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Abstract. This paper studies the price-based power control strategies
for non-orthogonal multiple access (NOMA) based cognitive radio net-
works. The primary user (PU) profits from the secondary users (SUs)
by pricing the interference power made by them. Then, SUs cooperate
to maximize their total revenue at the base station (BS) with succes-
sive interference cancellation (SIC) while considering their payoff to the
primary user. The pricing and power control strategies between the PU
and SUs are modeled as a Stackelberg game. The closed-form expression
of the optimal price for the non-uniform pricing scheme is given. The
computational complexity of the proposed uniform-pricing algorithm is
only linear with respect to the number of SNs. Simulation results are
presented to verify the effectiveness of our proposed pricing algorithm.

Keywords: Non-orthogonal multiple access · Cognitive radio
network · Successive interference cancellation · Stackelberg game

1 Introduction

With the rapid development of wireless communications and the growing short-
age of spectrum resources, cognitive radio has been proposed to improve spec-
trum and energy efficiency by sharing the spectrum of primary users (PUs) with
secondary users (SUs) in future network [1–3]. Besides, non-orthogonal multiple
access (NOMA) technology is another promising technique to improve spectrum
efficiency and support the great traffic volume in the fifth generation (5G) Net-
work [4–6]. In the underlay based CR network, SUs can access the spectrum
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owned by PUs if the interference power (IP) from the SUs to the PU’s receiver
under interference temperature power (ITP) limit. Furthermore, the NOMA
technique can be used in underly CR networks to improve the system perfor-
mance of SUs because the interference power from weak SU can be canceled at
the based station.

There are many studies focus on CR-NOMA system [7–11]. In [7], the authors
proposed cooperative relaying strategies to address inter-network and intra-
network interference in cognitive NOMA system. Liu et al. in [8] studied the
large-scale underlay CR-NOMA system with two different power constraints to
characterize the performance. In [9], Liang et al. studied the spectrum shar-
ing in an underlay CR-NOMA system, and presented a non-transferable utility
(NTU) coalition formation game between the cognitive users (CUs) and the PU.
Moreover, some studies are also concerned with resource allocation of underlay
CR-NOMA system [10,11]. For instance, Song et al. in [10] considered NOMA-
based cognitive radio network with SWIPT, joint power allocation and sensing
time optimizing algorithm based on dichotomy method is proposed to maximize
the system throughput. Considering a cognitive multiple-input single-output
NOMA with SWIPT, Mao et al. in [11] proposed a penalty function-based algo-
rithm to minimize system power consumption.

Price-based power control of CR networks was investigated in [12–17]. By
using the non-cooperative game with pricing scheme, the authors in [12] proposed
a payment-based power control scheme to ensure the fairness of power control
among SUs in CR networks. Considering the system efficiency and user-fairness
issues, Yang et al. in [13] investigated cooperative Nash bargaining power-control
game (NBPCG) model based on distributed power control and gave a signal-
to-interference-plus-noise ratio (SINR)-based utility function. In [14], Yu et al.
studied the pricing-based power control problems in CR networks, and they
considered the competition as a non-cooperative game between SUs, and model
the pricing problem as a non-convex optimization problem. Using a Stackelberg
game to model the competitive behavior in [15], BS can maximize its revenue
by pricing and SUs can profit by controlling its transmit power. In order to gain
more revenue for a general case based CR networks system model compared with
[15], the authors in [16] proposed a novel algorithm to find the optimal price for
the PU and SUs. In [17], considering the quality of service (QoS) of the SUs,
the authors proposed an optimal pricing algorithm for the interaction between
the PU and the SUs. Wang et al. in [18] proposed a novel price-based power
allocation algorithm based on the Stackelberg game to improve the revenue
of BS and the sum rate of the users. In [19], the authors proposed a branch
and bound based price-based power control algorithm to solve the non-convex
revenue maximization problem for CR networks.

