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Abstract. Sensor data synchronization is a critical issue in the Inter-
net of Things environments. In general, when a measurement environ-
ment includes different independent devices, it is paramount to ensure
a global data consistency to a reference timestamp. Additionally, sen-
sor nodes clocks are typically affected by environmental effects and by
energy constraints which generate clock drifts. In this work, we present a
specific Internet of Things architecture composed by seven Inertial Mea-
surement Unit nodes, three Raspberry Pi 3, three video cameras and
a laptop. In specific, we present an off-line data-driven synchronization
solution which handles data of different nature and sampled at differ-
ent frequencies. The solution solves both the data synchronization issue
and the data-time alignment due to clock drift problems. The proposed
methodology has been implemented and deployed within a measurement
context involving infants (from 8 to 15 months old), within the scope of
the AutoPlay project, whose goal is the analysis of infants ludic motricity
data in order to possibly anticipate the identification of neurodevelop-
mental disorders.

Keywords: IoT system · Sensor data synchronization · Activity
inference · NDD early detection · Healthy youth · Infants · Play

1 Introduction

The AutoPlay project [3] consists in the design and implementation of an IoT
solution as an application for supporting pediatricians in the early diagnosis of
neuro-developmental disorders. In particular, AutoPlay investigates the devel-
opment of toys manipulation patterns in the very small children ludic behavior
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(less than 2 years old). The infants manipulation analysis results are then
exploited in order to build infant ludic behavioural models, and to create a
prediction model able to support pediatricians in the identification of atypical
infant ludic behaviour, which could be related to social problems or neurodevel-
opmental disorders.

The very final objective of AutoPlay is reaching a social systematic change
on how ludic behavior is observed, analysed and considered for evaluating and
identifying early signs of neurodevelopmental disorders and social problems. This
will allow the anticipation of the diagnosis and the necessary therapy, hence
increasing the opportunity for a better quality of life.

In this work we describe the IoT solution exploited for an initial pilot study,
aimed at creating a first database of infants ludic behavioural data. The data
collected during this pilot consists in video recordings and inertial measurements
data. In particular, in this work we present the preprocessing analysis performed
over the collected data, and in particular the designed and implemented data
synchronization procedure, necessary for quantifying and handling the non con-
stant time shift between the chock of the different data sources. The main goal
of the presented data synchronization procedure is to generate a reliable and
usable dataset which can be subsequently applied to a machine learning analysis
for manipulation activity inference.

The rest of the paper is structured as follows. Section 2 briefly summarizes
the state of the art approaches for sensor data synchronization in IoT envi-
ronments. Section 3 presents the materials and methodologies applied for the
AutoPlay project and the related design and implementation of the IoT system
architecture. Section 4 is the main part of the paper: it provides a presentation
of the pre-processing task and related issues, and provides a detailed description
of the implemented two/steps synchronization solution. Finally, Sect. 5 presents
a final discussion on the presented work, future works and possible alternative
solutions.

2 Related Works

Time synchronization is a critical issue in Wireless Sensor Networks (WSN) and
Internet of Things (IoT) environments. In general, when a measurement envi-
ronment includes different independent devices, it is necessary to ensure data
consistency to a global reference timestamp: all data captured from different
devices, measuring events at the same time, should have the same timestamp. A
logical synchronization approach (i.e., the Lamport algorithm for ordering events
happened in a distributed environment) does not solve our issue. What we need
to identify is a global reference clock, and to synchronize all the heterogeneous
sampling devices to it, with a precision in the order of ms. Additionally, we
also need to compensate the clock drifts of each sensor nodes, due to environ-
mental effects (i.e., fluctuations in temperature, pressure, humidity) and energy
constraints (i.e., limited power resources).

