®

Check for
updates

Automatic Generation of Spider Maps
for Providing Public
Transports Information

Sara Santos' (™) Teresa Galvéo Dias"2, and Thiago Sobral':?

1 Faculty of Engineering of University of Porto, Porto, Portugal
{up201402814,tgalvao,thiago.sobral}@fe.up.pt
2 INESC TEC, Porto, Portugal

Abstract. With the continuous growth and complexity of public trans-
port systems, it is essential that the users have access to transport
maps that help them easily understand the underlying network, thus
facilitating the user experience and public transports ridership. Spider
Maps combine elements from geographical and schematic maps, to allow
answering questions like “From where I am, where can I go?”. Although
these maps could be very useful for travellers, they still are mostly man-
ually generated and not widely used. Moreover, these maps have sev-
eral design constraints, which turns the automation of the generation
process into a complex problem. Although optimisation techniques can
be applied to support the generation process, current solutions are time
expensive and require heavy computational power. This paper presents a
solution to automatically generate spider maps. It proposes an algorithm
that adapts current methods and generates viable spider map solutions
in a short execution time. Results show successful spider maps solutions
for areas in Porto city.

Keywords: Spider maps + Schematic maps - Public transports -
Automation

1 Introduction

Every major city has a complex public transport system that is part of every-
day mobility of millions of citizens. These systems are vital for cities mobility
and ought to be encouraged as an alternative to private transport. Thus, public
transport maps provide simplified representations of the public transport net-
works, making them easy to interpret, facilitating the user experience and public
transports ridership.

These maps are often represented by schematic maps, since they fulfilled the
need for better and simpler representation of complex networks [6], presenting
the readers the available services and navigation possibilities. A specific type of
schematic map is designated spider map, used to represent complex areas, such

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved

A. L. Martins et al. (Eds.): INTSYS 2019, LNICST 310, pp. 131-149, 2020.
https://doi.org/10.1007/978-3-030-38822-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38822-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-38822-5_9

132 S. Santos et al.

Oceano Atléntico

Fig. 1. Sao Jodo hospital spider map [11]

as bus networks in city centres. For instance, Fig. 1 depicts a spider map created
for the Sao Joao hospital area in Porto, Portugal.

Even though spider maps are a favourable representation for providing pas-
sengers public transport information, the generation process is still manual and
relies on the expertise of the designer. There are several methods and techniques
that can be applied to automate the spider map generation, but current solutions
are complex and time expensive.

This work produces a solution able to generate a feasible spider map at run
time, presenting an algorithm that modifies and adapts current techniques. The
goal is to tackle the complexity of the problem and present viable solutions
with short execution times and using less computational power. Thus, it aims at
simplifying the traditional spider map generation process and potentially make
an impact on the use of spider maps for providing public transports information.

In Sect. 2 a brief overlook of relevant state-of-the-art methods and concepts
are depicted, while Sect.3 presents the problem approach and the developed
methods. The last section concludes this paper and proposes future work and
improvements.

2 Maps for Providing Public Transports Information

Transportation maps support complex public transport networks providing
essential information (routes, stops and points of interest) for representing

Automatic Generation of Interactive Spider Maps 133

the transport network [4]. An important process associated with these maps
is schematisation, where certain aspects are giving emphasis and unimportant
information is removed.

There are many methods for guiding this process. For instance, line general-
isation methods, such as simplification, where some line points are removed,
only maintaining those that ensure the overall line shape; exaggeration, that
amplifies certain portions of objects; and enhancement, where certain features
are emphasised to elevate the message [6]. Among other techniques is adapting
the initial map (where points correspond to geographical locations) to a grid
[5]. In this technique, line points are moved to grid intersections, while ensuring
certain constraints, such as orientation and distance between points. The result
is a map with a simpler overall shape, where incremental optimisation processes
can be applied to improve the result.

Nonetheless, adapting maps to a grid can lead to very saturated areas, for
instance, representing complex centre areas that have lines ending on city out-
skirts. Hence, Sarkar and Brown [10] proposed a method denominated fish-eye
that applies different scales throughout the map, thus enabling magnification
of crowded areas [2]. This is a Focus+Context technique of great value to the
schematization process, since it emphasises important information, while main-
taining the global context [9].