In this paper, we model the pricing strategy between PU and SUs as a Stack-
elberg game under the ITP model. First, PU plays a leader who prices the SUs
to control the interference power made by SUs under the ITP limit. Then, the
PU will select a suitable price to gain higher revenue from SUs. Simultaneously,
SUs will choose an optimal power to maximize their total revenue at BS. Finally,
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we use Stackelberg game with non-uniform pricing (N-UP) scheme and uniform
pricing (UP) scheme to model the strategy between them.

The rest of this paper is organized as follows. In Sect. 2, we present the system
model for NOMA system based cognitive radio networks. Section 3 introduces the
optimal price for two pricing schemes, and a distributed algorithm is proposed
for UP scheme. In Sect. 4, the performance of the proposed two pricing schemes
are evaluated by simulations. Finally, conclusions are stated in Sect. 5.

2 System Model

Considering the NOMA based CR networks comprised of one base station (BS),
n SUs and one PU as shown in Fig. 1. The SUs transmit the signal to BS with
NOMA technology and SIC is employed at BS. The channel coefficient of SU i to
BS and PU link is denoted by hi(i = 1, . . . , n) and hi0(i = 1, . . . , n), respectively.
At first, the PU charges each SU with a proportional price according to its

interference power pi(i = 1, . . . , n), and pi needs satisfy
n∑

i=1

hj0pi ≤ T , where T

is the maximal interference power of PU. Then, SUs will pay PU to access the
spectrum, and they will form a group to maximize the total utility.

Primary User

h1

h2

hn

h10

h20

hn0
Base Station

Fig. 1. System model.

We model the strategy between SUs and PU as a Stackelberg game. PU plays
the leader that chooses a price for each SU to maximize its total revenue under
ITP limit. Then, SUs can be viewed as the followers to obtain the best power
for optimal revenue while considering their payoff to PU. Let u denotes the PU’s
revenue, and the optimization problem of PU can be written as
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maximize u (c1, · · · , cn) =
n∑

i=1

cihi0pi

subject to pi ≥ 0,
n∑

j=1

hj0pj ≤ T,

(1)

where pi is interference power of the i-th SU under the given price of ci, and T
denotes the maximal interference power at PU.

Let ũ denotes the utility of the ith SU, and it contains two parts: wR is
the income from the total rate achieved at BS when SUs transmit the given

power pi(i = 1, . . . , n), and
n∑

i=1

cihi0pi is the payment to the PU. So the revenue

optimization problem of ith SU can be expressed as

maximize ũ (p1, · · · , pn) = wR −
n∑

i=1

cihi0pi

subject to 0 ≤ pi ≤ pmax
i ,

(2)

where w is the preference of SUs for the gain of unit rate. ci is the price of ith
user per unit of interference power. Let the SINR of PU to BS link is n0, thus
the sum rate of SUs R can be written as:

R = log
(

1 +
∑n

i hipi

n0

)

. (3)

3 Solution to Stackelberg Game

In this section, we give the solution to Stackelberg game under the N-UP scheme
and UP scheme. First, some lemmas are introduced to solve the above game.
And the lemmas show the relationship between pi and ci(i = 1, . . . , n) for the
lower-level problem for SUs.

3.1 Non-uniform Pricing

Lemma 1. Given a fixed price ci(i = 1, . . . , n), let P = (p1, . . . , pn) be the
optimal transmit power of problem (2). For all i ∈ {1, · · · , n}, there exists a set
of Lagrange multiplier λ1, · · · , λn, and μ1, · · · , μn, which satisfy the following
equations:

whi

n0 +
n∑

i=1
hipi

− cihi0 + μi − λi = 0,

μipi = 0,
λi(pmax

i − pi) = 0,
λi ≥ 0, μi ≥ 0, (i = 1, . . . , n).

(4)
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Proof: Let L(p, λ, μ) = wlog
(
1 +

∑n
i hipi

n0

)
−

n∑

i=1

cihi0pi+
n∑

i=1

μipi+
n∑

i=1

λi(pmax
i −

pi), then by using Karush-Kuhn-Tucker (KKT) conditions [20], we can obtain

∂L(p, λ, μ)
∂pi

= 0,

μipi = 0,

λi(pmax
i − pi) = 0,

λi ≥ 0, μi ≥ 0, (i = 1, . . . , n).

