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Abstract. Despite the previously demonstrated considerable negative
effects of on-street parking availability on a city’s traffic flux, the devel-
oped literature on this issue is far from being voluminous. It is shown
that, the duration for finding a vacant parking space consume a sizeable
portion of a driver’s time. Especially, for huge megacities, even small,
local traffic disturbances can generate chaotic results due to their com-
plex, inter-connected nature. Hence, being able to predict the probabil-
ity of finding a vacant on-street parking place on a spot at a given time
up to a reasonable degree shall be at paramount of interest for future
smart-city oriented conurbations. In this paperwork, we present a generic
framework supported by a machine learning model, which predicts the
spatio-temporal on-street parking availability, where spots are character-
ized according to amenities in their vicinity.
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1 Introduction

High price index and lack of available vacant areas make it difficult to build new
off-street parking sites in contemporary metropolitan cities. Hence, most of the
time, drivers have to rely on limited on-street parking. The impact of drivers
searching for a parking space on urban traffic congestion ranges from around
14% [6] to 30% [19,23], highlighting the importance of this issue. A recent study
shows that the average parking space search per driver per day is approximately
9 min and that one third of all drivers gave up on searching for a vacant on-street
parking place at least once during the past year [11]; the average driver looses
roughly 17, 41 and 44 h per year while searching for parking spot in the US,
UK and Germany respectively; finally, 72.7 billion US dollars, 23.3 billion UK
pounds and 40.4 billion euros are wasted every year due to traffic disturbances
[11]. Taking into account the hundreds of millions of drivers in large cities around
the globe, even few minutes of blockage may result in sizeable environmental
hazard due to extra carbon emission and economic loss due to wasted time and
fuel.
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The academic literature and industrial attempts on optimizing vehicle park-
ing are relatively scarce compared to its potential impact. Existing literature gen-
erally focuses on parking price optimization [15,16,25] or calculates the required
parking space of an area based on the maximum demand [5,13], targeting deci-
sion makers. On the other hand, studies on real-time parking availability for
drivers are quite rare. The tracking of vacant on-street parking spots is generally
coined with the term smart parking under the smart city concept. For instance,
a private entrepreneurship [1] offers its clients real time vacancy predictions of
parking spots in various cities using the cellular and GPS data acquired from
their partners. Due to industrial copyright, they do not provide any details of
their algorithm.

On the academic side, there were various attempts to solve the parking place
occupancy prediction problem with different approaches. Generally, researchers
apply time-series regression methods, where they estimate the future states of
parking slots based on the historical data. [22] uses a Long-Short Term Mem-
ory (LSTM) Recurrent Neural Network (RNN) to predict the future occupancy
rates of a parking location. In [7], authors propose a Bayesian regularized neural
network using parking spot’s historical data, current weather and traffic flow
conditions. On the other hand, [21] develops a spatio-temporal auto-regressive
model to predict the occupancy rates of parking slots in San Francisco and Los
Angeles. In addition to these, there are various other similar approaches in the
literature such as [10,24,26].

As it can be noticed, all of these approaches propose local models that rely
on a single parking spot’s historical data to predict its future state. In the best
case, a spatial or spatio-temporal auto-correlation model is employed, which
means the locality of information is constrained by the city. This approach thus
requires previous data of an existing parking location in order to make predic-
tions. This is a very strong limitation as parking occupancy data is not available
in most of the cities in the world. Moreover even if it exists, the data are gener-
ally dispersed and confidential. Therefore, a unified, generic framework capable
of making predictions for parking occupancy in various cities in the world is
essential.

Considering this, we propose a predictive model for on-street parking occu-
pancy rates, based on the hypothesis that cities, especially large metropolitan
areas in our current global world shall have similar spatio-temporal characteris-
tics. Our idea is to represent a location in a city by its surrounding amenities,
where amenity is synonymous to any social and/or commercial point of inter-
est, such as a restaurant or grocery shop. At the end of the day, it would be a
reasonable assumption to consider that on-street parking demand is mostly gen-
erated by the nearby amenities. The information about the amenities of a city
is taken from the well known, open source geolocation initiative OpenStreetMap
[14]. Volunteered Geographic Information (VGI) has huge potential for any kind
of smart city oriented application and is not only limited to parking. However it
is quite rare to find studies which exploit these rich data sources for urbanism.
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We present a global on-street parking occupancy level prediction framework,
which is trained by the historical parking information of a few cities with the
aim of projection on other cities without data. To the best of our knowledge,
this is the first such global attempt in the literature for on-street parking. As
mentioned previously, there exists various non-global approaches for on and off-
street parking vacancy regression. Due to locality, it can be expected that these
models may give more precise prediction compared to a global one. Neverthe-
less, considering the limited accessibility of parking data on most of the cities in
the world, study of a global predictive framework is highly influential using the
amenity content of urban locations. Therefore, we desire to construct a pioneer-
ing data scientific scheme addressing the issue and evaluate the future potential
with extended datasets.

