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Abstract. This paper addresses the positioning quality of Simultaneous
Localization And Mapping (SLAM) based on Light Detection and Rang-
ing (LiDAR) sensors within urban road traffic. Based on the assumption
of functional capability of existing SLAM implementations, the paper
evaluates specific details of urban car drives that arise when SLAM is
to be used for automatic car control. In the presented case, LiDAR-
based positioning is done with the Google Cartographer software which
generates real-time updates that are compared to GNSS reference. The
evaluation is done by using own Light Detection And Ranging (LiDAR)
sensor recordings from urban driving. Next to the overall GNSS-free path
estimation, the paper zooms into some typical situations (e.g. waiting at
busy intersection, driving curves) where SLAM might be inaccurate.
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1 Introduction

Reliable positioning and navigation is essential for all kinds of automated vehi-
cles. In outdoor applications, global navigation satellite systems (GNSS) are
ubiquitous, however, positioning is subject to systematic errors of several meters,
temporal loss due to signal interruption, reflections, or multi-path, and inten-
tional disturbance. Low integrity is highly probable in the proximity of obsta-
cles, e.g. when driving in urban areas. Despite the fact that there are high-
quality GNSS receivers with included integrity monitoring [16], satellite-based
or ground-based augmentation, multi-GNSS as combining GPS, Galileo, Glonass
etc. [14], multi-antenna devices, and of course coupled navigation with inertial
sensors [9], signal reception quality is still crucial. With regard to positioning
performance requirements [6], automatic driving in urban canyons, car parks, or
within dense traffic flow is a challenge with high demand on additional navigation
technologies.
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Next to GNSS/INS, wheel odometry, visual lane detection, position matching
to known maps, or adaptive cruise control based on distance sensing are com-
mon technologies used for automatic driving [2] and state-of-the-art for driving
assistance functions [5]. However, not all cases are covered in terms of safety
and reliability, preventing navigation being certified for highly automated or
driverless use.

Another navigation approach is based on the idea of self-location relative to
the environment using exteroceptive sensors as cameras or distance sensors and
by re-finding previously measured features. In contrast to the above-mentioned
techniques, arbitrary environment features can be used, i.e. there is no special
need to rely on road markers, signs, or communication infrastructure. Being gen-
erally based on remote sensing ideas, the use for navigation arose in robotics.
This class of technology comprises visual odometry, simultaneous localization
and mapping (SLAM), or optical-aided navigation, depending on the used algo-
rithm and special application. One advantage is that neither a-priori knowledge
about the environment nor satellite positioning are required, however it can be
combined to that. Typical applications are focused on mapping/exploration or
on positioning/navigation; and they are various: from indoor-capable vehicle or
robot navigation [18], augmented reality [12], micro air vehicles [8], and last but
not least automatic car driving [13]. As a background technology, SLAM can
be considered as state-of-the-art including its known shortcomings (especially
position error accumulation and dependency on remarkable stationary objects),
however reliable use to control a car in dynamic traffic has to be proven.

2 Towards SLAM Navigation in Urban Traffic

From its origins in robotics [3], SLAM found its way into automatic driving
research as one of the navigation technologies to complement GNSS. A recent
survey can be found in [1]. Together with research results, gigabytes of (raw) data
are nowadays publicly available, and they are widely used for further algorithm
development, optimization, and benchmarking. Next to a variety of camera data
listed e.g. in [17], the popular KITTI dataset [7] as well as the Udacity dataset
[4] provide LiDAR data which can be used to test the presented type of SLAM.
While standard benchmarks are highly effective for evaluation of perception algo-
rithms, they typically do not allow evaluation of closed-loop systems. Therefore,
it was chosen to generate own data in this paper. In contrast to the majority of
other papers in this field, no new algorithm (or an optimization of an existing
one) will be presented, and the paper is not aimed at the reduction of the total
position error e.g. at the end of the test drive. Instead, typical problems that
arise within the drive are picked and discussed with an eye on the use for vehicle
control. The evaluation data comes from urban driving tests with four LiDARs
on a car (Fig. 1) driven through city traffic.
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Fig. 1. Testing vehicle: Volkswagen e-Golf operated by DLR.

3 Experimental Setup

3.1 Vehicle and Sensors

Testing vehicle is an electric powered Volkswagen Golf operated by DLR’s Insti-
tute of Transportation Systems. As other vehicles from the institute’s fleet [11],
it includes some modifications for experimental and user-defined vehicle automa-
tion and control. The modular and exchangeable equipment comprises multiple
environment sensors (LiDAR, cameras, RADAR) GPS/INS with RTK capabil-
ity, on-board computers for data logging, real-time data processing and vehicle
control as well as various communication interfaces (WiFi, cellular, ITS-G5).
Details of the sensor processing hardware are listed in Table 1.

Table 1. Details of the sensor data processing computer.