(5)

Then, substituting L(p, λ, μ) into the first equation of (5), the proof of the
Lemma 1 is completed.

Next, multiplying pi in the first equations of (4), we can get

whipi

n0 +
n∑

i=1

hipi

− cihi0pi + μipi − λipi

=
whipi

n0 +
n∑

i=1

hipi

− cihi0pi − λip
max
i = 0

(6)

so the revenue of PU from SU i can be written as:

cihi0pi =
whipi

n0 +
n∑

i=1

hipi

− λip
max
i , (7)

However, PU wants to choose a price ci(i = 1, · · · , n) to maximize the total
revenue u, that means λi = 0, (i = 1, · · · , n). Then, put (7) to (4), we can get
following lemma:

Lemma 2. When PU gets the maximal utility with the optimal price, the opti-
mal transmit power for each SU can be obtained by solving the following problem:

maximize u (p1, · · · , pn) =
n∑

i=1

cihi0pi =
w

n∑

i=1

hipi

n0 +
n∑

i=1

hipi

subject to 0 ≤ pi ≤ pmax
i ,

n∑

j=1

hj0pj ≤ T.

(8)
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Because (8) is increased with
n∑

i=1

hipi, it can be equivalent to the following

optimization problem:

maximize u (p1, · · · , pn) =
n∑

i=1

hipi

subject to 0 ≤ pi ≤ pmax
i ,

n∑

j=1

hj0pj ≤ T.

(9)

Theorem 1. Sorting the index number of SUs in descending order by hi/hi0,
the optimal transmit power pi of the ith SU is given by:

pi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pmax
i , if

i∑

j=1

hj0p
max
j

≤ T,

T −
i−1∑

j=1

hi0p
max
i

, if
i−1∑

j=1

hj0pj < T ≤
i∑

j=1

hj0pj ,

0, else.

(10)

Proof: We prove the theorem with different case of active constraint. First, we
consider the case of the ITP constraint is satisfied under the maximum transmit
power. That means

n∑

i=1

hi0p
max
i ≤ T, then the problem (9) is equal to maximize

the linear combination of each SU’s transmit power with the weighting factor
hi under the power constraint of pmax

i . Since the object function is increasing
with pi, then the optimal power is pi = pmax

i . Next, we consider the case that
n∑

i=1

hi0p
max
i > T is valid. Since ū increases with pi, we have

n∑

i=1

hi0p̃i = T at

the optimal power p̃ = (p̃1, . . . , p̃n). It means the ITL constraint is an active
constraint. Moreover, as the object function is a linear function, the optimal
power must exist at the extreme point of the constraint. So the optimal power
must have an expression as (10). Furthermore, if the index number of two SU is
not sorted in descending order by hi/hi0, we can change their power to optimize
the objection function. From the above discussion, we have completed the proof
of Theorem 1.

From Theorem 1 and the relationship between the optimal price and power
in Lemma 1, we give the optimal price for PU as follows:

Theorem 2. Let pi be the expression as (10), then the optimal price ci that PU
charge for the ith SU can be written as

ci =
whi

hi0

(

n0 +
n∑

j=1

hjpj

) . (11)

From Theorems 1 and 2, the SU has a better effective channel gain hi/hi0,
it will have more opportunities to transmit. The optimal price for each SU is
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proportional to hi

hi0
, which means the SU who has a better effective channel gain

hi

hi0
will pay a higher price than others. Since PU charges a better SU with a

higher price, the profit of PU will be higher. If the interference power is an active
constraint, then the interference power to the PU will be equal to the ITP at the
optimal price. The utility of PU is bounded by the effective channel gain of SU.
If the effective channel gain is larger, PU will get more benefit. This is because
the SU with the larger effective channel gain will prefer to pay the PU to access
the spectrum. Moreover, if the pmax

i ≥ T/hi0, then the optimal price of the PU
just allowed one SU who have the largest hi

hi0
to transmit with the power T/hi0.