Spider maps combine elements from both geographical and schematic maps
[1] and are used for represent the travel possibilities of complex public transport
areas, for instance, bus networks in a city centre [7].

These maps are characterised by a central area called the hub, generally
depicted by a rectangular shape which details a geographic map of the location,
proving better spatial context [8]. From the hub emerges the schematic lines that
represent the network routes. The location where lines emerge from the hub is not
arbitrary and should considered route orientation and the stop location within
the hub.

The lines in the spider map do not follow the geographic layout, since they
are the result of several simplification and displacement operations, introducing
the concept of map point. A map point is a relevant location in the map (e.g.
stops or group of stops along the line routes), with coordinates associated to a
map canvas that result from several operations during the map generation [9].

Spider maps have many elements in common with schematic maps, thus sim-
ilar methods can be applied. However, they have extra constraints, e.g., deter-
mine the location where lines emerge from the hub, that makes the spider map
generation process even more complex. Furthermore, overall topology should be
assured, i.e., the general relations between map points should be maintained in
order guarantee spatial awareness.

Spider maps’ schematic lines are defined by a set of segments and map points,
some of them shared by different lines. Shared segments should be drawn parallel
separated by a distance greater than zero and each line has a colour associated.
Moreover, angles between segments should be octilinear, i.e., should only follow
horizontal, vertical or diagonal orientations (0, 45 or 90° angles) [9].

134 S. Santos et al.

Though spider maps have a great potential for providing public transports
information, there is not much information in literature about this type of maps
and how to automate the generation. Most studies focus on the efforts made by
Mourinho [9] in the development of techniques to automate the generation of
spider maps.

In the proposed method, Mourinho [9] models the spider map as a graph with
restrictions associated with points (vertexes of the graph) and lines (edges of the
graph). The initial algorithm state is a map where map points and lines resemble
the geographic location, then a multi-criteria algorithm is applied to determine
the best location of each point, while ensuring a set of constraints and design
guidelines. The solution successfully attained the proposed goals. However, this
is a complex multi-criteria optimisation problem with great computational effort,
since it aims at finding the best solution possible.

3 Automatic Generation of Spider Maps

3.1 Problem Definition

The spider map generation process is a complex problem, since these maps have
several design constraints as depicted in Sect.2. Additionally, the process is
mostly done manually, relying on the expertise of the map maker. Even though
some current solutions can automatically generate spider maps, they are complex
and time expensive for producing results.

Thus, the objective of the proposed solution is to develop an algorithm capa-
ble of producing a spider map by creating, adapting and modifying techniques.
The solution must take as input the spider map hub area selected by the user
and generate as result a viable spider map. A result is considered viable if it
satisfies the design restrictions of spider maps aforementioned in Sect.2. The
goal is to develop a prototype that integrates the developed algorithm capable
of producing spider map results in short execution times, since it will affect the
prototype usability.

Along with automating the spider map generation process, the prototype
should also integrate interaction and visualisation techniques, taking advantage
of the benefits of digital maps over the traditional form and thus potentially
achieve better usability. Such techniques can be integrated before generating
the map, for instance, during the hub selection process, and when visualising
the map result, e.g. different levels of zoom and clickable items for additional
information.

The developed prototype is focused on Porto city and all the public transport
data was provided by OPT!. The user is presented a geographic map of Porto
for choosing the hub area that will be used as input for generating the spider
map.

The next section, Sect. 3.2, will describe the algorithm for generating a spider
map solution, while Sect. 4 will present the prototype development. Results and
evaluation of the developed solution will be analysed in Sect. 5.

! http://www.opt.pt/.

http://www.opt.pt/

Automatic Generation of Interactive Spider Maps 135

3.2 Map Generation Algorithm

Beforehand, the algorithm needs as input the coordinates of the hub, that will
allow querying the server for information relating the stops inside the selected
area and the routes that belong to the spider map. The server will gather and
process all the information needed and return to the client the set of stops inside
the hub and the lines of the map. Each line is defined by a sequence of map
points.

The spider map is modelled as a graph G(V,E) with vertexes V that represent
the map points and edges FE, the connection between two vertexes, translating
the segments of routes defined by two map points. A graph representation was
chosen since map points and route segments are shared between multiple lines,
thus avoiding duplicated information and making it easier to ensure the relations
between points.