2 Training Dataset

The principal aim of the study is to be able to predict the parking occupancy
ratio in various areas of any kind of metropolitan city in the world at a given
time, as mentioned previously. For this purpose, one needs to choose certain com-
mon spatial characteristics of cities, which are universally correlated to temporal
parking demands. As mentioned previously, we propose to use numerous types
of social and/or commercial points of interest, which are tagged as amenities in
OpenStreetMap.

OpenDataParis initiative provides all on-street parking transactions for the
city center of Paris in 2014, across its 7800 parking meters [2]. It consists of
a list of parking transactions records. Each transaction has a parking meter id
along with its latitude and longitude (where the purchase is validated). Note
that, we wish to create a global predictive structure, where we are interested
in the ratio of occupancy of parking spots. Compared to off-street parking, the
ratio of occupancy can only be defined loosely for on-street parking. Indeed, the
maximum capacity is usually not well defined for parking meters. A driver parks
to an available curbside spot in a permitted area and validates its purchase at the
closest parking meter. In addition to this, there can be multiple parking meters
in the same area so that one can validate his/her purchase at several locations,
which makes the notion of capacity arbitrary. First, we convert the transactions
to temporal statistics per parking meter indicating the instantaneous number of
cars registered at a given time. For this study, we have chosen to follow hourly
statistics. The capacity of a parking meter will be estimated by looking at the
distribution of transactions for a given parking meter.

In Paris, on-street parking is charged only during weekdays and saturday,
between 8 a.m. and 7 p.m.. Even if there are variations across cities in the world,
the on-street parking is generally free of charge during night-time and weekends.
For the sake of generality, we have excluded the transactions of Saturday. And
in a global sense, without loss of generality, it is more convenient to assume
that there shall be no significant variations for on-street parking demand within
weekdays. Thus, the only temporal feature we have considered in this work is
the hour of the day, which is treated as a categorical variable.
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2.1 On-Street Parking Occupancy Indicator

When it comes to on-street parking, finding a universal indicator for the parking
place availability on a global scale is non-trivial. First of all, on-street parking
regulations are highly diverse from city to city, but also within a city. On-street
parking can be prohibited, free of charge during different hours within different
parts of a city. While certain streets may be available for on-street parking on
both sides, others may only allow it on one side of the road.

In addition to regulations, there exists also the issue of on-street parking
capacity due to street geometry. Defining a capacity as for off-street parking
is not evident. Even, we may able to predict the number of parking demands,
defining the occupancy level from this, is problematic. At this scale of diversity
and obscurity, it is challenging to reach a common indicator for parking space
availability. In order to develop a global scale prediction framework as accurate
as possible, a normalized indicator for on-street parking load shall be calculated.
After evaluating the number of cars assigned to each parking meter for every hour
of the dataset, we have calculated the means (μ) and standard deviations (σ) of
each parking meter. Then, we have defined a virtual parking meter capacity as
μ + 1.5σ for each parking meter separately. This value is attained by empirical
analysis of the parking transactions record. Next, we calculate hourly occupancy
ratio of each parking meter by dividing the instantaneous number cars to the
virtual capacity of the parking meter. In the case where the number of cars is
larger than this value, the ratio is set to 1.0. At the end of the day, the idea is to
represent a normalized universal spatio-temporal on-street parking availability
metric.

3 Amenities

Each parking meter is characterized by the number of major amenity types
contained in a rectangle of 150, 200, and 300 m centered on it. We assume that the
on-street parking demand will depend on the points of interest within these range
limits. Indeed, the distribution of amenities within these ranges shall represent
the type of neighbourhood as a residential, business, touristic, leisure, dense or
sparse sector; which at the end, is related to the temporal on-street parking
demand. Rather than using a circular periphery, we have defined range limits in
squares as in Fig. 1, where we believe it is more convenient with the rigid street
geometry of most of the major cities.