Since the optimal prices is expressed as a closed-form, PU can set them if it
has all the channel information of the CR networks. Assuming that the user is
indexed by the descending order of hi/hi0, PU can get the optimal price even if it
doesn’t know the channel information between the SUs and the BS by following
distributed algorithm:

(1) PU chooses a uniform price c0 large enough for all SU which can admit only
one SU and the interference power is less than T .

(2) While the interference power is less than T , PU decreases the price c0 until
the new SU is admit or the interference power is equal to T , set the pricing
for the 1 − th SU by c1 = c0. If the former admit user i decreases its power,
PU reduces the maximal price ci to let the power of user i to be pmax

i

(3) Repeated (2) for the new SU until interference power is equal to T or all
the SUs are admitted to transmit with their maximum power.

The proposed algorithm above is easy to implement in a distributed way. More-
over, the algorithm can find the optimal price for each SU as described by the
following Lemma.

Lemma 3. The distributed algorithm will be converged to the optimal price.

Proof: Without of loss generality, we index the number of SUs such that
h1/h10 > h2/h20 > . . . > hn/hn0. From the distributed algorithm, all SUs will
sequentially access the spectrum of PU with a uniform price c0. As the price c0
decreases, the SUs will admit in the spectrum in ascending order. PU decreases
c0 until ITL will meet with equal. Then, PU increases ci for those admitted users
if the power of those users are unchanged. We only need to prove that the utility
of PU is decreasing function of the price ci when the power used by the i − th
SU is less than its maximal power. Case one:

∑n
i hi0p

max
i > T . First, all SUs

decrease to such that the interference power at the primary user is T . Set the
price large enough for those not admission user and not admit them. The PU
increases the price ci for the user i if the power of user i remains unchanged. Case
two:

∑n
i hi0p

max
i ≤ T . Then all the users are admitted to access the spectrum

of the PU, the price ci updates as the case one.

Since the N-UP needs PU to measure each SUs interference power, this will
be complex at the PU’s receiver. Then we consider the UP case that the PU
charges the total interference power from SUs by using the same price.
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3.2 Uniform Pricing

In this section, PU sets a uniform interference power price c = ci, (i = 1, · · · , n)
for SUs. Thus, the optimal transmit power control strategy for SUs is denoted as:

maximize ũ (p1, · · · , pn) = wlog
(

1 +
∑n

i hipi

n0

)

− c

n∑

i=1

hi0pi

subject to 0 ≤ pi ≤ pmax
i .

(12)

And the PUs revenue optimization problem is:

maximize u(c) = c
n∑

i=1

hi0pi

subject to
n∑

i=1

hi0pi ≤ T.

(13)

Theorem 3. Assuming that the ratio of channel coefficient between SUs − BS
link and SUs − PU link denotes as hi/hi0, (i = 1, · · · , n) and the ratio order is
decreasing as h1/h10 > h2/h20 > . . . > hn/hn0. Given a uniform price c, the
optimal transmit power from (12) can be expressed as:

pi = max

⎧
⎨

⎩
min{pmax

i , w/ (chi0) −
i−1∑

j=1

hjp
max
j /hi − n0/hi}, 0

⎫
⎬

⎭
. (14)

Before proving Theorem3, we first give Lemma 4 to show the optimal power for
each SU with uniform price c.

Lemma 4: Assuming that h1/h10 > h2/h20 > . . . > hn/hn0 and let p∗ =
(p∗

1, . . . , p
∗
n) be the optimal solution of (13) for a fixed price c > 0. If p∗

i < pmax
i ,

then p∗
j = 0 (j = i + 1, . . . , n) .

Proof: We prove it by using the contradiction method. Let p∗ = (p∗
1, . . . , p

∗
n) be

the optimal solution of (13). If p∗
i < pmax

i , there exists j > i such that p∗
j > 0.

