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Abstract. Within dense urban environments, real-world transportation
systems are often associated with extraordinary modeling complexity.
Where standard analytic methods tend to fail, simulation tools emerge
as reliable approaches to study such systems. Despite their versatility,
simulation models can prove to be computational burdens, exhibiting
prohibitive simulation runtimes. To address this shortcoming, metamod-
els are used to aid in the simulation modeling process.

In this paper, we propose a directional training scheme, combining
both active learning and simulation metamodeling, to address the chal-
lenge of exploring the input space, within the context of computationally
expensive simulation models. Using a Gaussian Process (GP) as a sim-
ulation metamodel, we guide the exploration process towards the iden-
tification of specific regions of the input space that trigger a particular
simulation output search value of interest defined a priori by the user,
saving a significant amount of simulation time in the process.

The results obtained from applying our methodology to an Emergency
Medical Service (EMS) simulator, show that it is capable of identifying
such important input regions while minimizing the number of simulation
runs at the same time, thus making the simulation input space explo-
ration process more efficient.

Keywords: Machine learning - Active learning - Simulation
metamodeling - Gaussian Processes

1 Introduction

Real-world urban transportation environments are systems often exhibiting over-
whelming complexity and multidimensional dynamism. These intrinsic proper-
ties traditionally pose effective and practical constraints when it comes to the
modeling process. Simulation tools are usually regarded as the only reliable app-
roach to study such complex systems [22]. However, despite their obvious advan-
tages, simulation models are not exempted from its drawbacks.
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Perhaps the most evident and persistent disadvantage is that when designed
with sufficiently high resolution and realism, simulation methods tend to exhibit
prohibitive runtimes and massive computational workloads, even considering
today’s standards. A straightforward solution to this problem is to consider
the use of simulation metamodels [11], which are specially conceived to approxi-
mate the simulation results and, consequently, the underlying function inevitably
defined by the simulation model itself.

Within similar experimental setups, characterized by the lack or expensive-
ness of data, active learning emerges as a dominant modeling paradigm that tries
to address this problem, being particularly popular among the machine learning
community. Similarly to the simulation metamodels, the primary goal of active
learning is to reduce the computational burden during the learning stage of a
given machine learning model. It provides any model the ability to choose the
most informative data points from which it learns, making it perform better with
less training points and in a more efficient manner [28].

In this work, we propose a directional training scheme that combines the
best of both worlds, active learning and simulation metamodeling, to address
the challenge of exploring the input space, within the context of computation-
ally expensive simulation models. A Gaussian Process (GP) is employed as a
simulation metamodel, guiding the exploration process towards the identifica-
tion of specific regions of the input space that trigger a particular simulation
output search value of interest defined a priori by the user.

Using an Emergency Medical Service simulation model, the results show that
the proposed approach can identify such important input regions while minimiz-
ing the number of required simulation runs at the same time, thus effectively
making the exploration process of the simulation input space computationally
more efficient.

2 Background

Simulation metamodeling [12,16,17,21] is quite an old topic among the sim-
ulation literature [5]. Its main purpose is to develop and provide approxima-
tion models for the simulation results, allowing for a systematic exploration of
the functional behavior of complex and time-consuming simulation models in a
rather less expensive way.

Simulation models are usually associated with computationally fast and
structurally simple functions that map the same input/output domains of the
original simulator. Hence, metamodels should reflect both the problem entity
under study (e.g., some real-world system) and the simulation model itself. How-
ever, the validation degree is closely related to the accuracy requirements, which
eventually depend on the metamodeling goals. In [19], four possible primary
goals are identified, namely, problem entity understanding, simulation output
prediction, optimization, and verification/validation. In this work, however, we
are mostly concerned with understanding the real underlying system and with
assessing the prediction performance of the metamodel. We assume that the



34 F. Antunes et al.

simulation model of interest is ideally validated, verified, optimized, and thus
calibrated concerning the real problem under study.

The simplest applications of simulation metamodeling involved queuing sys-
tems with linear models as approximation functions [16]. Due to their simplicity
and easy interpretation, GPs are also quite popular as simulation metamodels
[6,8,10,18]. Although their application essentially started as deterministic sim-
ulation approximators, it was later extended to stochastic ones [3,7,20,29].

Similarly, as simulation metamodels are designed to reduce the computational
burden of systematic and exhaustive computer experiments, active learning aims
to increase the predictive performance of a given model with a few training points
as possible. It does so by providing the model with the ability to actively choose
the most informative data points that should be included in the training set,
which iteratively expands as the fitting stage evolves.

