)

Check for
updates

Analysis of Software Vulnerabilities Using
Machine Learning Techniques

Doffou Jerome Diako'®™®, Odilon Yapo M. Achiepo’,
and Edoete Patrice Mensah®

! EDP, INPHB Yamoussoukro, Yamoussoukro, Cote d’Ivoire
kingdjako@gmail. com
2 Peleforo Gon Coulibaly University, Korhogo, Céte d’Ivoire
3 INPHB Yamoussoukro, Yamoussoukro, Cote d’Ivoire

Abstract. With the increasing development of software technologies, we see
that software vulnerabilities are a very critical issue of IT security. Because of
their serious impacts, many different approaches have been proposed in recent
decades to mitigate the damage caused by software vulnerabilities. Machine
learning is also part of an approach to solve this problem. The main objective of
this document is to provide three supervised machine to predict software vul-
nerabilities from a dataset of 6670 observations from national vulnerabilities
database (NVD). The effectiveness of the proposed models has been evaluated
with several performance indicators including Accuracy.

Keywords: Machine learning - Vulnerabilities - Naive Bayes - Support vectors
machines + CVSS

1 Introduction

The use of computer software has now become part of everyone’s daily life. There are
different forms of software ranging from simple applications to sophisticated dis-
tributed platforms. These softwares are developed with many different methodologies,
based on a wide variety of technologies. The recurring problem with these software is
the discovery of vulnerabilities. In the context of software security, “vulnerabilities are
specific flaws or omissions in software that allow attackers to perform malicious tasks,
expose or modify sensitive information, disrupt or destroy a system, or take control of a
computer system or program” [1]. Many approaches have been proposed in recent
decades to reduce the damage caused by software vulnerabilities. Machine learning is
one of the new approaches to solving this problem. The main objective of this article is
to propose three approaches based on supervised learning to effectively predict soft-
ware vulnerabilities based on a dataset of 6670 observations.

2 Methods for Analyzing Software Vulnerabilities

Several approaches have been proposed and studied by researchers and practitioners to
analyze vulnerabilities in the context of software security. The programs are imple-
mented in a variety of languages and contain serious vulnerabilities that can be

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved

R. Zitouni et al. (Eds.): AFRICOMM 2019, LNICST 311, pp. 30-37, 2020.
https://doi.org/10.1007/978-3-030-41593-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41593-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41593-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41593-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-41593-8_3

Analysis of Software Vulnerabilities 31

exploited to cause security breaches. A study deepens the analysis methods for
reducing software vulnerabilities have been developed by Zulkernine et al. So, they
categorized these methods into three categories namely, static analysis, dynamic
analysis and Hybrid Analysis [2]. These proposed above approaches are approximate
solutions. They lack generally either strength or effectiveness facing the technique of
machine learning and data mining.

3 Techniques of Machine Learning and Data Mining

In addition to the approaches outlined above, there are other approaches to analyze
software vulnerabilities. This approach is based on data mining by techniques of
machine learning. This approach is the focus of increasing attention from the scientific
community since 2011 [3].

4 Related Work on the Use of Machine Learning

According Ghaffarian [4] there are three categories of approaches for analyzing soft-
ware vulnerabilities by machine learning. Those are: The vulnerability prediction
models based on software parameters; The anomaly detection approach; Pattern
recognition of vulnerable code. In this study we present the approach of vulnerability
prediction models based on software parameters.

4.1 Prediction Vulnerabilities Based on Software Settings

This approach uses knowledge extraction techniques from data to predict the vulner-
able software artifacts (source code files, object-oriented classes, binary components,
etc.) based on software settings. The models are built from a historical database pro-
viding a list of software artifacts that may contain failures to prioritize software testing
efforts (Kaner et Bond 2004). Zimmermann et al. [5] investigated the possibility of
predicting the existence of vulnerabilities in the vista operating system of Microsoft
Windows. Coverage parameters have not produced significant results. Results include a
precision of less than 67% and a point below 21%. Meneely and Williams [6] studied
the relationship between the parameters of the activity of developers and software
vulnerabilities. The authors used the Bayesian network as predictive model, with
tenfold cross validation to generate sets of training and validation. According to the
authors, the analysis shows that the activity of the developer can be used to predict
vulnerable files; however, the precision and recall values are disappointing (accuracy
between 12% and 29% and reminders between 32% and 56%). Moshtari et al. [7]
proposed a semi-automatic scanning framework to detect software vulnerabilities.
Their study examined the prediction of inter-project vulnerabilities based on data
collected in five open-source projects. Several classification techniques were used for
the experiments. The best inter-project forecasting models achieved a detection rate of

