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Abstract. The structure of the network in the real world is very com-
plex, as the dynamic network structure evolves in time dimension, how
to detect network changes accurately and further locate abnormal nodes
is a research hotspot. Most current feature learning methods are difficult
to capture a variety of network connectivity patterns, and have a high
time complexity. In order to overcome this limitation, we introduce the
network embedding method into the field of network change detection,
we find that node-based egonet can better reflect the connectivity pat-
terns of the node, so a dynamic network embedding model Egonet2Vec is
proposed, which is based on extracting the connectivity patterns of the
node-based egonets. After the dynamic network representation learning,
we use a dynamic network change detection strategy to detect network
change time points and locate abnormal nodes. We apply our method
to real dynamic network datasets to demonstrate the validity of this
method.

Keywords: Network representation learning · Social network · Egonet

1 Introduction

Dynamic network refers to the network that changes with time. Such as
social networks, communication networks, and topological networks are com-
mon dynamic networks, which widely exist in real life. Taking social networks as
an example, with the widespread use of various network services such as Twitter,
Facebook on the Internet, people widely communicate and transmit information
through networks. Therefore, a huge social network is formed in the virtual net-
work space, in which the nodes of the network represent each individual, and
the edges represents the connection between people, and the network changes
over time. Usually, the structural features of the network maintain a stable state,
which changes slightly over time. When an anomalous event occurs, the structure
of the network and related nodes often change dramatically. By detecting the
structural changes of dynamic network, the occurrence of anomalous events can
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be detected, and then the abnormal nodes can be located. However, in the face
of large-scale and complex network data, traditional dynamic network detection
methods are often difficult to extract network structural features comprehen-
sively, thus affecting the effect of dynamic network detection.

Network representation learning has caused the widespread research upsurge
in recent years, the basic idea is to extract the structural features of the network
and transform the nodes into vector representations through the neural network
model. The vector should reflect the structural features of the original network as
much as possible. However, most of the existing network representation learning
methods can not be directly applied to dynamic networks. We find that the
neighborhood structure features of the nodes are basically stable at ordinary
times, and will also change drastically when anomalous events occur. Based
on this, we propose a dynamic network representation learning method based
on extracting the neighborhood structural features of the nodes, which can be
directly applied to dynamic networks. Then a dynamic network change detection
strategy is carried out by this embedding method. The contributions of this paper
are listed as follows:

(1) We propose the Egonet2Vec (Egonet to vector) model, an dynamic network
representation learning method that computes the vector representations of
nodes by extracting the node-based structural features.

(2) Based on the Egonet2Vec model, a dynamic network anomaly detection
method is designed. The anomalous time points and the abnormal node set
under the anomalous time points are located by calculating similarity of the
nodes and time slice networks.

(3) Experiment verification on real dynamic network datasets, in Enron email
dataset and AS links dataset, our method has achieved good results, can
identify most abnormal time points and locate the abnormal nodes.

The rest of the paper is organized as follows: In the next section, we compre-
hensively analyze and discuss the related work. Problem definitions is described
in Sect. 3. Section 4 introduces the dynamic network change detection method.
Section 5 verifies the experimental results of the anomaly detection algorithm.
Section 6 summarizes the contributions and forecasts the next research direction.

2 Related Work

In the field of dynamic network anomaly detection, Michele et al. [1] proposed
NetSimile method, which extracts the node-based structural features, calculates
network similarity at different time slice network through feature aggregation,
finally identifies abnormal time points by similarity changes. Volodymyr et al.
[2] proposed a dynamic network anomaly detection algorithm based on Hop-
field neural network. This method first filters the non-anomalous nodes in the
dynamic network, and then uses Hopfield neural network to locate the abnormal
node set and the abnormal time points. Yu et al. [3] proposed NetWalk method,
which is a network embedding method based on autoencoder neural network.
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After obtaining the vector representations of each node, k-means clustering is
performed according to the vector representations of each node. For the newly
joined nodes, the degree of anomaly of those nodes is judged by calculating the
distance from the nearest class in k-means clustering. The farther the distance
is, the more abnormal the node is. Sun et al. [4] divides the nodes in the net-
work into source nodes and target nodes, and performs community partitioning
based on entropy (minimum coding length) in the source nodes and the target
nodes, respectively. Finally nodes with large difference in entropy are marked as
abnormal nodes.