As seen in [30], any active learning scheme is traditionally comprised of five
key players, summarily presented in

(L,U,M,0,0Q).

The first two elements represent the labeled and unlabeled data sets, respectively.
As active learning is often associated with modeling scenarios where labeled data
is scarce or expensive to obtain, the size of U is oftentimes massively greater than
that of £. Next, we have M, which denotes the machine learning model or any
other kind of predictive algorithm, followed by O, which represents the labeled
instance provider, commonly known as the oracle. The only role of the latter
is to provide labeled instances from the ground truth function underlying the
process of the system under study. A human annotator traditionally played the
role of the oracle. However, it can take several forms, as long as it constitutes
a label provider, which trivially includes simulators, among others. Finally, Q is
the query function, which essentially defines how the new data points should be
selected from L to be labeled by O. It commonly encompasses not only search
strategies but also criteria to evaluate which are the most informative instances
that best increase the performance of M.

Closely associated with the query function is the definition of the stopping
criteria. Being an iterative sampling method, active learning must be stopped
at some point in time. As pointed out in [28], this point can be identified in two
decisive situations: (a) when the cost of obtaining a new labeled point is higher
than the model’s errors and (b) when the model has reached a performance
threshold, from which the addition of new training points will have no or almost
no effect.

Due to its Bayesian properties, a GP can be easily implemented to follow
an active learning scheme. As its predictions come in the form of fully-defined
probability distributions, rather than single point-wise estimates, it accounts for
data uncertainty in a quite intuitive way. Assuming that the predictive variance
can be considered a proxy for informativeness, the GPs can be used to explore the
most informative points within a given simulation input space. These approaches
are commonly associated with exploration-exploitation strategies in Bayesian
Optimization problems [15,23].
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3 Approach

Our approach is based on an active learning scheme built on the top of a sim-
ulation metamodeling approach, and it is specially designed to extract relevant
information regarding the underlying simulation model under study with as few
simulation runs as possible. First, we introduce the GP modeling framework,
acting as our simulation metamodel, and then move to the presentation of the
proposed approach.

3.1 Gaussian Process

According to [27], a GP is a stochastic process in which any finite set of variables
follows a multivariate Gaussian distribution. This collection of random variables
is fully characterized by a pair of functions, namely, a mean and a covariance (or
kernel) function, respectively represented and defined by m¢(x) = E[f(x)] and
ke(x,x") = E[(f(x) —ms(x))(f(x") — mg(x))], with 2 and 2" being two differ-
ent D-dimensional input data points. Consequently, a GP is often denoted by
GP(mys(x), ky(x,x’)). When applied to regression problems, the GP framework
is known as Kriging [9]. Such denomination has its origins in the geostatistics
field.

The GP framework places a prior over functions. Within a regression setup,
this means that the functional relationship between the dependent variable x and
the independent variable y is assumed to follow a GP. Formally put, we have y =
f(x) + €, where f(x) ~ GP(ms(x), ks(x,x')) and € ~ N(0,0%). Thus, the values
of the signal function f are represented by the random variables comprising the
GP and defined over an high-dimensional feature space, for example, R? .

For prediction purposes, the conditional distribution of a new test point x.
is given by

X, y, x. ~ N(£., cou(£,)),
with
£ 2E[f.| Xy, x.] = kL [K,] 'y,
CO’U(f*) :V[f*] = kf** - k’}r* [Ky]_lkf*,

where k. = kp(X, %), kfex = kyp(X4, %), and (X,y) representing the training
data set. Here, notice that instead of a point-wise prediction, each GP prediction
is associated with a completely defined Gaussian distribution, allowing it for a
effective Bayesian treatment of the uncertainty not only present in the training
data but also regarding its the predictions themselves.

Most of the functions used to define GPs have a set of free parameters (also
called hyper-parameters), allowing for their optimization with respect to the
training data, commonly via maximum likelihood estimation. However, mainly
for simplicity reasons, the mean function can be set to zero for the majority of
the applications. On the contrary, the covariance function plays a vital role in
the modeling performance of the GP.
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In this work, we use the Squared-Exponential with Automatic Relevance
Determination (SE-ARD) function as the GP’s kernel, generally defined as

k(x, %) = o2 exp (—§<x )T M(x - x'>) |

2

where 0% corresponds to the variance of the underlying signal function f,

M = diag(o)~2 and o = [01,09,...,0p]" is a positive real-valued vector. Each
diagonal element of M represents the characteristic length-scale for each of the D
input dimensions. These length-scales weight the importance of the each dimen-
sion during the inference process. The standard version of the SE version with
isotropic distance measure can be obtained by setting o1 = 02 = ... = op. This
function is one of the most widely used kernel functions, not only for GPs but
also for other well-known kernel-based machines, such as the Support Vector
Machines (SVMs).