And the following must be satisfied.

∂u

∂pi
(p1, . . . , pn)|pi=p∗

i
=

whi

n0 +
∑n

i=1 hip∗
i

− chi0 = 0 (15)

and
∂u

∂pj
(p1, . . . , pn)|pj=p∗

j
=

whj

n0 +
∑n

i=1 hip∗
i

− chj0 ≥ 0. (16)

From (15), 1
n0 +

∑n
i=1 hip∗

i
= chi0

whi
is obtained, then substituting it into (16), we

get
chi0hj

hi
− chj0 ≥ 0,

that means hi

hi0
≤ hj

hj0
.
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We can see that the above process contradicts the fact that hi

hi0
>

hj

hj0
(j > i) .

Thus, the proof is completed.
Lemma 4 shows that for the optimal solution to (13), if hi

hi0
>

hj

hj0
, the user

j can’t transmit when user i transmit power is less than its maximum power.
Let p∗ = (p∗

1, . . . , p
∗
n) be the optimal solution of (13). Next, we prove Theo-

rem 3 by considering different value of c.
Let

−→
0 = (0, . . . , 0), and

−−−→
pmax

i = (pmax
1 , . . . , pmax

i , . . . , 0), that means the
elements of

−−−→
pmax

i is zero while j ≥ i,

Case 1: c ≥ wh1
n0h10

, ∂u
∂pi

(p1, . . . , pn) = whi

n0 +
∑n

i=1 hipi
− chi0 ≤ 0, so the optimal

power is p∗ = (p∗
1, . . . , p

∗
n) = (0, . . . , 0).

Case 2: wh1
(n0 +h1pmax

1 )h10
≤ c < wh1

n0h10
,

∂u

∂p1
(p1, . . . , pn)|

p=
−→
0

=
wh1

n0
− ch10 > 0, (17)

∂u

∂p1
(p1, . . . , pn)|

p=
−−−→
pmax
1

=
wh1

n0 + h1pmax
1

− ch10 ≤ 0, (18)

From (17), (18) and Lemma 4, we know when wh1
(n0h10 +h1pmax

1 ) ≤ c < wh1
n0h10

,
only p1 is not zero. From

∂u

∂p1
(p1, . . . , pn)|(p1,0,...,0) =

whi

n0 + h1p1
− chi0 = 0, (19)

then p1 is obtained as follows:

p1 =
w

ch10
− n0

h10
, (20)

So if c ∈
(

wh1

(n0 +h1pmax
1 )h10

, wh1
n0h10

)

, the optimal solution is

p∗
1

=
1
h1

(
wh1

ch10
− n0

)

=
w

ch10
− n0

h10
, p∗

i = 0 (i = 2, . . . , n) .

Case 3: wh2
h20(n0 +h1pmax

1 ) ≤ c ≤ wh1
(n0 +h1pmax

1 )h10

∂u

∂p1
(p1, . . . , pn)|

p=
−−−→
pmax
1

=
wh1

n0 + h1pmax
1

− ch10 ≥ 0, (21)

∂u

∂p2
(p1, . . . , pn)|

p=
−−−→
pmax
1

=
wh2

n0 + h1pmax
1

− ch20 ≤ 0, (22)

From (21), (22) and Lemma 4, the optimal solution is

p∗
1

= pmax
1 , p∗

i = 0 (i = 2, . . . , n) ,

when c ∈ [ wh2
h20(n0 +h1pmax

1 ) ,
wh1

(n0 +h1pmax
1 )h10

],
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Using the same argument, when c ∈
(

whi

hi0(n0 +
∑i

j=1 hjpmax
j ) ,

whi

hi0(n0 +
∑i−1

j=1 hjpmax
j )

)

(i = 2, . . . , n), For j = 1, . . . , i − 1

∂u

∂pj
(p1, . . . , pn)|

p=
−−−→
pmax
j

=
whj

n0 +
∑j

k=1 hkpmax
k

− chj0 > 0, (23)