In the field of network representation learning, Inspired by the word2vec
model, Perozzi et al. [5] proposed the DeepWalk method, which introduced the
deep learning technique to the field of graph representation for the first time.
This algorithm uses random walks to generate a sequence of nodes similar to
sentences in the document, and finally get vector representations of each node.
Introducing two hyper parameters(p and q) to control the depth and width of the
random walks, the node2vec [8] follows the DeepWalk algorithm and improves
the generation of random walk paths. The LINE [9] method obtains the final
vector representations by probabilistic modeling of all first-order and second-
order proximity of nodes, and minimizing the probability distribution and the
empirical distribution distance. The Subgraph2Vec [10] constructs the rooted
subgraph of each node as the target word whose neighbor nodes and their rooted
subgraphs are regarded as the context, and finally calls the word2vec model to
learn the vector representation of the subgraph. The Graph2Vec [11] method,
proposed based on the Subgraph2Vec algorithm, also uses the rooted subgraph
as the target word. The neighbor nodes and their rooted subgraphs are used as
context of those target words, the doc2vec [6] model is used to directly obtain the
vector representation of the whole graph. The GE-FSG [12] method first mines
frequent subgraphs on the graph dataset, and identifies frequent subgraphs by
serial number. If a subgraph appears in the graph, the subgraph number is added
to the context of the graph, so that each graph in the dataset maintains a context
consisting of frequent subgraphs. Then calling the doc2vec model for training,
this algorithm finally gets the vector representations of each graph in the graph
dataset.

However, most of the existing network embedding methods learn the repre-
sentation vectors for nodes in a static manner, which are not suitable for dynamic
network embedding. At the same time, the traditional anomaly detection meth-
ods have the problem of high computational cost. Based on this, we propose a
new representation learning model for dynamic networks, and develop a dynamic
network anomaly detection method based on this model.

3 Problem Descriptions

3.1 Related Conceptions

Definition 1 (Dynamic Network). Unlike static networks, dynamic networks
change over time. A dynamic network containing n time slices is represented
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as G = {G1, G2, ..., Gt, Gt+1, ..., Gn}, where the t th time slice network is
Gt = (Vt, Et). Vt is the set of vertices in the network, and Et is the edge set
representing the relationship between the vertices. Gt = (Vt, Et,Wt) when the
network is a weighted network and Wt is the weights set.

Definition 2 (Network Embedding). Given a network G = (V,E), the purpose
of network embedding is to learn a mapping function to map each node in the
network to a low-dimensional vector: vi → yi ∈ Rd, d � |V |. The algorithm
finally gets the low-dimensional dense vector representations of network nodes,
which is very effective when dealing with large scale complex networks.

3.2 Problem Descriptions

In this paper, dynamic network change refers to the abnormal changes in the
process of network evolution. Doing dynamic network change detection needs to
solve three problems: dynamic network model construction, network embedding
model construction and design detection strategy.

Dynamic network modeling: At present, the method widely used in dynamic
network modeling is the time slice partitioning method, which needs to choose
the appropriate time slice size to divide the network. Too long time slice setting
may make the important change information of the network hidden in the time
slice window, and too short time slice may lead to little information contained
in a time slice network.

Network representation learning: Existing network representation learning
models such as Line, node2vec, etc. can only perform representation learning on
each time slice network, and the obtained vector representations of the same node
in different time slice networks cannot compare similarities directly. At the same
time, the structural information of nodes can not be extracted comprehensively
based on random walk. Therefore, a new network representation learning method
is needed, which can extract the node’s structural features comprehensively and
obtain the vector representations of each node in different time slice networks.
At the same time, not only the similarity between nodes in the same time slice
network, but also the similarity between nodes in different time slice networks
can also be compared.

Detection strategy: After obtaining the vector representation of the nodes, in
order to detect the overall change of the current time slice network, we need to
aggregate the vector representations of each node as the vector representation of
the entire time slice network, and calculate the similarity between adjacent time
slice networks. By setting the network similarity threshold, if recently arrived
network’s similarity exceeds the threshold, we can judge that the current network
has changed.