Nonetheless, the map points returned from the server have as coordinates the
latitude and longitude of the accurate geographical location. Hence, they need
to be projected to the map canvas, which is defined as an SVG (Scalable Vector
Graphics) using the tool D3.js. Thus, all the latitude and longitude coordinates
are projected using the Mercator projection centred on the hub centre. The result
is a map where the lines and map points are close to the geographical locations,
but now map points have as coordinates z and y associated with the defined
canvas.

The next step is to insert the hub and determine the location where the lines
should emerge from. Therefore, the intersection points between the line segments
and the hub boundaries are calculated and those will be the emerging points and
all the other segments inside the hub are eliminated. The intersection represents
an approximation of the orientation and path of the route, since the hub is a
geographical representation of the area. The following step is to resize the hub,
translating the lines to new locations considering the centre and the new hub
dimensions and insert the hub image depicting the geographic location. Figure 2
exemplifies a hub in Casa da Musica area in Porto, after the aforementioned
operations.

Furthermore, before beginning the displacement operations to satisfy the
spider map restrictions, a matrix containing the topological relations between
points is built. It is important to build the matrix before the generation process
starts, since at this stage all the points relate to each other close to their real
geographical location. Thus, for each map point is calculated the relation to
every other map point. A map point can be north or south and east or west
of another point. When two points have an equal coordinate (z or y), they are
called in line of each other.

(1) Grid Adaptation. The following algorithm step is to adapt the initial map
to a grid, which will lead to an overall simpler shape, closer to fulfil the spider
map restrictions. To build the grid, the bounds of the map are calculated, i.e.,
the maximum and minimum z and y coordinates are determined, that will corre-
spond to the boundaries of the grid. Then, a grid is built with an initial cell size

136 S. Santos et al.

\ Porto Casa

75) da Masica
@
%

Fig. 2. Hub example of Casa da Musica area

length and all the grid intersection points are calculated. The grid intersection
points will be the possible displacement options.

The next step is to move each map point to a neighbour grid intersection
with the best score. Thus, for each map point the nearest grid intersection points
are determine and a score that translates the quality of the displacement is
calculated. The score combines the distance between the map point and the
grid intersection and how well the topological relations are maintained if the
map point is moved to that location. Thus, for each topological relation that is
violated a penalty is given. However, if a topological relation changes to in line
a smaller penalty is attributed, e.g., if point P1 is north of P2 and, with the
displacement, P1 becomes in line with P2, a smaller penalty is credited than if
P1 becomes south of P2. This loosen the topological constraints and will result in
more straight lines after the grid adaptation process. The map point is moved to
the grid intersection with the smaller score. Figure 3 depicts the grid adaptation
process, illustrating initial locations in the left image and the displacement result
in the right image.

K
)

N

WA
Y

I —

Fig. 3. Grid adaptation process

However, not all the nearest grid intersections are valid displacements. Grid
intersection points that will cause hub occlusion, i.e., will intersect the hub, and
that will cause line segments to overlap or pass through map points that do

Automatic Generation of Interactive Spider Maps 137

not belong to that segment are removed as possible displacement locations. The
addition of this restriction will lead to, in some cases, map points that will not
have any possible displacements. When this happens, the graph is returned to
the original state, the grid cell size is decrease and the grid adaptation process is
restarted. By decreasing the grid cell, the granularity is increased which leads to
more displacement options. This process is repeated until all points are displaced
to a grid intersection or the grid cell size reaches a defined minimum. In this last
case, the grid adaptation process may not be possible, thus a map solution will
not be produced.

(2) Correcting Non-octilinear Angles. After the grid adaptation, the result
will be a map with simpler line shapes that respect the topology relations, how-
ever some of the angles between segments will still not be octilinear. Thus, the
next step is to identify the map points where the octilinear angle restriction is
not satisfied and correct them. It is important to note that the non-octilinear
angles resulting from the segments emerging from the hub are not taken into
consideration in this step and will be corrected using a different approach.