3.2 Directional Grid-Based Search

The modeling approach developed in this work is summarized in Algorithm
1, combining elements of both active learning and simulation metamodelling
strategies.

Before running the algorithm, three entities must be defined a priori, namely,
the search value (sV'), the initial training grid (¢trGrid), and the search grid
(sGrid). Whereas sV and sGrid are fixed, trGrid evolves over time. The basic
idea of the presented methodology is to use a GP to guide the expansion process
of trGrid towards the identification of simulation input regions that trigger
simulation output values close to sV. In other words, this methodology allows
the user to search for sets of input values whose simulation results are close to a
pre-specified output of interest, by conducting sequential predictions over sGrid.
For the sake of simplicity, we focus on the two-dimensional case. An illustration
of the grid-based training unit used in this work is depicted in Fig. 1(a).

We call it directional since it steers the simulation requests (or runs) exclu-
sively in the direction of those input values that are more likely to assume output
values similar to sV. On the other hand, it is grid-based as it comprises a series of
iterative training grids used to locally approximate the simulation results within
the neighborhoods of the search value. By proceeding in such a directional way,
we can minimize the number of required simulation runs, therefore making the
input space exploration process faster and computationally more efficient. This
is particularly useful for those simulation models that exhibit prohibitive simu-
lation runtimes and workloads.

After sV, trGrid and sGrid are set, the algorithm is ready to start. It
does so by obtaining, via simulation requests, the simulation output results
(stmR) corresponding to the input values comprised in trGrid. Note that in this
firstiteration, trGrid matches the established training grid-based unit exactly,
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Algorithm 1. Directional Grid-based Active Learning pseudo-algorithm.
Inputs: sV, trGrid, sGrid

Repeat

Obtain simR corresponding to the input values in trGrid

Fit a GP to the training data set (trGrid, simR)

Use the fitted GP to make predictions over sGrid

Define training sub-grids according to the predicted values closest to sV
Expand trGrid with the newly defined grids

Compute AAD between predictions and sV’

Until AAD stabilizes

: OQutput: trGrid

—_

—_

which in turn is defined over the simulation input space in which we believe
that sV is triggered. Then, a GP is fitted to the training set (trGrid, simR).
The prediction stage follows this initial step. Here, the obtained GP is used to
make predictions over sGrid. Remember that the latter does not contain any
simulation result, only unlabeled instances.

Additionally, sGrid should be sufficiently dense so that the GP can populate
it with the associated predictions with enough detail. This does not constitute a
computational hindrance since the GP, after training, is rather fast when mak-
ing predictions. This is often the case for most machine learning frameworks.
Afterward, the predictions obtained from the previous step are used to explore
the simulation input space, especially to locate those that are value-wise closer
to sV. At this point, new grids are defined, and sGrid is expanded. Note that
these newly defined grids are essentially sub-grids within the initial one with the
same structure, as previously seen in Fig. 1(a). Lastly, we compute the Average
Absolute Difference (AAD) between the GP predictions and sV.

The process is repeated until AAD shows no significant variation from iter-
ation to iteration. We are not interested if the GP approximation is below or
above the search value, but rather how close it is in absolute terms. We compute
the average so that we have an indicator of the GP’s overall fitting performance.
As we expand the training set with data points whose simulation output val-
ues are successively closer to sV, it is expected that AAD decreases over time,
eventually reaching a certain threshold. This threshold represents the point from
which the GP can no longer improve its predictions, by merely adding more data
points to the training set. Ultimately, the main goal of the algorithm is to provide
a final mesh grid that delimits the input space region of interest that triggers
explicitly the value we are searching for. In Fig. 1(b), a graphical depiction of
the proposed approach is shown.
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Fig. 1. (a) Grid-based training unit and (b) flow diagram of the proposed active learn-
ing metamodeling methodology.