There are different solutions developed for the WSN, where the synchroniza-
tion procedure is performed by means of wireless messages exchange between
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pairs of devices [4], or broadcasted to the network [2,8], where the content of the
message consists in the actual global timestamp [5,7,12]. Skiadopoulosa et al.
[11] presents an approach slightly different from the traditional ones for WSN
which induces negligible extra overhead, in fact it does not require extra mes-
sages and re-synchronization procedures for handling the clock drift problem: in
their approach, data measurements is synchronized instead of node clocks.

These approaches require the establishment of a wireless network between
sensor devices as a mesh (all the sensors devices are connected through neighbor
nodes) or as a star (each sensor device is connected to a central node, typically
a master node).

Traditional data synchronization strategies cannot be applied in many IoT
contexts, where sensor devices have intermittent or no connectivity to the net-
work and have limited power resources. There exist different solutions which
implement real-time data synchronization [10], or which requires data stream-
ing, and solutions which simply tolerate un-synchronized data. Other synchro-
nization approaches are only based on sensor data and are performed off-line.
Luckac et al. [9] present an approach relying on regularly occurring events and a
model of the event propagation to allow correction of the time information. This
solution is limited in that it requires a known regularly occurring seismic event.
Harashima et al. present a synchronization solution assisted by environmental
signals [6]. The environmental signals being measured are used as an additive
noise that synchronizes the sensors. Because it is expected that the sensors in
a limited range will see the same environmental signals, these signals can be
used to aid the synchronization. Bettet et al. presents a similar synchronization
procedure [1], where the communication between sensors is not required, and it
can handle heterogeneous devices.

The technique proposed in this work allows for time synchronization between
heterogeneous sensor devices, without the necessity of communication between
them. The synchronization is performed off line, allowing the devices to reserve
their power resources for the sampling task. The proposed approach is similar
to already existing approaches because based on the presence of a reference
synchronization event measured by all the devices at the same time. However,
differently from the other approaches, it implements a supervised procedure
for the identification of the time shift: it maximizes the proximity between the
sensors aggregated data signals and a ground truth signal, and measures the
clock shifts from the result of the optimization procedure. The usage of the
aggregated signal increases the accuracy of the synchronization, which is in the
order of milliseconds. The proposed approach works well for environments with
multiple sensor devices. If the number of devices is too large, a dynamic device
sampling procedure is required for ensuring the procedure scalability.

3 Materials and Data Collection Architecture

The focus of AutoPlay is to understand the way children use toys, in order to
detect infants atypical behavioural patterns. To achieve this goal we identified



6 S. Sguazza et al.

a set of toys belonging to the main sensory-motor classes of play: mouthing,
simple manipulation, functional, relational, and functional-relational. More in
particular, with the support of a professional toy designer 1 we developed the
AutoPlay toys-kit, composed by: a ball, a doll and a spoon, 3 cubes, and a car
(Fig. 1).

Fig. 1. AutoPlay toys kit

Each toy embeds one 9 DoF IMU (9 Degrees of Freedom Inertial Measure-
ment Unit) sensor node that collects:

– 3D-acceleration data,
– 3D-gyroscope data,
– 3D-magnitude data.

The employed device is the Shimmer3 IMU Unit. The car includes also two
rotary encoders attached to the sensor node itself, which are used to measure the
movements and directions of the car’s wheels (independently of the movement
of the car main body).

The IMU sampling frequency is fdata = 100.21 Hz for all the toys except the
car, whose sampling frequency is fdata = 504.12 Hz. The sampling frequency of
the car has been set in order to be able to identify complete wheels rotations
(the used rotary encoder is a mechanical encoder with 24 pulses per revolution).

While a child is playing with the toys data are collected locally by the embed-
ded sensors and stored within the sensor node micro-SD card. At the end of each
playing session, data are downloaded on a central repository and prepared for
the following off-line analysis.

The data collected by sensors are used for the identification of the toy move-
ments. This information is directly correlated to the manipulation activities per-
formed by the infant, thus allowing us to analyze the infant ludic behaviour.