Afterwards, for each map point identified with an incorrect angle, the algo-
rithm will try to identify a near grid intersection that will correct the angle.
Similar to the grid adaptation process, some of nearest grid intersection points
will be removed as possible displacements. Grid intersections points are consid-
ered not valid if at least on of the following situations occur: (1) the displacement
will cause octilinear angles to become non-octilinear; (2) the displacement will
disturb the topological relations between points (changes to in line do not count
as disturbance); (3) the displacement will cause occlusions, line overlapping or
segments passing through map points that do not belong to that line. Figure4
illustrates the correction of the non-octilinear angle (depicted in the left image)
by displacing a point to a new grid location (right image).

)\ &

o) ‘
I

\

'\ | '

Fig. 4. Non-octilinear angle correction by displacement

However, some map points will not have any possible valid displacements
that will correct the non-octilinear angles, thus making them candidates for a
break point introduction. A break point will transform one segment in two new
ones, which allows correcting the angles without any displacements. Moreover, a
break point insertion also has restrictions, since it cannot cause occlusions and

138 S. Santos et al.

Fig. 5. Non-octilinear angle correction

line overlapping. In some cases, angles cannot be corrected with only a break
point, thus two break points are introduced.

The non-octilinear angles of segments that emerge from the hub will be cor-
rected using a different approach. If a segment that emerges from the hub has
a non-octilinear angle with the next segment, a perpendicular line to the hub
segment is inserted an then a break point is introduced to connect to the next
map point. The break point is inserted in a grid intersection that will cause a
90° angle or, if not possible, a 45° angle. Figure 5 depicts the correction of non-
octilinear angles by introducing two break points (left image) and the correction
of hub related angles.

Even though the several angle correction steps aim at correcting non-
octilinear angles through various approaches, in some cases it may not be possible
to correct all angles, thus the generated map solution may have some errors.

(3) Draw the Spider Map. After correcting the angles, the final map point
locations are determined, and the drawing process can begin. The first is to
obtain and place the hub image, that is a geographical representation of the
area. The image is obtained using the API Here? that returns an image of the
geographical map giving a boundary box. Moreover, the stops are identified with
markers.

Map points are drawn in the associated locations and do not need further
processing. However, segments are shared between lines and need to be drawn
parallel, thus making it necessary introducing an offset between shared segments.

In order to introduce an offset that will lead to parallel segments, it is neces-
sary to calculate the slope of the line. Thus, identifying the correct orientation
(vertical, horizontal or diagonal), is possible to introduce a correct offset to the
x and y coordinates, just as illustrated in Fig. 6.

The final step is to draw the labels that identify the map points. Not all
map points need to be labelled, only the last and the most important of each
line. Nonetheless, the label’s position needs to be determined. Thus, a score is
calculated that translates how many occlusions will the label cause. For that,
a bounding box of the label is placed at top, bottom, left and right of the
corresponding map point and a penalty score is given for each line intersection.
The chosen place will be the one with the smaller score.

2 https://developer.here.com/.

https://developer.here.com/

Automatic Generation of Interactive Spider Maps 139

Fig. 6. Shared line segments

After this step, the generation process is finished and a valid spider map solu-
tion is presented to the user. Figure 7 depicts the algorithm generation process in
a flowchart. Hence, a valid spider map solution is generated if all the aforemen-
tioned algorithm steps are successfully completed. In some cases the algorithm
is not capable of producing a valid solution, for instance, if grid adaptation fails,
no solution will be presented, or if not every non-octilinear angle is corrected,
the spider maps will have errors.

The developed algorithm is integrated in the developed prototype depicted
in Sect. 4 and results will be illustrated and evaluated in Sect. 5.

4 Prototype Development

For the purpose of testing how the developed algorithm performs in real situ-
ations, a prototype was created integrating the algorithm depicted in Sect. 3.2
and taking advantage of digital map characteristics by combining visualisation
and interaction techniques.

4.1 TUse Cases

The main use cases consist of selecting the desired hub area, and the gener-
ation of the corresponding spider map. Figure8 illustrates the prototype use
cases. Moreover, there is the ambition to integrate interaction and visualisation
techniques to enhance the user experience.

In the first screen, a map of Porto city with interaction capabilities is pre-
sented to the user, i.e., the user can zoom and navigate through the map. Fur-
thermore, in the top right corner, the user can access control buttons illustrated
in Fig.9 left. In this controls users can show/hide the pre-defined grid, check
stops inside the grid selection and finally generate the spider map.