4 Experiments

In this section, we illustrate the proposed approach using an Emergency Medical
Service simulator. As for the software used, we implemented our approach using
the free and open-source Matlab toolbox Gaussian Processes for Machine Learn-
ing (GPML), developed and maintained by [27]. As mentioned earlier, we choose
the SE-ARD function as the GP kernel and set the GP mean as the average of
the simulation output values within the training set.

4.1 EMS Simulation Model

According to a publication released by the United Nations, more than half of
the world’s population in 2016 lived in urbanized areas. By the year 2030, it is
expected that around 60% will globally live within urban settlements, and 33%
will live in cities with at least half a million inhabitants [25]. This migration from
the countryside places unprecedented pressure on the existing urban infrastruc-
tures, consequently leading to further and unpredictable urban transformations.
The impact of these transformations, and thus the future of our cities, are mostly
dependent on decisions that are taken in the present day to prepare and plan
for this inevitable urban growth [24].

Emergency Medical Services (EMS) play a particularly vital role within the
exponential growth of today’s cities. This kind of service ensures the safety and
well-being of its citizens by promptly dispatching emergency vehicles to the loca-
tions of the life-threatening events, generally relying on public emergency phone
lines. The quality of service is highly dependent on the information that the ser-
vice operator obtains from the caller, the severity of the case and the accuracy
of its medical needs assessment, as well as, obviously, on the final decision taken
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and the corresponding actual response. Especially within high-density urban
areas, EMSs are forcibly constrained by the city dynamics. Daily traffic and
population changes are two fundamental forces that directly affect the outcome
performance of medical services [2]. Hence, the planning of EMS is of utmost
importance. Simulation modeling is a standard tool to design and explore the
response of EMS since the evaluation of policy decisions or operational solutions
are often deemed unfeasible in the real-world [4].

In this work, we used the agent-based EMS simulator developed by [1]. The
underlying simulation model implements the vehicles’ allocation and dispatching
according to the closest dispatching rule [13,14,31], i.e., the emergency event is
assigned by the closest idle vehicle. Moreover, the simulator encompasses three
fundamental input dimensions, namely, location change probability, traffic error,
and vehicle station locations. The latter also includes the number of vehicles
per station. Whereas the latter is easy to interpret, the former two might not
be so obvious. The location change probability is designed to induce a certain
level of randomness to the emergency call’s spatial distribution so that it differs
significantly from the available historical data. On the other hand, the traffic
error encompasses the uncertainty present in the difference between the predicted
and the real traffic conditions.

Two main outputs are provided by this simulator, covering both the EMS
vehicles’ response times and the victims’ survivability, which serve as perfor-
mance metrics of the EMS. These are respectively represented by the average
survival rate and the average response time. Whereas the latter trivially encodes
the outcome of the emergency event, the former is defined by the time difference
between the emergency call and the medical team’s arrival.

The simulation model is configured to emulate an emergency system with
real data from the city of Porto, Portugal, with 90 emergency vehicle locations.
Furthermore, to present our methodology, we only consider the location change
probability and the traffic error as inputs, and the average response time as a
system performance metric. The first two assume real values in the interval [0, 1].
As for the response times, these can assume any positive value. The emergency
station locations and their corresponding number of vehicles were maintained
constant.

4.2 Results

Following the observations made in [26], which discusses the recommended guide-
line of a maximum response time of 8 min (480s), we apply our methodology in
order to search for the set of input simulation points that explicitly trigger this
threshold within the mentioned EMS simulation model.

As previously seen in Sect. 3.2, several inputs for the proposed algorithm
must be defined a priori. This led us to define 480 as our search value. Thus
we have sV = 480. Next, we fixed sGrid as a mesh grid of 10000 (unlabeled)
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points scattered uniformly in [0, 1] x [0, 1], as this is the domain of the simulation
input space under study. Lastly, the initial training grid, ¢trGrid, corresponds to
the first nine-point training unit, as depicted in Fig. 1(a), whose vertices exactly
match those of the input domain. Recovering the notation associated to active
learning presented in Sect.2, we now have that £ = trGrid and U = sGrid.
The GP is the oracle O, and the query function Q is essentially represented
by the way we select the new training grids that are added to the expanding
training set.