∂u

∂pi
(p1, . . . , pn)|

p=
−−−→
pmax
i

=
whj

n0 +
∑i

k=1 hkpmax
k

− chi0 ≤ 0, (24)

From (23), (24) and Lemma 4, then the optimal solution is p∗
1 = pmax

1 , . . . , p∗
i−1 =

pmax
i−1 , p∗

i = w
chi0

− (n0 +
∑i−1

j=1 hjpmax
j )

hi
, p∗

j = 0 (j = i + 1, . . . , n) , when c ∈
(

whi

hi0(n0+
∑i

j=1 hjpmax
j ) , whi

hi0(n0 +
∑i−1

j=1 hjpmax
j )

)

(i = 2, . . . , n).

when c ∈
(

whi

hi0(n0+
∑i−1

j=1 hjpmax
j ) , whi−1

hi−10(n0+
∑i−1

j=1 hjpmax
j )

)

(i = 2, . . . , n), For j =

1, . . . , i − 1, we have

∂u

∂pj
(p1, . . . , pn)|

p=
−−−→
pmax
j

=
whj

n0 +
∑j

k=1 hkpmax
k

− chj0 > 0, (25)

∂u

∂pi
(p1, . . . , pn)|

p=
−−−→
pmax
i−1

=
whi

n0 +
∑i−1

k=1 hkpmax
k

− chi0 < 0, (26)

from (25), (26) and Lemma 4, then the optimal solution is p∗ = (pmax
1 , . . . ,

pmax
i−1 , 0, . . . , 0), when c ∈

(
whi

hi0(n0 +
∑i−1

j=1 hjpmax
j ) , whi−1

hi−10(n0 +
∑i−1

j=1 hjpmax
j )

)

(i =

2, . . . , n), when c ≤ whn

hn0(n0 +
∑n

i=1 hipmax
i ) ,

∂u

∂pi
(p1, . . . , pn)|

p=
−−−→
pmax
n

=
whi

n0 +
∑n

k=1 hkpmax
k

− chi0 ≥ 0, (27)

From (27), then the optimal solution is p∗ = (pmax
1 , . . . , pmax

n ), when c ≤
whn

hn0(n0 +
∑n

i=1 hipmax
i ) .

From the above discussion, the optimal solution p∗ for a fixed price c can be
concluded as:

p∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, · · · , 0), if c ≥ wh1
h10n0

,

(w − ch10n0
h1

, 0, . . . , 0), if wh1
h10n0

≥ c ≥ wh1
h10(n0+h1p

max
1 )

,

(pmax
1 , 0, . . . , 0), if wh1

h10(n0+h1p
max
1 )

≥ c ≥ wh2
h20(n0+h1p

max
1 )

,

(pmax
1 , . . . , pmax

i−1 , 0, . . . , 0), if
whi−1

hi−10(n0+
i−1∑

j=1
hjp

max
j )

> c ≥ whi

hi0(n0+
i−1∑

j=1
hjp

max
j )

,

(pmax
1 , · · · , pmax

i−1 , p∗
i , 0, · · · , 0), if whi

hi0(n0+
i−1∑

j=1
hjp

max
j )

> c ≥ whi

hi0(n0+
i∑

j=1
hjp

max
j )

,

(pmax
1 , . . . , pmax

n ), if whn
hn0(n0+

∑n
i=1 hip

max
i )

≥ c,

(28)
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where p∗
i = c

i−1∑

j=1

hj0p
max
j + w −

chi0

i−1∑

j=1
hjpmax

j

hi
. Because the expression (14) in

Theorem 3 is equivalent to (28), the proof of Theorem3 is completed.

Theorem 3 shows that when the price c ∈

⎡

⎢
⎣

whi

hi0(n+
i−1∑

j=1
hjpmax

j )

,

whi

hi0(n0+
i∑

j=1
hjpmax

j )

⎤

⎦, user j(j < i − 1) will use the maximal power pmax
j , user

i will use power w
chi0

−
∑i−1

j=1 hjpmax
j

hj
− n0

hj
, and other users’ power will be zero.