The pre-defined grid lays over the Porto city corresponding to the boundaries
of the available data. Then, the user can select one or combine several grid cells to
create a personalised hub area. Figure 9 right shows an example of grid selection,

140 S. Santos et al.

/ Inital map graph G(V,E) /

v

Resize Map

v

Adaptto grid |

Reduce grid cell
size

Y %

Grid cell size
<=min
Yes

Y

Correct Non-octilinear
angles

* Yes

Yes No

l l \
Valid Spider Map Spider Map with errors/ / No solution

Fig. 7. Generate spider map algorithm

Visualise Spider Map

Generate Spider Map User Interact with Spider Map

Fig. 8. Prototype use cases

Automatic Generation of Interactive Spider Maps 141

Fig. 9. Example of grid selection (left) and control buttons (right)

where selected cells are shown in orange and markers depict stops inside the hub
selection.

After the user chooses the desired hub and selects “Generate Spider Map”,
the algorithm takes the hub coordinates as input and generates a spider map
result. In the next screen the user can visualise and interact with the map result.
The user can navigate, zoom and click on map points to check additional infor-
mation. All these interaction features were developed using D3.js Behaviour
plugin that allow to catch and handle interaction events. Figure 10 depicts an
example of a portion of a spider map result where it is possible to check the
additional information box when a map point is hover or clicked on.

Pr. da Galiza

Line(s): 902; 903;
101; 204;

Fig. 10. Interaction with spider map: click on map points to obtain additional infor-
mation

142 S. Santos et al.

4.2 Architecture

The developed solution follows a simple two-tier architecture or client-server,
illustrated in Fig.11. This architecture style is commonly used in distributed
systems to separate operations into the client and server, where the server pro-
vides services to the client [3]. Thus, the server is responsible for dealing with
all the necessary data operations, while the client is responsible for the spider
map generation and rendering operations.

Server (Node js) Client

http/https D3js
Web App

Leaflet
JavaScript backend
(algorithm)

Fig. 11. Solution architecture

REST API
Express.js)

MySQL
database

The server was implemented using Node.js> and Fxpress.js* for the REST
API. Moreover, the server establishes a connection with a MySQL® database
that stores all the public transport data, that will be depicted in detail in the
next section. Hence, the server is responsible for gathering and processing all the
data needed for the spider map generation.

On the other hand, the client consists of a web application based on the
two major use cases described in Sect.4.1. For the geographic maps and hub
selection Leaftlet® and OpenStreetMap” were used, while the spider map drawing
and generation was developed using D3.js® and Javascript technologies.

4.3 Data Model

The data related to public transports of Porto was provided by OPT and stored
in a MySQL database following the model depicted in Fig. 12.

Lines are made comprise of several stops that can belong to multiple lines.
Moreover, routes are defined by a series of stops associated with an order and
recorded in the Path table. The OPT data also identifies map points, which
group several stops in a single point. Hence, when gathering the data for the

https://nodejs.org.
https://expressjs.com/.
https://www.mysql.com/.
https://leafletjs.com/.
https://www.openstreetmap.org/.
https://d3js.org/.

w N O g s W

https://nodejs.org
https://expressjs.com/
https://www.mysql.com/
https://leafletjs.com/
https://www.openstreetmap.org/
https://d3js.org/

Automatic Generation of Interactive Spider Maps 143

[
Path 1

code . i Stop Line Line colour
orientation code ., |code name
order is_active go_name [—1r

Map Point name return_name g

name 0.1 * | latitude b

latitude longitude

longitude

Fig. 12. Data model

Fig. 13. Initial map state for Pra¢a da Republica hub area

spider map generation, stops along the routes will be replaced or grouped by a
map point record and those will be the considered map points during the map
generation process.

Furthermore, stops and map points have associated geographical coordinates
(latitude and longitude), which will represent the initial position of the points.
Moreover, lines and stops also have other attributes associated, such as names
and line colours.

5 Evaluation and Validation

Current solutions are complex and take very long to produce spider map results.
Hence, the ambition is to tackle the complexity of the generation process of
spider maps and develop a solution capable of automatically generate spider

144 S. Santos et al.

maps in real-time. Thereby, the two variables taken into consideration during
the evaluation and validation are if the map is correctly generated, i.e., the
spider map follows the establish design rules, and the execution time needed to
produce the result. A result is considered valid if it complies with the spider map
restrictions aforementioned in Sect. 2.