In summary, network representation learning is the core of our dynamic net-
work change detection method, and how to extract node based structural features
is the focus of the network representation learning method.
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4 Dynamic Network Change Detection Model

4.1 Related Conceptions

Definition 3 (Label Graph). The Label Graph is a graph with node labels and
edge labels, which is described as: G = (V,E,L), where V and E are the set of
vertices and edges in the graph, and L is the label mapping function of edges and
nodes.

Definition 4 (Subgraph). Given a label graph S = (VS , ES , LS), for any VS ⊆
V, ES ⊆ E, if and only if LS(v) = L(v) is true for each v ∈ VS, and LS(u, v) =
L(u, v) is true for each (u, v) ∈ ES, the graph S is called the subgraph of the
graph G.

Definition 5 (DFS Edge (depth-first search edge)). An edge can be presented
by a 5-tuple (from, to, vlbi, elb, vlbj), where from and to are the ordinal number
of nodes (vi, vj) in depth-first search, vlbi and vlbj are the labels of vi and vj,
and elb is the label of edge between them.

Definition 6 (DFS Code). DFS Code [17] is a combination of a series of DFS
Edges. The DFS Code of an n-edge graph is
{DFSEdge1,DFSEdge2, ...,DFSEdgen}.
Definition 7 (DFS Lexicographic Order). In order to compare the size rela-
tionship between DFS Edges , we define the priority of elements in 5-tuple
(frm, to, vlbi, elb, vlbj) decreases in turn. We determine the relationship of size
between DFS Edges by comparing the lexicographic order of each element in turn.

Definition 8 (Minimum DFS Code). A graph can be represented by different
DFS Codes. According to DFS Lexicographic Order, the minimum one is called
minimum DFS Code. A graph has only one minimum DFS Code representation,
the minimum DFS Code is used to uniquely identify a graph.

Definition 9 (N-edge Subgraphs). Given a graph G = (V,E,L), SS, a collection
of all sub-graph of graph G. For each subgraph S ∈ SS, S = (VS , ES , LS), if the
number of edges in graph S is not greater than N, |ES | ≤ N , N ∈ R, then graph
S is called a N-edge subgraph of G, the collection of all N-edge subgraphs is called
N-edge Subgraphs.

Definition 10 (Egonet). Node-based egonet refers to a node-centered self-graph,
which consists of all the nodes connected to it and the edges between them.

4.2 Egonet2Vec Network Representation Learning Method

N-Edge Subgraphs Extraction. Egonet2Vec dynamic network representa-
tion learning algorithm aims to learn the vector representations of each node in
all time slice networks. To do this, we need to construct structural feature set for
each node. Then based on the current popular doc2vec models, the structural
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Fig. 1. The generation of node-based egonet

feature set of the single node is regarded as a document, and the substructure
in the feature set is regarded as a word in the document. Finally, based on the
above model, we can obtain the vector representations of each node in all time
slice networks.

The construction of egonet is shown in Fig. 1, the egonet of node 1 is con-
structed. If we construct egonets for all nodes in a graph, then the original graph
structure can be restored by combining the egonets of the nodes. In general, node-
based egonet is more focused on the neighborhood structural features of individ-
ual nodes. Therefore, we choose the node-based egonet as the basis for network
representation learning. Then the following question is how to extract substruc-
tures from the graph-based egonet as the structural feature set of the node. The
types of substructures can be divided into nodes, subgraphs, paths, etc., sim-
ply using nodes for representation learning is not a good solution, because it
ignores graph structure features. Paths can reflect the link relationship of nodes
in the graph, but using paths for representation learning also ignores some com-
plex graph structures. As an ordered collection of nodes and edges in a graph,
subgraphs can reflect almost all structural features of the graph. Therefore, we
choose the subgraph as the basic unit for network representation learning. We
extract all the N-edge Subgraphs as the structural feature set of each node by
traversing the corresponding egonet, the subgraph is uniquely identified by the
minimum DFSCode. The maximum number of edges in a subgraph N is set to
3 in the experiment, which can ensure sufficient number of subgraphs and can
be completed in a short time. The overall framework of the algorithm is shown
in Fig. 2.