32 D. J. Diako et al.

about 70%, with about 26% of false positives. Morrison et al. [8] claim that if failure
prediction models are adopted by some teams such as Microsoft, this is not the case of
prediction models vulnerabilities (PMV). To understand, the authors attempt to
reproduce an PMV proposed by Zimmermann et al. [9] for the two most recent versions
of Microsoft Windows operating system. The authors reproduced prediction accuracy
at the binary level of 75% and a point of 20%; However, binaries are often very large
for practical inspection and prediction at the source file is preferred by engineers.
Therefore, the authors constructed the same model at the level of granularity of the
source file, which gave an accuracy of less than 50% and less than 20% recall. Based
on these results, Younis et al. [9] attempting to identify the attributes of the code
containing the most likely to be exploitable vulnerabilities. For their efforts they gather
183 vulnerabilities from the Linux kernel and the Apache httpd web server, which
includes 82 exploitable vulnerabilities. The authors select eight software settings in
four different categories to characterize these vulnerabilities and are using the Welch t
test to examine the discriminative power of each parameter. The results of the dis-
criminative power settings are mixed; some parameters have a statistically significant
discriminative power and others do not. They also examine whether there is a com-
bination of parameters that can be used as predictors of exploitable vulnerabilities,
where three different methods of feature selection and four different classification
algorithms are tested. The best performing model is the Random Forest classifier with
the selection approach Wrapper Subset, which reaches a F-measure of 84%.

4.2 Note

By observing the work discussed above, it is clear that the area of vulnerability fore-
casting based on software parameters has not yet reached maturity. This conclusion is
explicitly discussed by Morrison et al. [8].

5 Proposed Approach

In addition to the approaches discussed above, there is a new powerful approach to
solve the problem of software vulnerabilities. This new approach is the use of the
offensive security (Ethical Hacking) and Artificial Intelligence techniques together.
Ethical Hacking is a discipline that is to exploit known vulnerabilities to investigate the
level of security of computer systems. It is to identify weaknesses in computer systems
and propose cons-measures to protect them [10, 11]. It is clear that the field of pre-
dicting vulnerability based on software settings has not yet reached maturity, our
approach will focus on forecasting software vulnerabilities based on basic metrics
Common Vulnerability Scoring System (CVSS). These basic metrics are unique and
immutable, it is based on the intrinsic qualities of vulnerability.

Analysis of Software Vulnerabilities 33

5.1 Methodology Approach

Our approach is to provide learning models that allow us to analyze software vul-
nerabilities. To achieve this, we will: (1) Present rules that must comply with a Ethical
Hacker; (2) Building a vulnerability database from 2010 to 2018; (3) Preprocessing and
data preparation; (4) Make the treatment of imbalanced classes and standardize the
training set; (5) Build different models of vulnerability analysis forecasting the fol-
lowing methods: Naive Bayes, Linear SVM and Polynomial SVM (6) To evaluate
these models and to choose the best model that will better forecasting.

5.1.1 Present Rules that Must Comply with an Ethical Hacker

Ethical Hackers must respect the following rules: Obtain authorization written the
owner of the system or software before hackers; Protecting the privacy of the orga-
nization hacked; Report transparently all the weaknesses identified in the computer
system to the organization; Inform the identified weaknesses of the software suppliers.

5.1.2 Building a Vulnerability Database from 2010 to 2018

The data used for modeling are from the NVD database (National Vulnerability
Database). This database is created to provide a comprehensive list of software vul-
nerabilities and a breakdown of the details of a software vulnerability. for our data we
have made requests over the year, the publication date, type of vulnerability, CVSS
scores, then we removed the redundant information in order to have a final database.
Figure 1 below shows the data extraction process and Table 1 which represents the
CVSS parameters that will be used for the analysis of software vulnerabilities.

and

Source :
i D

Cevedetails.com

Query

Date of Type of
llnclude

Redundant
database

{ Extaction DB

Q Vulnerability Database l

Fig. 1. Acquisition process vulnerabilities databases

34 D. J. Diako et al.

Table 1. The CVSS parameters

Characteristics Description Values

Access vector The way with which a Local (L)
vulnerability can be exploited Adjacent Network (AN)
Network (N)

Authentication The level of authentication None (N)
needed to access the vulnerable | Single (S)
system Multiple (M)
Access the level of difficulty to exploit | High (H)
complexity the discovered vulnerability... Medium (M)
Low (L)
Integrity The impact to the integrity of the | None (N)
affected system Partial (P)

Complete (C)
Confidentiality impact | The impact to the confidentiality | None (N)
of the affected system Partial (P)
Complete (C)
Availability impact The impact to the availability of | None (N)
the affected system Partial (P)
Complete (C)

5.1.3 Preprocessing and Data Preparation
To pretreatment of the database, we remove unnecessary variables, we have created an
“Analysis” variable that will allow us to predict a vulnerability; Then we partition the
database into two. 70% for the training set and 30% for the test set. We have trans-
formed the categorical variables into numerical variables by the normalization method
and scaled these data to better build the different models (Table 2).