5.1 Tests and Results

Performed tests aim at testing if the solution is capable of generated valid spider
maps at real-time using the prototype develop to select the input hub area and
generate and evaluate map results. Several tests were performed by choosing
different hub areas as input and evaluating the results. Even though tests were
only performed for Porto’s bus network, the number of possible hub inputs is
very extensive. Hence, the tests focused on testing areas where the network is
denser, i.e., areas served by many public transports’ lines like city centres. In
Porto, some of the busiest areas are Aliados, Casa da Misica, Hospital Sdo Jodo,
Castelo do Queijo and others. Tests demonstrated that the developed algorithm
produces successful spider map results for the city of Porto. Figures 13 depicts the
initial map state for Pra¢ca da Republica and Fig. 14 depicts the corresponding
generated spider. Figure 15 also depicts a spider map result for Aliados, a busy
centre area in Porto.

?ua de Joio das Reg

Fig. 14. Spider map result for Pra¢a da Republica hub area

The complexity of the generation process and, subsequently, the spider map
is directly related to the number of map points, i.e., the complexity increases
as the number of map points also increases, since more displacement operations

Automatic Generation of Interactive Spider Maps 145

obi

Fig. 15. Spider map result for Aliados hub area

and angle corrections will be needed to generate a valid map. Hence, to control
the continuous increase in complexity, a limit to the number of lines in the spider
map was set, as well as a limitation on the hub size. This prevents the user to
select very large areas for the algorithm, preventing the exponential increase in
complexity.

There is not much literature in automating the generation process of spider
maps, and most of the efforts made in this area were through Mourinho’s [9]
work. However, in his work the goal was to find the optimal spider map solution,
hence the quality was valued over fast results. Thus, the solution required great
computational effort and long execution times. For instance, in tests accessing
the quality versus the number of algorithm iterations, the average execution
times were of 2797 s.

Even though is not possible to establish a direct comparison with the tests
performed by Mourinho, it is possible to conclude that the developed solution
was able to produce results faster. The developed solution produced spider maps
under 500 ms for complex centre areas. Table1 depicts tests results for valid
solutions, describing the number of map points, the numbers of different lines
of the map, hub area and the execution time (ET) in milliseconds. In addition,
Table 2 depicts the success of test results, identifying how frequently a valid
solution was obtained, the number of times where a solution was not possible
and the number of incorrect solutions (i.e., spider map results that contain some
non-octilinear angles).

146 S. Santos et al.

It can be concluded that the developed algorithm successfully produces
results, i.e., the solution generates valid spider map results in real time, taking
significantly less time compared to state-of-the-art solutions. Thus, this work
successfully tackles the complexity of the spider map generation process and
contributes to the identified gap of current work.

5.2 Limitations and Future Work

The quality of the result depends on how and if all the stages of the algorithm
are successful. In the grid adaptation stage, the algorithm will adapt the cell
size until the initial map is successfully adjusted to the grid; however, in some
cases, grid adaption may not be possible. In very dense areas, a vast number
of map points compete for a grid allocation. Thus, even by increasing the grid
granularity, it may not be possible to assign a grid point to every map point.

Table 1. Tests results for generated spider maps

No. map points | No. lines | Hub area ET (ms)
153 6 Castelo do Queijo | 844.29
153 6 Castelo do Queijo | 710
32 1 Av. Boavista 122.21
153 6 Casa da Musica 419.23
144 1 Casa da Musica 298.64
10 1 Aliados 35.04
108 4 Aliados 387.71
130 4 Trindade 664.88
52 2 Boavista 215.83
88 2 Hosp. Sao Jodo 272.87
106 4 Hosp. Sao Jodo 432.53
102 4 Av. Boavista 5445
32 1 Av. Boavista 102.67
105 4 Praga da Republica | 482.9
105 4 Aliados 496.27
27 1 Bolhao 95.45
39 1 Campo Lindo 177.45
66 3 Marqueés 244.62
177 6 Marqués 599.46
37 6 Passeio Alegre 105.96
51 6 Foz do Douro 159.23
33 6 Ramalde 102.33
79 6 Parque Real 194.93

Automatic Generation of Interactive Spider Maps 147

Table 2. Outcome of performed tests

Solution No. of results
Valid solution found | 22

No solution found

Solution with errors

Moreover, since the subsequent algorithm steps depend on the success of grid
adaptation, a solution may not be found.