1 Pepe Hiller http://www.pepehiller.com/.

http://www.pepehiller.com/
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We collect also video recordings of each infant’s play session at 25 fps (frames
per seconds). These recordings are collected in order to have ground truth (GT)
data for the manipulation activities performed by infants. All videos are visual-
ized and used for the creation of corresponding video logs (Fig. 2): each activity
performed by the infant during a video recording (playing session) is logged as
a row in a log file, which specifies the name of the activity (Activity) (from a
list of micro-activities initially identified with the support of a clinician), the
name of the involved toy (Toy), the relative time of the activity within the video
in frames (Frame start and Frame and), the camera from which the activity is
visualized and logged, and a categorical value specifying if the activity is seem-
ingly unintentional (N ) or performed as a consequence of a stimulus from an
adult person, the educator (E ). The timestamp of the video recording is stored
as meta-data, and used to keep track of the global timestamp of each activity.
The log data is anonymised, in the sense that there is no connection between
the collected data and the corresponding playing infant.

The log files generated from the collected videos are used as digital target
data, for subsequently training a machine learning model for inferring infant
ludic manipulation activities.

Fig. 2. Ground truth log file example

3.1 Architecture

In order to collect manipulation data, we created an ad-hoc Internet of Things
Measuring Environment. The networked devices involved in the measurement
process are listed below.

1. Three cameras which record the infant activities from different angles. The
cameras are located at a distance less than 2 m form the playing area. Their
position, with respect to the center of the playing area, is equally distributed
in order to be able to visualize all the movements performed by the infant.
Each camera is an ad-hoc module applied to a Raspberry Pi 3 Model B.
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2. A laptop which is wired connected to the cameras through a switch. The
laptop is an interface for the person which manages the playing measurement
sessions (the educator). It is used as Network Time Protocol (NTP) server
to synchronize the clock of each raspberry device, to remotely access one of
the raspberry devices performing a server role (for starting and stopping the
video recording for all the cameras), and to collect and store the recorded
videos.

3. An IMU sensor node per each toy within the AutoPlay toys-kit.

This ad-hoc environment has been deployed within two local kindergartens in
Tessin (Switzerland). The data collection pilot lasted for 15 months and involved
24 infants in the age of 8 to 15 months. The study was conducted in accordance
with the Declaration of Helsinki and written consent was provided by all partic-
ipants families. The study was reviewed and approved by the competent ethics
committee (Swiss Ethical Committee of Kanton Tessin, ref. PB 2016-00056)
before the start of participants inclusions.

In order to protect infant privacy, the laptop and the raspberry Pi involved
in the study, do not have access to the Internet. All sensitive data (video record-
ing, infants demographics and IMU data) are not transmitted via wireless. This
particular settings have been decided in accordance with the Swiss Ethical Com-
mittee. All the devices wire-connected (within the measurement LAN) are syn-
chronized with each other. A schema of the wired measuring environment is
provided in Fig. 3.

Fig. 3. Measuring environment LAN

The sensor nodes are independent of the other IoT devices. During the
described pilot study we tested two possible configurations:

1. sensor nodes synchronized with the measurement LAN by means of BLE
(Bluetooth Low Energy) communication with the laptop (data-time synchro-
nization is performed before the video-data collection);
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2. sensor nodes completely independent of the sensor LAN during the measure-
ment sessions, the synchronization between the recorded videos and the data
collected is performed later on, during the preprocessing analysis.

Details about the two solutions are described in Sect. 4.

4 Methodology

Within the presented architecture, the sensor nodes and the video cameras are
independent from each other, generating then a synchronization issue in the
collected data. In this paragraph we are going to describe how we handled the
synchronization issue between the videos recorded and the sensors collected data.
As described in Sect. 3, we implemented two configuration for the sensor data
collection. In a first configuration we established a BLE connection between the
laptop and each sensor device: the connection allowed the timestamp synchro-
nization (the employed sensor does not have a real-time clock), the sampling
frequency configuration, and the sampling session management (start-stop sam-
pling commands). With this measurement configuration, the collected data are
already synchronized with the videos recorded by the cameras.