After pretreatment and preparation of data, we get the following information:

Table 2. Noticed the learning base (dbTrain) and the test base (dbTest)

Data Number of observations | Number of variables
Based |6670 8
dbTrain | 4669 20
dbTest | 2001 20

5.1.4 Management Unbalanced Data

Having unbalanced data, in our case, we have three values to predict vulnerabilities
namely low, medium or high. We can perceive in Table 3. Table 3 presents the
unbalanced data, this can skew the results, we used the techniques of oversampling and
undersampling to balance the classes. This is illustrated in Tables 4 and 5.

Table 3. Unbalanced data

Vulnerability scanning
Low | Medium | High
616 2204 1849

Analysis of Software Vulnerabilities 35

Table 4. Training data balanced sub-sampled

Vulnerability scanning
Low | Medium | High
616 |616 616

Table 5. Balanced training data oversampled

Vulnerability scanning
Low | Medium | High
2204 | 2204 2204

5.1.5 Building Models

The models we developed will help to solve classification problem. For each new
vulnerability entered, these models must be able to predict which category this vul-
nerability belongs to. Is it a high, medium or low vulnerability? To solve this problem,
we use the following algorithms: The Naive Bayes, the Linear and Polynomial SVM.
The modelling process can be described by the following pseudo-algorithm (Fig. 2).

// Elements necessary for modeling

Input Data // Input(Package: caret X : Data)
containing CVSS —

parameters // Construction of the variables to be predicted
If Score<= 3.9 then Analyse «"Low"

Elseif Score < Tthen Analyse <" Medium"

| sup1

Oata creprocessrg

ElseAnalyse « " High"
¥ End if

\ 1/ Subdivision of the dataset

construction of the
Analysis varable

numApp « CreateDataPartition(XSC, p = 0.7)
dbTrain « X[unm.ipp,]

Data Test Data Train dbTest « X [-mumdpp,)
Sp) S
s ot H /I Standardization and scaling of the data set
i G . e BT
Standardization and Standardization and 1 data_preprocess_value ¢ preProcess(dbTrain)
Scaling Scaling data _baserainscaled < Predict(data_ preprocess _value,dbIrain)
swi] § sed data _basesestscaled « Predict(data_ preprocess _value,dbTesr)
Data Test Data train B
Scaled scaled »)
o // Building models with data
|58 Model « train(Analysis, data _basetrain.scaled, method =" Aigo®)
06 y b
A N /
By _Asm mus\:u Poooril Nahes Bye)
quaity m':d & 2 ML!.I‘.M:.‘G /,x I/ Prediction of our models on the test data set
of models [N 3Subsamphed Ps « Predict(Model, data _basezest scaled)

N

I/ Evaluation of the quality of the models
Qualite « evaluation (Ps, data _basetest scaled)

!

Fig. 2. Software vulnerability analysis process

36 D. J. Diako et al.

5.2 Results and Discussion

After the various modeling and evaluations of our models, the optimal model chosen is
the one that was performed on oversampled data with CVSS parameters on some
supervised learning algorithms such as Linear SVM, polynomial SVM and naive bayes.
By comparing it with the previous work mentioned in the state of the art, our model has a

good accuracy, as illustrated in the comparative Table 6 and the following Fig. 3.