Nevertheless, introducing a restriction to the maximum number of lines
solved contained the occurrence of this problem, and tests showed that the grid
adaptation process is successfully completed even in complex areas, and with
just one or two iterations. Therefore, reducing the cell size in each iteration to
increase the grid granularity was proven successfully.

The next algorithm step that will influence the quality of the solution is the
correction of non-octilinear angles. In the developed solution, the algorithm has
several iterations that aim correcting the non-octilinear angles through several
approaches. The first approach is identifying a valid grid allocation to displace
the identified map points and correct the angle. Nevertheless, in some cases is
not possible to find a valid displacement that corrects the angle, thus the next
iterations try to correct the remaining non-octilinear angles by inserting one or
two break points. The integration of different approaches to correct identified
non-octilinear angles was effective in producing valid spider map results.

Notwithstanding, in some cases the algorithm may not produce a valid spider
map (i.e., some angles may not be corrected) or, in the worst-case scenario, not
produce a solution. Most invalid algorithm results derive from the non-octilinear
angle correction, not the grid adaption as depicted in Table2. Thus, even for
invalid results, the algorithm can present a solution that may not be completely
correct (some angles may not be octilinear).

Some errors are the result of incorrect map point coordinates, that lead to
incorrect projections, which subsequently cause the failure of grid adaptation or
angle correction.

On the other hand, circular lines are viewed as a special case, since they
sometimes lead to particular results. For instance, results with circular lines
often cross themselves, which may be valid according to spider map restrictions,
but is not very aesthetically pleasing. Also, the rescaling the hub operation may
lead to undesired distortion, that in some cases may preclude the success of the
non-octilinear angle correction.

Even though some limitations were identified and the algorithm may be
improved so it becomes more robust to certain cases, results have proven that
the developed solution was successful and provides enhancements in the cur-
rent state-of-the-art solution. The solution is able to produce viable spider map
solutions at real-time and taking in consideration the hub area as user input.
Furthermore, the prototype demonstrates the the successful integration of the
algorithm with the advantages of digital maps by incorporating visualisation and
interaction techniques.

148 S. Santos et al.

Finally, the spider map solutions can be aesthetically improved in a post-
processing stage, with more line simplifications. Nonetheless, the developed solu-
tion provides advances in the simplification of the generation process of spider
maps, thus potentially making an impact on the use of spider maps in provid-
ing public transports information. Through the developed prototype, the user is
able to choose a desire hub area and visualise all the travel possibilities by the
generated spider map.

6 Conclusions

Spider maps are a type of transportation map that presents all the public trans-
port possibilities available in an area. These maps are very useful for passengers,
but their production is still mostly manual. Some efforts have been made to
automate the generation of these maps, but state-of-the-art solutions require
great computational effort and long execution times to produce results. Hence,
the proposed approach aims at developing a solution capable of automatically
generate spider maps, tackling the complexity gap of current solutions, and thus
possibly making an impact on the use of spider maps for providing public trans-
port information.

The state-of-the-art review identified a gap in current solutions. The gener-
ation process of spider maps could be simplified, enabling the automatic cre-
ation of map results in real-time. Furthermore, human-computer interaction
techniques can be applied to spider maps to enhance the user experience while
manipulating such maps.

Henceforward, this work is focused on two goals: develop an algorithm that
automatically generates spider maps results in real-time and considering the
hub as input; and to develop a prototype that integrates the map generation
algorithm, adding interactive capabilities to map results. The algorithm adapted
techniques used in schematic maps generation, such as adapting a map to a
pre-defined grid, and developed new processes that apply several operations to
produce a spider map compliant to all the design restrictions. The prototype
used the D3.js” tool to assist the visualisation and interaction with the map.
D3.js is a powerful open-source tool that provides several data manipulation
operations and integrated interaction events, ideal for the prototype goals.

Throughout the validation and evaluation process, the objective was to test if
the solution could produce valid spider map solutions at real-time, reducing the
execution time needed to produce map results. The prototype and tests focused
on Porto bus network.