In the second configuration, all the sensor devices are configured and syn-
chronized with each other before the measurement session, but they are not
synchronized with the rest of the IoT devices. In this case a synchronization
between the video recordings and the sensor collected data is required, and per-
formed offline, during the data preprocessing phase.

The first approach would be the preferable one, because it requires less pre-
processing actions. However we opted for the second approach, because even if
it requires a synchronization pre-processing procedure, it ensure the absence of
data loss, which is indeed very frequent with the first approach. In fact, the BLE
communication had reliability issues within our pilot measurement environment.
The laptop was not always able to reach all the sensor nodes and the sampling
sessions was not always starting when necessary, causing a considerable loss of
data.

Within the context of our pilot, data loss is an important negative aspect
compared to the increased pre-processing computational effort. The limited avail-
ability of infants and families giving their consent for the data collection, and the
difficult selection procedure of the appropriate moment during the day for the
infant playing sessions, gives a greater value to the actual presence of collected
data, even if this data require a pre-processing procedure.

In order to implement the second approach, within the measuring environ-
ment, an adult person responsible for the playing sessions (typically a kinder-
garten educator) had to manually start and stop the sampling procedure on each
device. The toys have been designed in such a way that the start/stop sampling
button was easily reachable, without completely disassembling the toy (Fig. 4).
At the same time, the toys have been designed in such a way that the sampling
button was not reachable by an infant.
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Fig. 4. AutoPlay toys plug details

Additionally, for both configurations, a second phase data-time alignment is
required, in order to handle sensor related clock drift issues.

4.1 Sensor Data Synchronization

As explained above, in order to analyze the collected data, an important step
is the timestamp synchronization between the recorded videos and the sensors
data. The main goal of this task is to identify the time shift between them in
order to align the sensors data with the ground truth videos.

Additionally, there exist a not negligible clock drift in the collected data,
which requires a two-steps synchronization procedure:

1. identification of the overall synchronization time shift ;
2. perform a per-measurement post-synchronization data-time alignment.

For the synchronization task, we start from the assumption that all the
devices timestamp are synchronized to the actual date and time of the day:
the synchronization time shift we are searching for, in the worst case, is in the
order of minutes. To perform the timestamp synchronization we implement the
following steps (Fig. 5).

1. We record a first video i during which we perform a synchronization event.
2. We select the event starting frame F event

i from the video and encode it in
timestamp format in milliseconds T event

i .
3. We select from the sensors raw data a data time window of 4 min W sync

i ,
where T event

i refers to the middle point of the window. Within this time
window we search for the synchronization event.

4. We identify the event starting time in milliseconds T sync
i within the W sync

i ,
and we calculate the synchronization time shift Si = |T sync

i − T event
i |, which

subsequently is applied to all the data collected during session i.
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This procedure has a sort of analogy to the audio-video synchronization
procedure in a film production. Also in that case, audio and video signals are
recorder independently. In order to synchronize the two, the producer creates a
characteristic event using a clapperboard which can be recognized in both audio
and video signals.

Fig. 5. First step synchronization

4.2 Identification of the Synchronization Event

In order to generate the synchronization event, we performed a characteristic
movement with the toy (the reference toy for this analysis is a cube). In particular
we overturn the toy to stand on a different face, multiple times (minimum 2
times). We exploited also different movements (i.e., trowing the toy, lifting and
spinning the toy), resulting in a lower accuracy synchronization. The reference
signal we exploit for synchronization is the acceleration, and in particular we
implemented the T sync

i -search procedure on the acceleration axis over which the
toy is overturned.

Considering the data recorded during the synchronization overturning move-
ment: the data are first filtered for removing the signal noise; subsequently the
derivative of the signal is calculated and exploited for the event identification.