Table 6. Comparison of results with existing work

Authors Methods Parameters Accuracy

Zimmermann The regression Churn rate, complexity, coverage 66%

et al. (2010) binary logistics | dependency and organization

S. et al. (2011) Several Complexity, code confusion and 70%
techniques of developer activity
classification

Moshtari et al. Several Complexity of the unit, coupling 90%

(2013) techniques of
classification

Mor. et al. (2015) | Semi- Churn rate, complexity, coverage, 50%
automatic dependency, organization

Y. et al. (2016) Random Forest Code complexity, information flow, 84%

functions, invocations

D. et al. (2019) Linear SVM Access vector, authentication access 99,80 %

D. et al. (2019) Polynomial complexity, integrity confidentiality | 99,709
SVM impact availability impact

D. et al. (2019) Naive Bayes 99,60 %

ACCURACY

99,80% 99,70% 99,60%
90% B e = ey
66% 70%
% 50%
cn " w v o w
oz | $s| 85| % £ £ $
22 | g5 | 28 8 5 @ @ 3
o® | % c%® S < & 3 -
W= S £ 5 £ o £ 9
v U e U e (= 4
A 0z © 'z °] = S]
v 8 S e el = b S -
b - ® 8 ® 2 E S e
3| 53| 828 8 < 4
2 © 2 ©
] v
Zi.al S.etal | M.etal |Mor.etal| Yetal. | D.etal | D.etal | D.etal
(2010) | (2011) | (2013) (2015) 2016) (2019) (2019) | (2019)

Fig. 3. Graphic illustration of results with existing work

6

Analysis of Software Vulnerabilities 37

Conclusion

In this article, we used the CVSS parameters, unbalanced, oversampled and under-
sampled data that we designed and we also used three machine learning based algo-
rithms to effectively analyze software vulnerabilities. After the simulations, the models
based on the oversampled data and the following algorithms: Linear SVM, Polyno-
mial SVM and Naive Bayes had very good and therefore optimal accuracy. They can
be used to effectively analyze software vulnerabilities in industry and research. In
perspective, an unexplored area is the use of deep learning to predict vulnerabilities.
This is another promising area for future studies in the area of vulnerability prediction.

References

10.

11.

. Dowd, M.: The Art of Software Security Assessment: Identifying and Preventing (2007)
. Zulkernine, M.: Mitigating program security vulnerabilities: approaches and challenges.

ACM Comput. Surv. (CSUR), 44(3), 11 (2012)

. Cheng, H., Yan, X., Han, J.: Mining graph patterns. In: Aggarwal, Charu C., Han, J. (eds.)

Frequent Pattern Mining, pp. 307-338. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07821-2_13

. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery using

machine-learning and data-mining techniques: a survey. ACM Comput. Surv. (CSUR) 50
(4), 1-36 (2017)

. Zimmermann, T.: Searching for a needle in a haystack: predicting security vulnerabilities for

windows vista (2010)

. Meneely, A., Williams, L.: Strengthening the empirical analysis of the relationship between

Linus’ Law. In: Proceedings of the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2010). ACM (2010). Article no. 9

Sami, A., Azimi, M., Moshtari, S.: Using complexity metrics to improve software security.
Comput. Fraud Secur. 2013(5), 8-17 (2013)

Herzig, K., Murphy, B., Williams, L., Morrison, P.: Challenges with applying vulnerability
prediction models. In: Proceedings of the Symposium and Bootcamp on the Science of
Security (HotSoS 2015). ACM (2015). Article no. 4

Malaiya, Y., Anderson, C., Ray, L., Younis, A.: To fear or not to fear that is the question:
code characteristics of a vulnerable function with an existing exploit. In: Proceedings of the
6th ACM Conference on Data and Application Security and Privacy (CODASPY 2016),
pp- 97-104. ACM (2016)

Ellis, S.R.: Ethical hacking, Chapitre 30. kCura Corporation, Chicago (2017). https://doi.org/
10.1016/b978-0-12-803843-7.00030-2

Caldwell, T.: Ethical hackers: putting on the white hat-‘WhiteHat Website Security Statistics
Report’, June 2011

https://doi.org/10.1007/978-3-319-07821-2_13
https://doi.org/10.1007/978-3-319-07821-2_13
https://doi.org/10.1016/b978-0-12-803843-7.00030-2
https://doi.org/10.1016/b978-0-12-803843-7.00030-2

	Analysis of Software Vulnerabilities Using Machine Learning Techniques
	Abstract
	1 Introduction
	2 Methods for Analyzing Software Vulnerabilities
	3 Techniques of Machine Learning and Data Mining
	4 Related Work on the Use of Machine Learning
	4.1 Prediction Vulnerabilities Based on Software Settings
	4.2 Note

	5 Proposed Approach
	5.1 Methodology Approach
	5.1.1 Present Rules that Must Comply with an Ethical Hacker
	5.1.2 Building a Vulnerability Database from 2010 to 2018
	5.1.3 Preprocessing and Data Preparation
	5.1.4 Management Unbalanced Data
	5.1.5 Building Models

	5.2 Results and Discussion

	6 Conclusion
	References