Performed tests showed that the solution is successful and can produce map
results in shorter execution times than state-of-the art solutions. Furthermore,
the prototype developed validated that the algorithm can be successful inte-
grated in a web application that provides an interface for passengers to interact
and customise the map generation.

9 https://d3js.org/.

https://d3js.org/

Automatic Generation of Interactive Spider Maps 149

Future work may improve the map aesthetics in a post-processing phase
by applying more simplification to the spider map schematic lines, which will
increase the quality of the solution, and other algorithm improvements so it
becomes more robust to complex network data. Notwithstanding, the developed
solution contributed to the identified gap in state-of-the-art solution, producing
spider map solutions at real-time and considering user input.

Acknowledgements. This work is financed by the ERDF - European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT-Fundagdo para a Ciéncia e a Tecnologia within project
PTDC/ECI-TRA/32053/2017 and POCI-01-0145-FEDER-032053.

Furthermore, special gratitude to OPT (http://www.opt.pt/) for supporting this
project by providing all the data related to Porto’s bus network, thus making it possible
to evaluate the solution with real data.

References

1. Avelar, S., Hurni, L.: On the design of schematic transport maps. Int. J. Geogr.
Inf. Geovis. 41(3), 217228 (2006). https://doi.org/10.3138 /A477-3202-7876-N514

2. Baudisch, P., Good, N., Stewart, P.: Focus plus context screens - combining display
technology with visualization techniques. In: Proceedings of the International Sym-
posium on User Interface Software and Technology, UIST 2001, pp. 31-40 (2001).
https://doi.org/10.1145/502348.502354

3. IBM: The Client/Server model (2019)

4. International Cartographic Association: History of ICA (2019). https://icaci.org/
research-agenda/history/

5. Klippel, A., Kulik, L.: Using grids in maps. Theory and application of diagrams. In:
Proceedings of First International Conference, Diagram 2000, Edinburgh, Scotland,
UK, 1-3 September 2000, pp. 486-489 (2000)

6. Klippel, A., Richter, K.F., Barkowsky, T., Freksa, C.: The cognitive reality of
schematic maps. In: Meng, L., Reichenbacher, T., Zipf, A. (eds.) Map-based Mobile
Services: Theories, Methods and Implementations, pp. 55-71. Springer, Heidelberg
(2005). https://doi.org/10.1007/3-540-26982-7_5

7. Maciel, F., Dias, T.G.: Challenging user interaction in public transportation spider
maps: a cobweb solution for the city of Porto. In: Proceedings of IEEE Conference
on Intelligent Transportation Systems, ITSC, pp. 181-188 (2016). https://doi.org/
10.1109/ITSC.2016.7795551

8. Maciel, F.M.A.: Interactive spider maps for public transportation. Ph.D. thesis,
Faculty of Engineering of University of Porto (2012)

9. Mourinho, J.: Automated generation of context-aware schematic maps: design,
modeling and interaction. Ph.D. thesis, Faculty of Engineering of University of
Porto (2015). https://hdl.handle.net/10216/79324

10. Sarkar, M., Brown, M.H.: Graphical Fisheye views of graphs. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 83-91 (1992).
https://doi.org/10.1145/142750.142763

11. Sociedade de Transportes Colectivos do Porto: Sdo Jodo hospital spider map
(2019). https://www.stcp.pt/fotos/spider_map

http://www.opt.pt/
https://doi.org/10.3138/A477-3202-7876-N514
https://doi.org/10.1145/502348.502354
https://icaci.org/research-agenda/history/
https://icaci.org/research-agenda/history/
https://doi.org/10.1007/3-540-26982-7_5
https://doi.org/10.1109/ITSC.2016.7795551
https://doi.org/10.1109/ITSC.2016.7795551
https://hdl.handle.net/10216/79324
https://doi.org/10.1145/142750.142763
https://www.stcp.pt/fotos/spider_map

	Automatic Generation of Spider Maps for Providing Public Transports Information
	1 Introduction
	2 Maps for Providing Public Transports Information
	3 Automatic Generation of Spider Maps
	3.1 Problem Definition
	3.2 Map Generation Algorithm

	4 Prototype Development
	4.1 Use Cases
	4.2 Architecture
	4.3 Data Model

	5 Evaluation and Validation
	5.1 Tests and Results
	5.2 Limitations and Future Work

	6 Conclusions
	References