We named the N-edge Subgraphs extraction algorithm as StructureExtract,
then perform StructureExtract sequentially for each node-based egonet in per
time slice network. Algorithm 1 outlines the pseudo-code of the algorithm. In
Algorithm 1 line 2, we begin by generating the initial 1-edge subgraphs. Sub-
sequently, in Algorithm 1 line 4–7, for each initial subgraph we perform N-
edge Subgraphs extraction, the SubgraphMining function in line 6 is a subgraph
mining function shown in Algorithm 2. Algorithm 2 mainly performs subgraph
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Fig. 2. The framework of Egonet2vec

mining and stops extension after reaching the specified threshold N. In Algorithm
2 line 2–4, when extending a subgraph, we should first determine whether the
current subgraph is minimum DFS Code, in Algorithm 2 line 5–11, we extend the
subgraph with its children by calling the SubgraphMining function recursively.

Algorithm 1. The StructureExtract algorithm
Require: G: Egonet to be extracted, G = (V,E, L)
Require: N : Maximum number of edges in a subgraph
Ensure: S: All extracted subgraphs
1: /*Extract 1-edge graphs from graph G*/
2: sort E in DFS lexicographic order
3: S ← {}
4: for all edge e such that e ∈ E do
5: initialize s with e
6: SubgraphMining(G, S, s, N)
7: end for
8: return S

Learning Embeddings of Each Node. We use the Distributed Bag of Words
version of Paragraph Vector (PV-DBOW) model, as shown in Fig. 3, an extended
model of skip-gram model belonging to doc2vec, to learn the representations of
each node. Ignoring the input context, this model directly predicts random words
of the document in the training process. Specifically, the node-based egonet is
considered as a document, and the subgraph is regarded as a single word. Given
a group of node-based egonets GS, for each egonet Gi in GS, its subgraph set is
c(Gi) = {sg1, sg2, ..., sgn}. Finally, our goal is maximizing the following formula:

n∑

j=1

log pr(sgj |di) (1)
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Algorithm 2. The SubgraphMining algorithm
Require: G: Egonet to be extracted, G = (V,E, L)
Require: N : Maximum number of edges in a subgraph
Require: S: All extracted subgraphs
Require: s: DFS Code of a subgraph
1: /* Check if s is the smallest DFS Code */
2: if s �= min(s) then
3: return
4: end if
5: S ← S ∪ {s}
6: /* extend subgraph s */
7: generate all s potential children with one edge growth
8: S ← E
9: for all c such that c ∈ s’ children do

10: SubgraphMining(G, S, s, N)
11: end for

sgj ∈ c(Gi), sgj is a subgraph of graph Gi.

Pr(sgj |Gi) =
exp(sgj .Gi)∑V
i=1 exp(sgi.Gi)

(2)

where sgj is the vector representation of the subgraph, and v is the number of
all substructures. In order to optimize the calculation, a negative sampling tech-
nique can be used to construct a new objective function. Furthermore, maximiz-
ing the likelihood of positive samples and minimizing the likelihood of negative
samples can improve the computational efficiency.

After learning the vector representations of the nodes in all time slice net-
works, if the neighborhood structural features of the nodes are similar, then the
vector representations of them are close too.

Fig. 3. PV-DBOW model
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4.3 Dynamic Network Anomaly Detection Strategy

The nodes in the network are denoted as G = {v1, v2, · · · , vm}, m is the num-
ber of nodes in the network. After obtaining the vector representations of
each node in all time slice networks, for the t th time slice network, the vec-
tor representation of the nodes in the network is Gt = {vt

1, v
t
2, · · · , vt

m},
vt

i ∈ Rd, i ∈ [1,m], d is the dimension of the vector representation. For
each node, we compute the similarity between the vector representations in
the current time slice network and the adjacent time slice network. For the
t th time slice network, we need to compute the similarity between the vec-
tor representations in the t th time slice network and t-1 th time slice net-
work. The similarities of each node in the t th time slice network is represented
as sim(Gt−1, Gt) = {sim(vt−1