In OpenStreetMap, there are hundreds of amenity types which are mostly
tagged by voluntary contributors, including rare definitions which are specific
to certain countries (e.g. biergarten in germany) or no definition at all (empty
amenity type). Hence, in order to construct a universal framework, we should
focus on amenities which are common to all cities, such as pharmacies or grocery
shops. In addition to this, we should group amenities together into major amenity
types which shall have similar temporal parking occupancy characteristics. For
instance, it would be logical to claim that restaurants and cafes attract customers
in similar days and hours. The categorization of amenities into four main types
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Fig. 1. Each parking meter or point in a city is represented by the number of 4 major
amenity types in 150, 200 and 300 m.

is shown in Table 1. Note that it is important to consider amenity types which
are expected to show high similarities in all cities. For instance, a university or
an administrative amenity can be highly variant in terms of size and impact,
hence also for the parking demand. However, ATM machines, banks or cafes are
much more similar across the world with respect to these criteria.

Let us describe the four amenity types we chose: first, a financial amenity is
defined, which is composed of ATM machines, banks and money transfer offices.
In addition to generating parking demands directly, the density of these financial
of points interest is highly correlated with the human activity around them. For
example, a location with a high number of ATM machines is expected to be a
more central node compared to others. Second, a social food amenity type is
considered, including restaurants, cafes, bars etc. These are points of interest
expected to have similar correlations with on-street parking occupancy within
their peripheries. Another considered amenity type is the commercial amenities
such as grocery shops, supermarkets, bakeries etc. And finally, all the rest of
tagged amenities are grouped in other amenities general type, for which central
locations tend to be more densely tagged in OpenStreetMap.

The correlation coefficients of counts of these 4 major amenity types in 3 radii
of interest of 150, 200, 300 m with the normalized on-street parking occupancy for
the training dataset parking meters are given in Table 2. Note that, we have also
considered correlation coefficients while choosing the major amenity types and
interested radii. As it can be seen, for all ranges and amenity type combinations,
there exists a positive correlation with occupancy ratio up to a degree.
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Table 1. 4 major amenity types defined to reflect on-street parking demand corre-
sponding to amenities in OpenStreetMap.

Major amenity type

Financial Bank, ATM, Money Transfer Office

Commercial Grocery, Supermarket, Florist,
Bakery, Butcher, Rotisserie,
Chocolate, Cosmetics, Pet, Dry Cleaning,
Dairy, Health Food, Internet Cafe, Copyshop,
Tabacco, E-Cigarette, Laundry,
News Agent, Real Estate, Hair Dresser,
Electronics, Clothes, Pharmacy

Social food Cafe, Restaurant, Bar, Pub, Fast-Food

Other –

Table 2. Correlation Coefficients of 4 major amenity types and 3 ranges for training
dataset parking meters’ hourly occupancy rates.

Major amenity type/range (meters) 150 200 300

Financial 0.032 0.026 0.054

Commercial 0.065 0.069 0.073

Social food 0.020 0.028 0.041

Other 0.046 0.047 0.049

4 Predictive Machine Learning Model

4.1 CatBoost

For each parking meter, we have 12 static physical features due to the num-
ber of 4 major amenity types in 150, 200 and 300 m periphery. As a temporal
feature, we use the hour of the day, which we treat as a categorical variable.
Before feeding these features to a machine learning algorithm, we shall convert
hour category to a numerical feature. For this purpose, we have used categor-
ical boosting (CatBoost) encoding algorithm [12]. Even though, this encoding
scheme has been introduced recently, it has gained a significant reputation in
the research community, thanks to its reported performances [4,27]. Each hour
category is converted to a single numerical values between 0 and 1 after encoding,
and combined with 12 physical features of each parking meter, thus producing
a final feature vector with length of 13.

4.2 Random Forest Regression

We have chosen random forest regression [18], which is known for produc-
ing plausible results for voluminous datasets while avoiding overfitting. After
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shuffling our OpenDataParis dataset, we divided it into 80% training and 20%
test datasets for evaluation. Note that category encoding and numerical scalings
are only used on the training dataset. Following detailed experimentation, the
optimal number of estimators for Random Forest algorithm is found to be 150,
with a maximum depth of 30. Mean absolute error for the test dataset is found
to be approximately 0.19, which can be considered as an acceptable deviation
for our amenity related model.

