they help our model’s performance as well.

To combine the images for the input, we switch to a single grayscale channel
for the original x-ray image and add lung segmented and bone subtracted images
(see Fig. 1) as inputs on separate channels.

Another tool used by radiologists in clinical scenarios is the lateral view
radiographs. Some pathologies are not visible on frontal x-rays, while others can
be hidden and can be seen more clearly with the help of a lateral investigation.
With this in mind, we also add a second branch for a lateral chest x-ray, if one
is available, believing that this will help the model associate anomalous areas in
the frontal version with the ones present in the lateral version, for more accurate
and comprehensive classification.

The lateral and frontal branches are constructed from 3 of the 5 Dense blocks
normally used in DenseNet. Their outputs are firstly used to generate CAM
visualization for both the images and are concatenated and fed into the last 2
Dense blocks, which provides enough depth for the network to learn correlations
between the feature maps of the two branches.

Each of the images provides extra valuable information to the model, and
adding them improves the model’s performance. The architecture is described
in Fig. 2.

4 Results

There are the results we obtained with different network and input configura-
tions. There is a clear distinction in performance (as measured by the average
AUC across all diseases) between them.
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Table 1. AUC scores for various network architectures

Architecture AUC score

AT CA CO ED PE PN PX EC LL AO PO FR SD AVG

DN-121 0.827 0.813 0.827 0.892 0.922 0.716 0.812 0.795 0.675 0.752 0.822 0.494 0.849 0.784

DualBranch DN-121 0.843 0.831 0.837 0.910 0.934 0.733 0.817 0.814 0.683 0.763 0.828 0.500 0.866 0.797

+LungSegmentation0.847 0.834 0.842 0.9130.9380.7350.825 0.8170.685 0.7730.8330.504 0.8710.801

+BoneSubstracted 0.8510.8410.8450.905 0.937 0.734 0.8270.814 0.6930.764 0.824 0.7840.8710.822

Classes: AT - Atelectasis; CA - Cardiomegaly; CO - Consolidation; ED - Edema; PE - Plerual Effusion; PN

- Pneumonia; PX - Pneumothorax; EC - Enlarged Cardiomediastinum; LL - Lung Lesion; AO - Airspace

Opacity; PO - Pleural Other; FR - Fracture; SD - Support Devices

DN-121 - baseline architecture, a DenseNet-121 with our initial downsampling layer, trained with augmented

images

DualBranch DN-121 - our dual branch architecture, which takes 2 grayscale 1 channel inputs: frontal x-ray

and lateral x-ray (if available)

+LungSegmentation - dual branch architecture, with an additional channel on the frontal input, which

contains the lung segmented image

+BoneSubtracted - dual branch architecture + lung segmentation, with an additional channel on the frontal

input, which contains bone subtracted images (see Fig. 2)

5 Discussion

Compared to other studies, by achieving a higher overall AUC we show that
deep learning algorithms can benefit from learning with additional radiography
information, which is natural because radiologists themselves find the auxiliary
images useful.

Although we managed to increase our average AUC by combining different
supplementary inputs, we were surprised to find that the AUC scores of some
classes such as Edema and Pleural Effusion were decreased - this suggests that
the dataset we are validating on has inconsistencies in how accurate the classes
it contains are obtained.

This uncovers a major limitation of this study: the dataset used for training
is labeled with NLP algorithms which provide an effective way of creating a
large database of images and labels, but not an error-prone one. We believe a
sharp rise in the algorithm performance could be provided by a radiologist hand-
labeled dataset and we think that using such a dataset at least for validation is
a necessity in future works.

6 Conclusion

In conclusion, we manage to improve the performance of our baseline model by
increasing the size of the input, tweaking the DenseNet backbone, using weight
initialization from a task performed on the same data distribution and by adding
as inputs supplementary images, created by our 2 auxiliary models, that hold
valuable information about the case. The lung segmentation model performs
well on different data distributions than the ones it was trained on, while the
GAN model that generates bone subtracted images from classic x-rays can solve
a problem that consecrated hardware methods encounter: motion-artifacts.

In the future we plan to investigate what other auxiliary images can help the
model learn even more detail about the x-ray it has to interpret, as well as to
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improve the backbone architecture by adding attention modules and investigat-
ing multi-task learning approaches.

Lung Masks for Shenzhen Hospital Chest X-ray (Montgomery) Set:

– Dataset: https://www.kaggle.com/eduardomineo/u-net-lung-segmentation-
montgomery-shenzhen/data

– Data Sources
• National Library of Medicine, National Institutes of Health, Bethesda,

MD, USA;
• Computer Engineering Department, Faculty of Informatics and Computer

Engineering, National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”, Kyiv, Ukraine;

– Works using this dataset:
• Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F,

Xue Z, Palaniappan K, Singh RK, Antani S, Thoma G, Wang YX, Lu PX,
McDonald CJ. Automatic tuberculosis screening using chest radiographs.
IEEE Trans Med Imaging 2014;33:233-45.

• Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z,
Karargyris A, Antani S, Thoma G, McDonald CJ. Lung segmentation
in chest radiographs using anatomical atlases with nonrigid registration.
IEEE Trans Med Imaging 2014;33:577-90.

• Yu. Gordienko, Yu. Kochura, O. Alienin, O. Rokovyi, S. Stirenko, Peng
Gang, Wei Zeng, Chest X-Ray Analysis of Tuberculosis by Deep Learning
with Segmentation and Augmentation, arXiv preprint arXiv:1803.01199
(2018).

JSRT dataset: Japanese Society of Radiological Technology

– https://www.jsrt.or.jp/data/english/jsrt/.
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