The results are presented in Figs. 2, 3, 4 and 5. As mentioned earlier, the algo-
rithm starts by requesting the simulation model to label the instances present
in sGrid. Then, a GP is fitted to these simulation points. In Fig.2(a), we can
see the first GP approximation, here depicted by a three-dimensional surface
defined over the two-dimensional simulation input space [0, 1]? using the unla-
beled observations present in sGrid. After, the algorithm searches for the best
candidate sub-grids within the initial grid. Such grids contain the GP predic-
tions that are most similar to the search vale sV. This can observed in Fig. 3(b)
and (c). The algorithm has detected that the most likely simulation input region
to trigger sV is contained somewhere within [0,1] x [0,0.5]. The AAD is then
computed, and the algorithm proceeds.

The GP fitting, as well as the expansion of the training set, continues sequen-
tially by sub-dividing the previous’ iteration training grid into smaller and finer
replicas of itself. In Fig. 3, we can clearly see the sequence of these grids. Due to
paper space constraints, we only present part of the results, skipping iterations 7
to 13. Eventually, the process stops when the simple addition of new points does
not alter AAD. Figure 5(a) shows that the algorithm took 15 iterations to stop.
As a result of the continuous expansion of the training set, it is expected that the
predictive variance associated with the data points lying near the input space
region of interest tends to decrease. This decrease is depicted in Fig. 5. More than
expected, this is the ultimate goal of the proposed methodology. Observe that
the latter mentioned region, roughly approximated by the proposed grid-based
training structure, gets narrower as the active learning process advances. Figure 4
clearly shows this evolution. Here, we depict the absolute difference between the
GP predictions and the search value. Darker tones imply small differences. In the
end, and by combining Figs. 3(h) and 4(h), we can observe that the points that
are more likely to trigger the search value of interest, are concentrated in the
input simulation region roughly by the grid contained in [0, 1] x [0.625, 0.750].

Note that we showed little concern regarding the prediction performance of
the final GP approximation. Its main goal, more than being a reasonably good
approximation of the underlying function defined by the simulation model itself,
is to guide the active learning towards the most informative data points concern-
ing the given output search value. As a consequent, this GP-based metamodeling
approach ultimately leads us to the discovery of relevant input regions within
the simulation space in a rather expeditious manner.
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5 Conclusion and Future Work

In this paper, we presented a methodology that combines active learning and
simulation metamodeling to address the challenge of exploring the input space
of any simulation model, particularly those that exhibit great runtimes and com-
putational workloads. Starting from a simple training grid, and guided by a GP
acting as a simulation metamodel, the proposed approach uses active learning
to build an increasing mesh grid of training points iteratively. This mesh grid
comprises a set of sequential subgrids that are steered towards specific regions
of the simulation input space that trigger a specific simulation output value,
defined a priori by the user. This directional scheme used to train the associated
GP-based metamodel makes the exploration process more efficient, as only those
input values whose simulation results are more likely to be closer to the search
value of interest are considered to be included in the training set.

This work can be improved within several research directions. A straightfor-
ward expansion is to generalize our approach from a single search value to multi-
ple search values or even sets of intervals. Additionally, it would be interesting to
consider a multi-output approach, where multiple output performance measures
could be explored simultaneously. This will not bring a significant challenge from
the computational point-of-view, as, in principle, the output variables and asso-
ciated metrics are always available throughout the entire simulation experiment
workflow. Closely related to this, multiple output regression should be embraced in
the future so that possible correlations among the output variables can be captured.

Increasing the dimensionality of the proposed approach should also be consid-
ered. Along with it, further numerical experiments and graphical representation
challenges will emerge. The key contribution of our work is the identification of
important regions within the simulation input space, which inherently implies
graphical elements. Therefore, new ways of presenting the results, especially for
hyper-dimensional spaces, must be explored and developed.

The grid-based unit used to train the simulation metamodel should be revised
in the future. Maintaining the concept of grid, more appropriate geometric forms,
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rather than square-based ones, should be taken into account in accordance with
the characteristics of the simulation input space. As this training unit repre-
sents how we run the simulation experiments, new sampling strategies should be
adopted in order to achieve improved fitting performance. For example, we plan
to combine the current approach with statistical designs for computer experi-
ments, such as the widely known Latin hypercube. This kind of scheme provides
a systematic sampling framework that ensures the statistical significance as well
as the prediction performance of the obtained simulation metamodels.

In our particular case of application, the simulation model did not exhibit
very complex output behavior. Nevertheless, the results show the potential of
this type of active learning metamodeling approach when searching for specific
input regions. Hence, an important step is to apply our approach against new
simulation models with an increased degree of complexity, especially with regards
to the model’s output behavior. This would not only provide further validation
for the current work, but it would also stimulate more discussion on the topic.
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