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Abstract. The context of this work concerns the development of a con-
nected smartwatch for the continuous daily monitoring of physiological
parameters to prevent cardiovascular diseases, and for the follow-up of
the efficiency of treatments, against hypertension for example. This paper
focuses on a particular parameter, the blood pressure (BP), to be auto-
matically measured from the Photoplethysmogram (PPG) signal, to be
acquired using a smartwatch. The proposed method is based on the auto-
matic pulse wave detection from the PPG signal. Then, using the Lasso
algorithm, a relation has been established between the blood pressure
and the spectral representation of the normalized pulse wave, combined
with other physiological information (age, body mass index and hear
rate). The proposed method has been evaluated on a recent large public
database of 219 subjects, covering a large range of ages (20–89), body
mass indices and of blood pressures. Experimental results show accept-
able performances in terms of accuracy. Compared to a recent related
work depicting a slightly lower estimation error, a strength of our app-
roach regards its robustness with respect to the signal quality, this being
crucial for a use in daily routine in real IoT conditions, as it is the case
in this context of smartwatch.

Keywords: Photoplethysmogram (PPG) · Blood pressure (BP) ·
FFT · Lasso · IoT

1 Introduction

During the last 15 years, a lot of research has been made on photoplethysmog-
raphy signal (PPG). In 1996, [1] evaluated morphological changes of the pulse
wave due to ventilation, anaesthesia, etc. . . Moreover, this study also under-
lined the relevance of analyzing peripheral pulse wave in cardiac function, for
diagnosis purpose. Since then, some research has been focused on predicting
arterial blood pressure thanks to PPG signal as it would allow non-invasive
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and continuous monitoring. Coupling PPG monitoring with Internet of Things
(IoT) application could provide to the doctor real-time measurement and trends
over weeks of patient’s blood pressure. This would allow the early detection of
hypertension, as well as the follow-up of the efficiency of the anti-hypertension
treatment, therefore facilitating its adaptation [2,3]. In many ways, this kind of
technology would help to improve healthcare system.

Fig. 1. Smartwatch, IoT and pulse wave. Left: Developed smartwatch and mobile appli-
cation. Right: Infrared (IR) sensor on the wirst to acquire PPG signal.

This work takes place within the context of the development of a smart-
watch iHeartWatch with Axelife which is able to record several physiological
parameters, including PPG signal, from wirst. This smartwatch is connected to
a smartphone itself connected to the web. The longterm goal is to provide pre-
dictive data analysis to improve patient’s cardiovascular diagnosis and thus help
in decision making. In this context, the first challenge for the early detection of
cardiovascular diseases is to monitor blood pressure over time thanks to PPG
sensor, as illustrated by Fig. 1.

In this paper, the proposed approach is based on spectral signal analysis
rather than on temporal features, that are assumed to be more tedious to acquire,
and more sensitive to signal quality, as illustrated by recent works [4], ignoring
some abnormal PPG signals. Similarly to [4], our approach exploits physiological
features, this being often ignored by most other related methods. Note that this
work has to be integrated in a more complex acquisition and signal processing
system which should be able to contextualize and select admissible pulse waves.

Rest of the paper is organized as follows. Section 2 focuses on the description
of the method used with the different processing steps. Section 3 describes the
data and experimental results. Sections 4 and 5 respectively contains a discussion
and a conclusion.

2 Method

The block-diagram in Fig. 2 provide an overview of the proposed approach,
including several steps of signal processing that are described herebelow.
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2.1 Pre-processing

Preprocessing is require to further exploit PPG signal. This first preliminary
step is crucial, as underlined by related works dedicated to the study of filter-
ing techniques on public databases [5,6]. In our work, preprocessing consists in
several steps.

Fig. 2. Block-diagram of signal processing steps.