1, v
t
1), sim(vt−1

2, v
t
2), ..., sim(vt−1

m, vt
m)}, in

which the similarity measure of each node we use cosine similarity:

sim(vt−1
i , vt

i) =
vt−1
i • vt

i

||vt−1
i || × ||vt

i ||
(3)

By taking the mean of the similarity of all nodes in the current time slice
network as the similarity of the time slice network, the similarity of the entire
dynamic network GS = {G1, G2, · · · , Gt, Gt+1, · · · , Gn} is recorded as

{
sim(G1,

G2), sim(G2, G3) · · · , sim(Gn−1, Gn)
}
, The distribution of sim(Gt−1, Gt) in the

steady state of the network is recorded as f , where n is the number of dynamic
network time slices.

sim(Gt−1, Gt) =

m∑
i=1

sim(vt−1
i , vt

i)

m
(4)

Then we calculate the mean and variance of the distribution f :

μ =
1

n − 1

n∑

t=2

sim(Gt−1, Gt) (5)

σ2 =
1

n − 1

n∑

t=2

(sim(Gt−1, Gt)−μ)2 (6)

Given a threshold α, when the new t th time slice network Gt arrives, if the value
of sim(Gt−1, Gt) falls outside of [μ − α, μ + α], the network is judged to have
changed at this time. When f is a normal distribution, we usually set α = 2σ or
α = 3σ, because the probability of a value falling outside the region is only 5%
or 0.3%, which is a small probability event. Of course, we can also determine
the value of α according to the actual situation. After determining the abnormal
time points, we locate the set of nodes with low similarity in the abnormal time
slice network, which is a set of possible abnormal nodes.
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5 Experiment

We evaluate our method on the Enron email dataset and the AS links dataset.
The Enron email dataset is derived from Enron employees’ email folders, is a
directed weighted network dataset. The AS links dataset belongs to undirected
weightless network dataset, which is a collection of snapshots composed of all
AS belonging to a certain country or a region over a period of time.

5.1 Enron Email Dataset

Enron’s email data set is Enron’s (formerly one of the world’s largest integrated
gas and power companies, and is the number one natural gas and power whole-
saler in North America) senior executives of the email. It has been publicly
available by the US Federal Energy Regulatory Commission and is currently
available online. We use the processed version form [13], the dataset retains only
184 communications data between Enron senior executives.

Data Preprocessing. We extract the email address and the sending time of
the sender and receiver in the email record to build the mail network. A node
in the network represents a communicating member, and if member a sends a
message to member b, an edge is added between a and b. The time slice size is
set to one week (7 days) and the messaging records for 728 days from 2000/1/4
to 2001/12/30 are divided into 104 time slices.

In Enron email network, the employees are regarded as nodes in the network,
and the number of communications between nodes in each time slice network is
taken as the weights of edges. Since edge weights cannot be directly applied to the
subgraph mining, we use the equal frequency grouping method to map different
weights of the same edge in different time slice networks, and use the label of
the group instead of the weight as the label of the edge. In the experiment, we
set the number of groups to 3, that is, the labels of the edges are grade1, grade2,
grade3. Then node-based egonets for each node in all time slice networks are
constructed after the edge label is determined. In the stage of N-edge Subgraphs
extraction in each egonet, because the number of communications between nodes
is inclusion relationship, that is, if A and B are connected twice, then they must
be connected once. So, the high-grade label on the edge contains the lower-
grade label, i.e. grade2 contains grade1 and grade3 contains grade2, grade1.
As shown in Fig. 4, graph A is the original graph, graph B is the graph with
new edge labels after equal frequency grouping of edge weights in different time
slice networks, and graph C is the actual graph to be extracted in the N-edge
Subgraphs extraction stage.