Therefore, at most one user’s power less than the maximal power while others
will transmit signal with maximal power or not transmit for a fixed price c.

Substitute the optimal power given by (14) and ci = c into (1), the optimiza-
tion problem for the PU can be rewritten as:

maximize u (c) = c

n∑

i=1

hi0pi

subject to pi ≥ 0,

n∑

j=1

hj0pj ≤ T,

(29)

where pi = max

{

min{pmax
i , w/ (chi0) −

i−1∑

j=1

hjp
max
j /hi − n0/hi}, 0

}

.

We give the optimal solution to (29) and consider two different cases under
the constraint of interference temperature limit:

Case One:
n∑

i=1

hi0p
max
i ≤ T , which means that the PU can tolerate the interfer-

ence of all SUs with the maximum transmit power. When the price c ∈ [bi, ai],
u(c) can be reduced to

u(c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if c ≥ wh1
h10n0

,

w − ch10n0
h1

, if wh1
h10n0

≥ c ≥ wh1
h10(n0 + pmax

1 )
,

ch10p
max
1 , if wh1

h10(n0 + pmax
1 )

≥ c ≥ wh2
h20(n0 + pmax

1 )
,

c
i−1∑

j=1

hj0p
max
j + w −

chi0
i−1∑

j=1
hjp

max
j

hi
, if bi > c ≥ ai,

c
i−1∑

j=1

hj0p
max
j , if ai > c ≥ bi+1,

c
n∑

j=1

hi0p
max
i , if whn

hn0(n0 +
∑n

i=1 hip
max
i )

≥ c,
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where ai = whi

hi0(n0 +
i∑

j=1
hjpmax

j )

, bi = whi

hi0(n0 +
i−1∑

j=1
hjpmax

j )

(i = 1, · · · , n). u(c) is a

piecewise linear function and u(ai) > u(bi+1), so the optimal price c∗ can be
written as:

c∗ = arg max
a∈{a1,...,an}

u(a) (30)

Case Two: When
n∑

j=1

hi0p
max
i > T , there must exist k ∈ (1, · · · , n) such that

k−1∑

i

hip
max
i < T, (31)

and
k∑

i

hip
max
i ≥ T, (32)

Using Lemma 4, only the first k users can be admitted to transmit when
the interference power constraint is satisfied. From (12), the power of each user
deceases with c, there exists a maximal cmax such that the transmit power of
the user will be pmax = (pmax

1 , · · · , pmax
k−1 , (T − ∑k

i pmax
i )/hk0, 0, · · · , 0).

cmax =
whk

hk0(n0 +
∑k−1

i hipmax
i ) + hk(T − ∑k

i pmax
i )

(33)

Since the u(c) is piecewise linear function in [cmax,∞), using the same argument
as case one, the optimal price c∗ can be written as:

c∗ = arg max
a∈{a1,...,ak−1,cmax}

u(a) (34)

From (30) and (34), the optimal price for PU is given. It can be seen that the
complexity to find the optimal price is at most O(n), where n is the number of
SUs.

We give the closed-form optimal price for the N-UP scheme and propose
the best power control strategies for CR networks to admit one user access
the spectrum if the transmit power of each user is large enough. Then, the
simulations compare the influence of N-UP and UP scheme on the performance
of PU and SUs in the next section.

4 Simulation Results

In this section, we evaluate the performance of the proposed pricing scheme. The
channel gains of all links experience Rayleigh fading with the variance of 1. We
set w = 1, T = 1, pmax

i = 10, ∀i, the variance of the noise is 1. The channel gain
h and h0 is randomly generated 104 times in our simulations. Figures 2 and 3
show the utility of PU and SUs versus the number of SUs. It can be seen that
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Fig. 2. Utility of primary user versus the number of secondary users.

the utilities of PU and SUs increases with the number of SUs. This is because
the probability of the channel gains of SUs is better when the number of SUs is
larger. Therefore, SUs need to pay more for PU in order to gain more profit.