Step 1 - Filtering
We use a low pass linear-phase FIR filter to suppress high frequencies in the sig-
nal (Fig. 3B) with cuff-off frequency of 10 Hz which allows to suppress any power-
line interference (50 Hz, 60 Hz, etc.). A smoothing is then applied by means of a
digital filter with a polynomial order of three.
Step 2 - Extraction of pulse wave
Pulse wave extraction is achieved by searching for the minimal values between
systolic peaks (Fig. 3C).
Step 3 - Normalisation of the signal in amplitude and time
Each extracted pulse wave has been normalized between 0 and 1, to focus on
the shape of the wave, regardless to its amplitude. Then, time normalisation has
been applied (length of pulse wave set to 1), to remove the dependency to the
heart rate (and in particular to its variations over the set of pulse waves). Note
that the heart rate is measured using another sensor (averaged measure over
several cardiac cycle) (Fig. 4D).
Step 4 - Mean of pulse wave for each subject
Each signal embeds several pulse waves. To get a more robust blood pressure
estimation, an averaged normalized pulse waves have been considered over all
subject’s signals (average over the set of detected pulse waves). Leading to a
single mean pulse wave per subject (Fig. 4E).
Step 5 - Rotation and zero threshold
Last pre-processing step consisted in rotating the pulse wave horizontally and
thus being able to perform zero padding in order to increase the spectral reso-
lution (Fig. 4F).
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Fig. 3. Pre-processing steps of the PPG signal. A: Raw signal, B: Filtered signal, C:
Selected pulse wave

2.2 Feature Extraction

Feature extraction is performed in the frequency domain (FFT). This choice
enables to avoid the detection of specific keypoints in the time domain, as con-
sidered in [4], on which are extracted time-domain-based features. Note that we
only consider spectrum coefficients ranging from 0 to 10 Hz (Fig. 5).

2.3 Lasso Algorithm

Lasso is a regression analysis method [7]. It is used in large problems resolu-
tion, when there is an important set of features potentially linked to a target
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Fig. 4. Pre-processing steps of the PPG signal. D: Normalisation of pulse waves, E:
Average pulse wave with alpha (α) the rotational angle to horizontal position, F: Hor-
izontal pulse wave

value. This algorithm can perform a restricted selection of variables significantly
connected the target value to make an accurate prediction. Lasso algorithm has
been applied on following variables, including physiological ones (age, body mass
index (BMI), heart rate) and those related to the PPG signal (spectral coeffi-
cients).

3 Experiments

For experiments, a public database [6] has been considered, with the underlying
advantage of facilitating the comparison with third party works.

Data were collected at the People’s Hospital of Guilin (PHG) in China [6]
during a clinical laboratory measurement. It is composed of 657 PPG signals of
2.1 s each from 219 subjects (3 signals per subject). We end-up with a total of
212 pulse waves (one by subject) after the pre-processing steps. The 7 subjects
missing is due to bad signal quality (mostly outliers for PHG database, see
example Fig. 6B) that failed the automatic extraction of the pulse waves. It
covers a large range of ages [20–89] and a large range of blood pressure too as its
incorporates 3 types of hypertensive states. Furthermore, the database includes
physiological information like height, weight, heart rate but also it contains an
illness record about diabetes, cerebral infraction and cerebrovascular disease.

To establish a relationship between PPG waveforms and BP, the data acqui-
sition procedure has been conducted in accordance with standard experimental
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Fig. 5. A: Superposed pulse waves selected from database (colors, from blue to red,
encode the hypertensive state, red corresponding to high hypertension). B: Superposed
related spectrum magnitude of pulse wave with same color scale (Color figure online)

conditions. It is important to mention that each subject was sitting in a comfort-
able position for 10 min to reach a rest state which allows reliable non-invasive
cuff-less and continuous PPG signal measurement. However, this database com-
prise one drawback, the duration of the signals is very short, 2.1 s. Note that
there is no possibility to evaluate dynamic changes.

During the experimentation, Lasso algorithm gave us some specific frequen-
cies to use as features in order to predict BP. Table 1 shows the spectral frequen-
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cies and physiological characteristics selected to predict Systolic Blood Pressure
(SBP) and Diastolic Blood Pressure (DBP).

Table 1. Lasso selected features.

DBP SBP

Frequency (Hz) 1 - 3.5 - 5 - 9 0.5 - 1 - 2.5 - 4 - 8.5

Physiological characteristics BMI - HR Age - BMI - HR

Results of BP prediction performance are reported in Table 3. They are pre-
sented as Mean Absolute Error (MAE) and standard deviation (SD) of the MAE
in terms of millimeter of mercury (mmHg), this being the standard unit for blood
pressure in medicine. Formula are presented in Table 2. We computed K-fold
cross-validated mean squared prediction error to evaluate total efficiency of our
model.