Experimental Results of Enron Email Dataset. Figure 5 shows the vari-
ation of sim(Gt−1, Gt) over time. The calculated parameters of the distribution
f of sim(Gt−1, Gt) under Enron stability are μ= 0.89, σ = 0.05, we set a = 2σ,
and the interval of μ±α is [0.79− 0.99]. The potential abnormal time points we
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Fig. 4. The process of edge weight conversion

obtained were 95, 93, 92, 73, 94, and 96. The Enron’s important events occurring
at the above time points are shown in Table 1. From Table 1, we can find that
most of the potential abnormal time points mentioned above have important
incidents happened in Enron. Among them, Enron’s email network fluctuated
the most in the 95th time slice network. While Enron’s third quarter loss is
announced in 94th time slice network, this event opened the prelude of Enron’s
bankruptcy and was an important turning point for Enron. The 92nd and 93rd
time slice network occurred before the turning point of Enron’s bankruptcy,
although there was no important event occurs, they could be regarded as early
warnings of abnormal events in Enron.

Table 1. Enron’s important events

2001/5/22, 73 John Mintz sends a memorandum to Jeffrey Skilling (CEO
for a few months) for his sign-off on LJM paperwork

2001/10/16, 94 Enron announced that they had restated their financial
statements for the years 1997 to 2000 to correct accounting
irregularities

2001/10/22, 95 The Securities and Exchange Commission conducted a survey
of potential conflicts of interest between Enron and its
directors and their special partner-ships

2001/10/24-25, 95 Jeff McMahon takes over as CFO. Email to all employees
states that all the pertinent documents should be preserved

2001/11/1, 96 The mortgage company Enron assets, access to J. P Morgan
and Salomon Smith Barney’s 1 billion US dollars credit line
secured, but Merrill Lynch and Standard & Poor’s still on
Enron again lowered the rating

2001/12/2, 100 Enron filed for bankruptcy in New York and simultaneously
sued Dynegy for breach of contract
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Fig. 5. The test results of Enron email dataset

Table 2. Statistical information of Lebanon and Venezuela

Country Start time End time Number of snapshots

Lebanon 2012/7/3 00:00 2012/7/6 22:00 48

Venezuela 2019/3/1 02:00 2019/3/8 22:00 95

5.2 As Links Dataset

At a specific time t, the AS-level Internet of a country refers to a snapshot
of all AS directly connected to the AS belongs to the country. The snapshot
can intuitively display the status of the Internet connection in that country
at a specific time. For a period of time, many AS links snapshots constitute
a dynamic network, which can reflect the evolution of network connectivity.
Usually, the normal changes of AS-level Internet network reflect the gradual
evolution of the network scale and topology. However, the dramatic changes
in AS-level Internet are usually caused by network anomalies, such as router
misconfiguration, physical link failures, and network attacks, etc., those can lead
to dramatic changes in the structure of AS-level Internet.

In this paper, Lebanon and Venezuela’s AS-level Internet networks are
selected for experimental verification. By analyzing the public routing data of the
Route Views project [14], the AS-level Internet networks of the corresponding
countries can be obtained. Route Views project samples global AS-level routes
every two hours. Therefore, the interval between adjacent network snapshots in
the dynamic network is also 2 h, and the accuracy of the change detection is also
2 h. Statistical information on the AS-level Internet networks of Lebanon and
Venezuela is shown in Table 2.
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Lebanese AS-Level Internet Network Dataset. Figure 6 reflects the test
results of detecting Lebanese AS-level Internet from July 3 to 6, 2012. The
calculated parameters of the distribution f of sim(Gt−1, Gt) under stability are
μ= 0.98, σ = 0.04, we set a = 3σ, and the interval of μ ± α is [0.87 − 1.1]. The
potential abnormal time point we obtained was 2012-07-04 18:00. As can be seen
from Fig. 6, at 18 o’clock on July 4, 2012, its network structure has undergone
a major change. Because Route Views project samples global AS-level routes
every two hours, so we can judge that the anomalous event occurred between
16:00 and 18:00 on July 4, 2012.