Figure 4 shows the interference power of PU versus the number of SUs. We
can see that the interference power under the N-UP scheme is larger than UP
scheme when the number of SUs is more than one. Moreover, the interference
power of PU under the N-UP scheme increases as the number of SUs first, then
they meet the interference power when the number of SUs is more than five.
However, the interference power of PU under the UP scheme decreases as the
number of SUs increases. The difference between these two schemes is that the
interference power limit is always attained for N-UP scheme when the maximal
interference power made by SUs is larger than the interference power limit. For
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Fig. 3. Utility of secondary users versus the number of secondary users.
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Fig. 4. Total interference power versus the number of secondary users.

UP scheme, when the utility of PU is determined by the channel gain of SUs
other than the interference power limit, so the interference power limit is not
meet as equality at the optimal price.

Figure 5 shows the sum rate of SUs versus the number of SUs. The sum rate
under both UP and N-UP scheme increases as the number of SUs increases. This
is because the N-UP scheme also allows SUs to transmit more power than UP
scheme, which can be seen from Fig. 6.
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Fig. 5. Sum rate of secondary users versus the number of secondary users.

Figures 7 and 8 shows the utility of the PU and SUs versus the ITP when
pmax

i = 10 dB and n = 8 is given in the CR networks. We can see the utility
of SU of two schemes increases with ITP. While ITP is less than −5 dB, two
schemes have the same utility. This is because the optimal two pricing scheme



Price-Based Power Control in NOMA Based Cognitive Radio Networks 603

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Secondary Users

S
um

 P
ow

er
 o

f S
ec

on
da

ry
 U

se
rs

 (
W

)

 

 
Uniform Pricing
Non−Uniform Pricing

Fig. 6. Sum power of secondary users versus the number of secondary users.

allows only one user has the best channel condition to access the spectrum. As
ITP increases from −5 dB to 30 dB, the utility of PU under N-UP scheme is
larger than UP scheme. The reason is that N-UP scheme allows more SUs to
access the spectrum. And the utilities of SUs of two schemes begin to saturate
when ITP reaches 20 dB.
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Fig. 7. Utility of primary user versus the interference temperature power.

Figure 9 shows the interference power versus ITP. The interference power of
two schemes are the same when ITP is less than −5 dB, because the optimal
price for two schemes are the same when ITP is small. As ITP increases from −5
dB to 30 dB, the interference power of N-UP scheme is larger than NU scheme.
This is because the N-UP scheme always allows more users to transmit at their
maximal power until the interference power constraint is satisfied.
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Fig. 8. Utility of secondary users versus the interference temperature power.
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Fig. 9. Interference power versus the interference temperature power.
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Fig. 10. Admission number of secondary users versus the interference temperature
power.
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Figure 10 shows the average admission SUs versus the ITP. When the ITP
is less than −5 dB, both schemes admit one user. As the ITP increases from
−5 dB to 30 dB, the admission number of SUs of N-UP scheme increases, that
means all SUs will be allowed to access the spectrum when the ITP is large.
However, the admission number of SUs of UP scheme is less than two even the
ITP is large enough. This is because the interference power is always not equal
to ITL at the optimal price for uniform scheme.

5 Conclusion

In this paper, we consider the price-based power control problem for CR-NOMA
networks which contains one base station (BS), multiple SUs and one PU, and
SIC is employed at receiver. We first model the pricing and power control strate-
gies between PU and SUs as a Stackelberg game based on the interference tem-
perature power. Then, PU plays a leader in the game and chooses a price for
SUs in order to obtain maximum revenue under ITP limit. Moreover, SUs act
as followers to select the optimal power while considering their payoff to PU.
Furthermore, the non-uniform pricing scheme and uniform pricing scheme are
proposed to evaluate the revenue of PU and SUs. Simulation results compare
the different performance indexes of two schemes.
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