Table 2. Evaluation performance formula.

MAE = 1
n

∑n
t=1 |BPpredicted − BPreference|

SD MAE =
√

1
n

∑n
t=1(BPpredicted − MAE)

According to [9], the criteria to fulfil AAMI protocol is that the mean differ-
ence and standard deviation between the given value of the mercury standard
device and the one of the test devices must be in within 5 mmHg± 8 mmHg.
From this point of view, even if we do not use exactly the same performance
values, [4] seems closer to be accepted than us as long as their is a control on
signal quality otherwise our algorithms will probably perform the same or better
on PHG database.

Table 3. Results: Blood pressure estimation error MAE (SD).

Method DBP (mmHg) SBP (mmHg) Discarded subjects (%)

Yang2018 4.13 (5.26) 9.18 (12.57) 12.78

Our approach 7.98 (6.25) 13.69 (10.61) 3.20

We tried to compute pulse waves without normalisation in amplitude too but
results were a bit worse, therefore justifying our choice. In our sense, normal-
ization is relevant due to environmental condition that can influence the signal
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Fig. 6. Extraction of specific points on pulse wave. A: Correctly detected key points,
B: Uncorrectly detected key points

amplitude measured. Especially due to temperature, lighting, skin contact qual-
ity, degree of pressure applied on the sensor against skin. All of those combined
could influence estimation results if the pulse waves are not normalised.

Discarded subjects regards the proportion of the database that has been
ignored. In our case, few subjects has been automatically discarded, while in
[4], this has been done by visual control the signal quality. They do not give
any explanation about the reason of ignoring these signals, nor any quantitative
measure about the impact of the signals on the value of the MAE.
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4 Discussion

The proposed method leads to acceptable performances in terms of MAE but
appears more robust than [4]. Note that our results remain acceptable from a
medical point of view, at least to provide an information about the evolution
of the blood pressure in such a context of continuous daily monitoring using
a smartwatch. The robustness regards to ability of our proposal to process all
PPG signals, except the 7 cases which have been automatically discarded. In [4],
about 13% of signals (i.e. 4 times more) have been ignored. Moreover, it must be
underlined that these irrelevant signals have been manually discarded, based on
a visual control of their quality. In our sense, it is crucial not to be too sensitive
to signal quality or, at least, to be able to automatically detect irrelevant signals
(this being done manually in [4]). This is particularly critical for a use in real
conditions (smartwatch), which is not the case for the considered database where
signals have been acquired in a controlled environment. This lack of robustness of
[4] is probably due to the large number of temporal features to be extracted (12
features), each one with a dedicated algorithm focusing on the detection of some
keypoints on the pulse wave. To illustrate this aspect, we have also implemented
these features using the method described in [4]: Fig. 6 provides some examples of
uncorrectly detected key points on some pulse waves. It has been observed that
in many cases, keypoints were uncorrectly recovered, due to the variability of
the signal. In our case, the observed robustness is probably due to the fact that,
except for the step focusing on the pulse wave detection, our proposal is based on
spectral representation of the signal (Fourier transform), and a straightforward
measurement of the relation between this representation and the blood pressure
(using the Lasso algorithm). Our work is only compared with [4] because of
the considered database. Indeed, this recently published database is the only
one providing, together with PPG signals, physiological information regarding
subjects (this being not the case of other databases such as MIMIC [8]). Such
an information has been proved to be required [4] to ensure a better estimation
of the blood pressure.

5 Conclusion

IoT-based devices such as smartwatch are really promising systems for the non-
invasive daily monitoring of the cardiovascular system in order to prevent dis-
eases such as hypertension. A difficulty is the automatic and robust measurement
of physiological parameters for a use in daily routine in real condition, with, for
instance, lightening and temperature variations. The proposed method aims at
providing such a robust estimation of the blood pressure from the PPG sig-
nal. Although providing a slightly larger error than a recent work on this topic,
measurements remain useful to provide a trend of the evolution of the blood
pressure in a non invasive manner. A strength of this method is its robustness
with respect to the quality of the signal, and its ability to automatic ignore irrel-
evant waves, this being manually done in recent related works. Future steps will
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focus on the error reduction by integrating other signal features and additional
external physiological information.
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