Another main advantage of the Random Forest algorithm is its high level
of interpretability, similarly to other tree based approaches [8,17]. It is indeed
crucial to be able to evaluate the relative importance of the features used in our
model for understanding the impact of major amenity types on on-street parking
demand. A well established metric of features relevance is the Mean Decrease
Gini or more generally the Mean Decrease of Impurity (MDI) [20]. The MDI can
be computed as follows: a decision tree is built by splitting the data in a way
which minimizes a measure of impurity i (such as the Gini, Shannon entropy or
Renyi entropy for example). For each node t of tree T, we thus want to find the
split st that maximizes the impurity decrease given by,

Δi(s, t) = i(t) − pLi(tL) − pRi(tR) (1)

where, i(tL) and i(tR) refer to impurity measures of the left and right portions of
the dataset split by this node. And pL, pR are the proportions of samples in left
and right parts of the node respectively, so that pL = NtL/Nt and pR = NtR/Nt.

The MDI of a feature Xm is given by: [9,20]:

Imp(Xm) =
1
Nt

∑

T

∑

t∈T ;v(st)=Xm

p(t)i(st, t) (2)

where, NT is the total number of trees of the forest, pt is the proportion of
samples reaching node t so that pt = NT /N , N being total number of samples
on tree T and v(st) is the feature used in split st [9,20]. Intuitively speaking,
MDI thus measure how many times a feature was used for a split, highlighting
its importance.

After training our model, we have reached the weighted normalized impor-
tance of 13 features as in Table 3. As expected, hour feature has by far the most
significant effect, constituting more than half of the total impact. We observe
that up to 300 m range, the effect of major amenity types do not vary signifi-
cantly, whereas all contribute to the prediction process.

5 Hourly Predictions for the Streets of Various Cities

Unfortunately, there are only a very limited number of tagged on-street park-
ing meters in OpenStreetMap. For most of the cities, tagged parking meters do
not even exist. Due to this fact, in order to have a more universal model, we
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Table 3. Mean impurity decrease based normalized feature importance of the trained
random forest model for 13 features.

Mean impurity decrease

Normalized feature importance 150 200 300

Category/Range (meters)

Financial 0.013 0.017 0.034

Commercial 0.036 0.037 0.050

Social food 0.040 0.043 0.062

Other 0.045 0.043 0.051

Hour 0.51

estimate the hourly occupancy levels of streets over world. Without loss of gen-
erality, we only consider roads which are tagged as residential or living street
in OpenStreetMap. Note that, major avenues and roads may not be eligible for
parking with greater probability. We do not make any assumptions about the
parking regulations of streets which is obscure and we make predictions for all
the considered streets. The geometrical center of the street is considered as the
location for our predictive model.

09:00

Fig. 2. Predicted on-street parking occupancies in New York, USA for 9 a.m. in week-
days. Higher occupancy levels are represented with redder hue and lower occupancy
levels are represented with greener hue. (Color figure online)
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Fig. 3. Predicted on-street parking occupancies in Istanbul, Turkey for 3 p.m. in week-
days. Higher occupancy levels are represented with redder hue and lower occupancy
levels are represented with greener hue. (Color figure online)

Due to limited space, we only demonstrate the results for 6 cities around
globe as in Figs. 2, 3, 4, 5, 6 and 7 for three different periods of a weekday. One
can observe the higher parking demands are generally centered around important
hot spots as expected, especially in early morning and afternoon. Also, we can
notice the medium to high occupancy levels around residential suburban areas
in the morning and evening times.

In order to present a better validation, we have compared our predictions
with the municipality of Seattle’s parking data [3]. The dataset contains the
instantaneous number of cars and capacity of each parkmeter in the city, for
2017. As we are developing a model which considers the hours between 8 a.m.
and 7 p.m., we have taken the overall mean of each parkmeter for each weekday
in the dataset for each hour. Then, we have calculated the amenity based static
features of each parkmeter and performed our predictions. Figure 8 shows the
means of real data and our predictions in a weekday at 6 p.m.