In order to use the acceleration data collected while performing the synchro-
nization event to identify the T sync

i we process the signal through a low pass filter
for signal noise removal: we decided to use a filter which works on the spatial
domain (a Gaussian filter), instead of a frequency domain filter which might add
some signal artifacts. In Fig. 6 the row signal is represented in blue, the filtered
signal without noise is in orange. Afterwards we calculate a discrete derivative
on the filtered signal, in order to detect the time of the synchronization event
(green in Fig. 6).

The derivative values have a normal distribution with zero mean. We then
identify the synchronization time, the first time the derivative signal values falls
outside the interval [μ − 1.45 ∗ σ, μ + 1.45 ∗ σ] (where μ = 0 and σ are mean
and standard deviation of the derivative signal). The 1.45 multiplicative factor
has been chosen empirically. The result is depicted in Fig. 6, where the red line
is a step function, different from zero when the toy is performing an overturn
movement, and the vertical solid yellow line corresponds to the identified T sync

i .
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Fig. 6. Acceleration data: example of synchronization procedure with four overturn
movements (Color figure online)

(a) Constant gravity (b) Non constant gravity

Fig. 7. Measured acceleration magnitude

At this point we can calculate the synchronization time shift as reported in
Eq. 1.

Si =
∣
∣T sync

i − T event
i

∣
∣ (1)

4.3 Gravity Acceleration Removal

As part of the data preprocessing, we had to discriminate signal noise (non-
activity) from actual toy movement (activity), this allows the second step of the
synchronization: post-synchronization data-time alignment.

In order to be able to differentiate between activity and non-activity we need
to first remove the constant gravitational component from the acceleration data.
For this task we work on the magnitude of the acceleration vector.

The acceleration magnitude signal is the sum of two components: a dynamic
component, proportional to the sum of the forces applied to the sensor node,
and a constant component, which correspond to the gravity. In our case, the
collected signal, besides being very noisy, it does not always have a longitudinally
constant gravity component, however it can change over time. This clearly adds
complexity to the synchronization task. For the case of a sampled signal with
constant gravity (see Fig. 7a), we remove the gravity component with an high
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pass filter with cut off frequency fc = 0.001Hz. For the case of a sampled signal
with non constant gravity (see Fig. 7b), instead, we use a Notch filter, with
parameter λ = 0.7: the selected value minimizes the effects of the filter due to
the applied transfer function. Focusing on the goal of this task, we need to select
a filter which removes the gravitational component, producing an output signal
which allows us to differentiate activity from non-activity. Applying the Notch
filter with the specified parameter value, produces some changes to the original
signal but has a faster response in the gravity removal task, compared to other
filters and parameter values.

Fig. 8. Example of application of Notch filter, λ = 0.7 (Color figure online)

Figure 8 represents an example of application of the Notch filter on a non-
constant gravity acceleration signal: in blue the magnitude of the acceleration
raw data, and in orange the result of the applied filter.

4.4 Activity Discretization: Differentiation Between
Activity/Non-activity

In order to finally differentiate between activity and non-activity we perform
a statistical analysis of the acceleration signal values. From the acceleration
dataset <ax, ay, az> we compute the features vector <pna ,ma> where:

– pna corresponds to the power of the acceleration magnitude m̄a, filtered for
gravity removal, calculated over a window of n samples;

– ma corresponds to the per-sample magnitude of the acceleration, calculated
after the application of the gravity removal filter, independently on each axis
of the acceleration.

We study the distribution of the computed feature values for two acceleration
signals, both corresponding to a time window of 30 s, one referred to an activity
session (signal generated by the concatenation of different real activity signals),
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and the other related to a non-activity session, both sampled at 100, 21 Hz. For
the power feature, we evaluate the impact of the window size (number of samples
n) on the values distribution.

Fig. 9. Magnitude values distribution

Figure 9 represents the distribution of magnitude values ma for both accel-
eration signals. While Fig. 10 represents an example of distribution of the power
values p8a, for an averaging window of 8 samples. For both figures, the blue bars
are referred to non-activity signal, while the orange bars are referred to activity.