According to BGPMon [15], Lebanese internet outage started on July 4th,
16:16 (UTC), the cause of the outage according to the Telecoms Ministry
in Lebanon is a fiber cut on the IMEWE Submarine cable. Liban Teleccom
(AS42020), the largest Internet provider in Lebanon, has been seriously affected.
Table 3 shows the network similarity statistics of the seven Internet providers
with the greatest changes (lowest similarity) in Lebanon from 16:00 to 18:00 on
July 4, 2012. As shown in Table 3, AS42020 has the greatest change between
16:00–18:00, and the similarity with the previous time slice network is only 0.41.
Table 4 shows the edge numbers of the seven Internet providers mentioned above
in time slice networks from 14 to 20 o’clock on July 4. It can be seen from the
table that the connectivity of the Lebanese Internet providers at 16:00 to 18:00
has changed a lot.

Fig. 6. The test results of Lebanese AS-level Internet network

Venezuelan AS-Level Internet Network Dataset. Figure 7 shows the test
results of the Venezuelan AS-level internet network from March 1 to 9, 2019. The
calculated parameters of the distribution f of sim(Gt−1, Gt) under stability are
μ=0.99, σ = 0.004, we set a = 3σ, and the interval of μ ± α is [0.98 − 1.0]. The
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Table 3. Partial Lebanese Internet providers’ similarity test results

Internet provider 14:00–16:00 16:00–18:00 18:00–20:00

AS42020 1.00 0.41 0.95

AS34370 1.00 0.47 0.47

AS31126 1.00 0.49 0.67

AS41211 1.00 0.55 1.00

AS39010 1.00 0.55 1.00

AS39275 1.00 0.64 1.00

AS9051 1.00 0.64 0.46

Table 4. Statistics of partial Lebanese Internet providers

Internet provider 14:00–16:00 16:00–18:00 18:00–20:00

AS42020 19 6 7

AS34370 1 1 1

AS31126 9 10 11

AS41211 1 1 1

AS39010 11 5 5

AS39275 1 1 1

AS9051 14 0 14

Fig. 7. The test results of Venezuelan AS-level Internet network



656 H. Feng et al.

potential abnormal time point we obtained was 2019-03-07 22:00. As shown in
Fig. 7, at 22:00 on March 7, 2019, its network structure has undergone a major
change, so we can judge that the anomalous event occurred between 20:00 and
22:00 on March 7, 2019 (UTC).

Local time in Venezuela is 4 h later than the standard time, and the time
between 20:00 and 22:00 UTC corresponds to Venezuela’s local time between
16:00 and 18:00. According to CNN [16] reported on March 9, 2019, Venezuela
suffered a power outage crisis in most areas on the evening of March 7, and many
areas were still in darkness until March 8. Venezuelan local media reported that
15 of the country’s 23 states had blackouts.

Table 5. Partial Venezuelan Internet providers’ similarity test results

Internet provider 18:00–20:00 20:00–22:00 22:00–24:00

AS52320 1.00 0.45 1.00

AS27807 1.00 0.79 0.99

AS7908 1.00 0.87 1.00

AS8048 1.00 0.88 1.00

AS27893 1.00 0.92 1.00

AS27891 1.00 0.92 1.00

AS17287 1.00 0.95 1.00

Table 6. Statistics of partial Venezuelan Internet providers

Internet provider 18:00–20:00 20:00–22:00 22:00–24:00

AS52320 95 93 93

AS27807 7 0 0

AS7908 19 17 17

AS8048 23 22 23

AS27893 3 0 0

AS27891 1 0 0

AS17287 1 0 0

Table 5 shows the network similarity statistics of the seven Internet providers
with the greatest changes (lowest similarity) in Venezuela from 18:00 to 24:00 on
March 7, 2019. Table 6 shows the edge numbers of the seven Internet providers
mentioned above in time slice networks from 18 to 24 o’clock on March 7.
According to the table, Networks relying on AS52320 are most severely affected.
Venezuelan Internet providers’ connectivity declined from 20:00 to 22:00, and
there was still no improvement at 18:00 to 20:00.
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6 Conclusion

In this paper, we propose a dynamic network representation learning method
Egonet2Vec, then a dynamic network change detection method is carried out
based on Egonet2Vec. Experiments on Enron email dataset and AS links datasets
demonstrate the effectiveness of this method. One of our future works is to
improve our method so that it can directly obtain the similarity of the time slice
networks, in order to overcome the accuracy loss caused by taking the mean of
the node similarity.
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