As it can be observed from Fig. 8, our model is capable of capturing the
parking hot-spot regions highly accurately. For all hours considered, the mean
difference (error) between real data and our predicitions is approximately 6%.
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19:00

Fig. 4. Predicted on-street parking occupancies in Rennes, France for 7 p.m. in week-
days. Higher occupancy levels are represented with redder hue and lower occupancy
levels are represented with greener hue. (Color figure online)

Fig. 5. Predicted on-street parking occupancies in Paris, France for 6 p.m. in weekdays.
Higher occupancy levels are represented with redder hue and lower occupancy levels
are represented with greener hue. (Color figure online)
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15:00

Fig. 6. Predicted on-street parking occupancies in Munich, Germany for 12 a.m. in
weekdays. Higher occupancy levels are represented with redder hue and lower occu-
pancy levels are represented with greener hue. (Color figure online)

12:00

Fig. 7. Predicted on-street parking occupancies in Lyon, France for 12 a.m. in week-
days. Higher occupancy levels are represented with redder hue and lower occupancy
levels are represented with greener hue. (Color figure online)
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REAL

PREDICTED

18:00

Fig. 8. Predicted on-street parking occupancies in Rennes, France for 7 p.m. in week-
days. Higher occupancy levels are represented with redder hue and lower occupancy
levels are represented with greener hue. (Color figure online)

6 Conclusion and Future Work

Expecting similarities in terms of parking dynamics in contemporary global cities
is a reasonable approach. Especially, if proper common points of interests (i.e.
amenities) are chosen as a reference, one can estimate the on-street parking slot
vacancy probabilities up to a certain extent. Even though on-street parking is
a highly important subject considering the proven negative economic impact, a
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universal predictive model for occupancy levels had not been proposed to the
best of our knowledge. In this study, we have presented a generic framework for
this purpose, where locations in cities are characterized by the number of various
types of points of interests within three different radii. Constructing a unified,
accurate model is quite complex due to highly variant dynamics, geometries and
regulations in different cities. However, we believe this issue of a global regressive
model is required to be investigated in detail due to aforementioned motivations
and reasons. Therefore, we have introduced a pioneering study addressing this
challenge by employing state-of-the-art machine learning algorithms. As it can be
observed from the presented results in this paper, we can attain justifiable results
for different cities. Unfortunately, we believe the most important bottleneck is
the scarcity of open datasets about on-street parking. One can expect more and
more accurate predictions with more available data sources. As a next step, we
also would like to consider additional urban features such as bus stops, traffic
lights, individual buildings and street geometry.

References

1. eParkomat, city smart parking s.r.o. http://eparkomat.com. Accessed 12 May 2019
2. opendataParis, 2014 on-street parking transactions. https://opendata.paris.fr/

explore/dataset/horodateurs-transactions-de-paiement/information/. Accessed 31
May 2019

3. AlAwadhi, S., Scholl, H.J.: Aspirations and realizations: the smart city of Seattle.
In: 2013 46th Hawaii International Conference on System Sciences, pp. 1695–1703.
IEEE (2013)

4. Anghel, A., Papandreou, N., Parnell, T., de Palma, A., Pozidis, H.: Benchmarking
and optimization of gradient boosting decision tree algorithms

5. Arnott, R., Inci, E., Rowse, J.: Downtown curbside parking capacity. J. Urban
Econ. 86, 83–97 (2015)

6. Arnott, R., Rowse, J.: Downtown parking in auto city. Reg. Sci. Urban Econ. 39(1),
1–14 (2009)

7. Badii, C., Nesi, P., Paoli, I.: Predicting available parking slots on critical and
regular services by exploiting a range of open data. IEEE Access 6, 44059–44071
(2018)

8. Boulesteix, A.L., Janitza, S., Kruppa, J., König, I.R.: Overview of random forest
methodology and practical guidance with emphasis on computational biology and
bioinformatics. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(6), 493–507
(2012)

9. Breiman, L.: Manual on setting up, using, and understanding random forests v3.
1. Statistics Department University of California Berkeley, CA, USA 1 (2002)

10. Chen, X.: Parking occupancy prediction and pattern analysis. Department Com-
puter Science, Stanford University, Stanford, CA, USA, Technical Report CS229-
2014 (2014)

11. Cookson, G., Pishue, B.: The impact of parking pain in the us, UK and Germany.
Hg. v. INRIX Research (2017). Online verfügbar unter http://inrix.com/research/
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