Fig. 10. Power values distribution, dimension of the averaging window n = 8

In both cases we can identify a threshold value for the data discretization,
and for the power feature we can also identify a window size value. In order
to identify these parameters, we implement an error minimization approach,
calculating the error in time, over a signal which is associated with its ground
truth (start and stop time of each activity). The error is measured in time
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(milliseconds) as the absolute value of the difference between the ground truth
data and the computed signal discretization (activity/non-activity), varying the
discretization parameters (threshold and window size).

For the case of signal power based discretization, we applied threshold values
in the range of thpower = [0.001; 0.036] selected empirically. We applied win-
dow size values in the range n = [2; 18]. Window size is determined by some
domain constraints: the minimum size of an intentional movement of an infant
corresponds to 2 video frames (recorded at 25 fps), which means 8 samples of
acceleration data (sampled at 100, 21 Hz).

Fig. 11. Single signal with associated GT

Figure 12 shows the sum of absolute error calculated over a single signal
(Fig. 11) involving four changes of state (activity/non-activity). We can see from
the graph that a window of size n = 7 (approximately the length of two video
frames) reached a minimum error with threshold values in the range thpower =
[0.008; 0.036].

Fig. 12. Sum of absolute error calculated over a single signal, discretization on signal
power

In order to implement a more accurate solution, we perform the signal dis-
cretization over a multiple sources signal. The assumption for this solution is
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that all involved sources (sensor nodes) are synchronized with each other. In
this case we perform an Aggregate Error Minimization: the error minimization
task is applied to all the sensors data, computing an aggregate sum of absolute
error.

This results in a convergence curve: the aggregated error converges to a value.
The search for the convergence value stops when the procedure calculates 5 con-
secutive equal error values. Figure 13 represents the convergence curve of the
aggregated error calculated over a real experiment. In this case, for all window
sizes n = [8; 12], the convergence value for an optimal aggregate error corre-
sponds to a threshold of thpower = 0.015.

Fig. 13. Convergence curve

We performed a qualitative evaluation of the discretization procedure on the
sampled data. Figure 14 represents an example of optimal delays found at differ-
ent threshold values, with a fixed window size of n = 10. The delay represented
in the figure is the time difference between the GT timestamp and the raw data
timestamp, before the first step synchronization.

Fig. 14. Delay vs threshold on power discretization, window size n = 10
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This discretization procedure can be seen as a binary classification task,
where the positive class is the activity and the negative class in the non-activity.
Lowering the threshold value we increase the True Positives (activity correctly
identified as activity), however very low threshold values increases the False
Positives (real non-activity, as signal noise, identified as activity). Increasing
the threshold value we increase the False Negatives (real activity identified as
non-activity).

Figure 15 represents an example of the discretization procedure on the sam-
pled data. All the lines are step functions equal to 0 in correspondence of non-
activity, and 1 for the activity (the signals have been translated vertically for
visualization purposes). The blu plot represents the aggregated ground truth
(aggregated over multiple sensors) and generated from the video recording: the
signal is equal to 1 if, from the recorded video, the infant is performing a manip-
ulation activity with one of the available toys. The orange plot represents the
same signal plotted above after the application of the overall synchronization
time shift. The green plot is referred to the acceleration data: it is the result
of the discretization procedure based on power feature, with parameter values
thpower = 0.030, n = 10. Analogue results are reached with all the rest of the
data in the sample dataset.

Fig. 15. Discretization example, th = 0.030, n = 10

We can see in Fig. 16 the application of both the discratization procedure
based on power and on magnitude. The procedure has been applied to a single
sensor data for visualization purposes. In the figure, the blue plot represents the
sampled acceleration magnitude, while the green data corresponds to the acceler-
ation magnitude after removing the gravitational component. All the remaining
signals have been translated vertically for visualization purposes (for all of them,
the real minimum value is 0). In brown the result of the discretization based on
power (power in orange). In pink the result of the discretization based on mag-
nitude (magnitude in grey). In red the infant activities identified in the ground
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truth video recordings. Both methods perform well, however in the case of mag-
nitude based approach the results present an higher value of False Positives (real
non-activity identified as activity). We decide then to implement the power based
method.

Fig. 16. Discretization procedure application on a single sensor signal raw acceleration
data (Color figure online)

4.5 Post-synchronization Data Time Alignment

We described above the procedure for the identification of the overall synchro-
nization time shift between sensors data and video recording. However the syn-
chronization requires a second step in order to deal with the clock drift issue:
each measurement session requires a specific data-time alignment in order to
adjust the synchronization error introduced by the sensors clock drift. This step
is also required in the BLE measurement configuration, introduced in paragraph
Sect. 3.

When we perform the post-synchronization data alignment we have to con-
sider two important issues. One consists in the fact that we have a video recorded
ground truth sampled at a frequency of fvideo = 25 Hz, while the IMU data is
sampled at fdata = 100.21 Hz (fdata = 504.12 Hz for the car). When we perform
the alignment of the ground truth with the raw data, we have to consider the
fact that the two frequencies are not multiples of each other. A second issue
is related to the information present in the GT data, and in the collected raw
data: the reference GT associated to a video consists in a list of all the activities
performed by the child, with related information about first and last frame of
the activity; the raw data instead includes information about all the movements
of the toy, including the movements not directly related to the activities of the
infant (e.g., interaction with the educator, with other toys, with the surround-
ing environment). The usage of the aggregated raw data (data collected by more
than one sensor) reduces the effects of this last issue. These issues however force
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a lower bound for the data synchronization error: the acceptable error is in the
range [−40,+40]ms, where 40 ms corresponds to the interval of time between
two video frames, and 10 ms corresponds to the interval of time between two
inertial sample data.

In order to apply the post-synchronization alignment, we perform a similarity
analysis between the synchronized aggregated raw data discretization signal and
the related aggregated GT discretization signal. This analysis has the goal to
maximize the similarity between the two signals, searching for the maximum
similarity when performing a convolution of a portion of the GT signal (typically
one half of the GT time series) over the one related to raw data. This procedure
allows the identification of a per-measurement time alignment which is then
applied to the data, as a final step of the synchronization and data pre-processing
procedure.

4.6 Final Results

Summarizing the analysis described above, in order to align the raw sensor data
to the GT signal we apply a time shift correction to the raw sensor data, as
reported in Eq. 2: where j refers to a measurement session recording, while i
refers to a prior synchronization event video. Equation 3 represents the delay
component Di,j , which corresponds to the sum of two time intervals. dtsynci is
the delay measured during the first synchronization phase, while dtalignj is the
time alignment delay for the specific measurement j.

T data
i,j + Di,j = T video

j (2)

Di,j = dtsynci + dtalignj (3)

As a result of the analysis described in this work, we have a data-set of
sensor data with associated GT, ready for the application of machine learning
algorithms for infant ludic behavioural analysis.

5 Conclusions and Future Works

5.1 Conclusions

We presented in this work a sensor data-driven synchronization methodology
and its application within a multi-sensor environment, storing different types
of data (inertial data and video recordings) at different sampling frequencies.
In order to apply the presented methodology, network communication between
the devices is not required. The presented methodology consists in a two steps
procedure: the first one performs the synchronization between the sensor nodes
data and the recorded videos; while the second step synchronization allows the
data-time alignment when a sensor data clock drift is present. The methodology
has been implemented within the context of the AutoPlay project, involving
infants and toys for the data acquisition, in a constrained environment.
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5.2 Future Works

The proposed procedure works well in the test pilot environment. However, we
are currently working on future developments. In the current state of the work,
we do not include the ball in the synchronization procedure, for which we are
developing a different procedure for generating a reliable synchronization event.
Moreover, we are implementing a machine learning algorithm for the signal dis-
cretization: building a binary classifier in order to recognize if a given signal
refers to a toy manipulation activity or not.
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