Type Vecow ECX-1200 embedded PC

CPU Intel Core i7-8700T, 2.4 GHz

GPU NVidia GTX 1050 Ti, 4 GB RAM

RAM 8 GB, DDR4-2133

Hard drive 512 GB, SSD

Interfaces 6x GigE LAN, 4x RS-232/422/485, GPIO, etc.

Operating system Ubuntu 16.04 LTS, ROS kinetic

The current testbed design considers integration into future off-the-shelf vehi-
cles such that e.g. roof sensor racks are not used. Relevant sensors are four LiDAR
sensors (see Table 2), mounted as shown in Fig. 2 so that almost a full 360◦

horizontal field of view is achieved. Multi-sensor integration includes extrinsic
calibration and time synchronization so that data is aligned.
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Table 2. LiDAR sensor specification.

Type ibeo LUX 4L

Field of view 110◦ × 3.2◦, 4 horizontal scan lines

Range >50 m

Range accuracy 0.1 m (range independent)

Frame rate 25 Hz

Fig. 2. LiDAR sensor setup: three at front, one at back.

As ground truth reference for SLAM evaluation, satellite navigation data is
recorded together with LiDAR data during the driving tests. The device used is a
NovAtel SPAN solution with RTK capability and included GPS/INS navigation
filter which returns 100 Hz pose updates.

3.2 Sensor Data Processing

The major processes run within the Robot Operating System [15] including sen-
sor drivers and data logging. As one of the components, SLAM is performed by
Google Cartographer software [10]. This application can combine multiple laser
range finders and is capable of generating map and pose updates in real-time. In
this context, pose output (position x, y and heading ψ) is of main interest for the
navigation purpose discussed in this paper. The general processing architecture
is shown in Fig. 3.

The LiDAR driver returns sensor raw data which consists of a point cloud
for every sensor, and multiple LiDAR point clouds are merged to scan frames
for every time step. They can be optionally aligned by use of inertial data. Local
matching performs registration between the scan frames and data fusion into a
map, i.e. an occupancy grid. As the SLAM software is capable of matching local
sub-maps into larger maps which are globally consistent (i.e. loop closure), it
can optionally create globally consistent trajectory output at cost of trajectory
smoothness. This is naturally only possible when previously mapped areas are
entered again.
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Fig. 3. Simplified SLAM architecture.

3.3 Testing Methodology

To evaluate different SLAM settings with comparable input, SLAM is executed
in post-processing using sensor raw data recorded during test drives. Both data
recording and SLAM are processed on on-board hardware (Table 1) and with
real-time data playback so that the test comes close to live execution with regard
to frame rates, timing issues, and possible frame drops. Some SLAM parameters
are tuned to achieve good results, however the parameter choice is tested on
different input sequences to be generally usable for the presented vehicle setup.
The major parameters with non-default values are listed in Table 3.

The setup uses Cartographer’s 2D map and trajectory builder with only
LiDAR point cloud inputs, and without inertial or odometry data such that raw
SLAM behavior will be evaluated. In the beginning, the map is empty, meaning
unknown occupancy. The vehicle pose is initialized with (x, y, ψ) = (0, 0, 0). At
this point, true heading is close to but not exactly north. The map is empty,
meaning unknown occupancy. For ground truth comparison, GPS/INS poses are
transformed into the local coordinate system.

4 Driving Test

Data recording is performed during a 10-minute drive in the city center of
Düsseldorf, Germany. The ride goes over two laps around a rectangular city
block with close start and ending points. Figure 4 shows the mapping progress
as a part of SLAM to re-calculate the vehicle’s trajectory. The pictures show
snapshots at different points of the drive, visualizing how the map is filled with
obstacle boundaries (black) and free space (white) from the LiDAR point clouds.

5 Data Evaluation

With the used onboard computer, processing of 25 Hz LiDAR data is completely
real-time capable. At default grid map resolution of 25 cm, typical delays of
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Table 3. Trajectory builder parameters within Cartographer.

Software version Release 1.0.0

min range 1.0 m

max range 40 m

min z −1.0 m

max z 5.0 m

num accumulated range data 4

ceres scan matcher.occupied space weight 2.0

ceres scan matcher.translation weight 10.0

ceres scan matcher.rotation weight 15.0

motion filter.max distance meters 1.0 m

motion filter.max angle radians 0.2 deg

submaps.resolution 0.25 m

range data inserter.hit probability 0.58

range data inserter.miss probability 0.48

about 5–10 ms (except jitter outliers) between LiDAR input and pose output are
observed, which may allow even higher frame rates. Hence, there is much reserve
for the use of higher grid resolution (see Sect. 5.3), more environment sensing,
or filtering methods, e.g. integration of inertial and wheel sensors. In the next
subsections, pose estimation results based on the driving test are presented.

5.1 Whole Trajectory

Figure 5 shows a top view of the SLAM-based position estimation. The used
metric coordinates are related to UTM grid coordinates and thus slightly rotated
to the illustration in Fig. 4. Together with Fig. 6 providing position and heading
estimation over time, the plots show the two laps around the city block, one
calculated with enabled SLAM loop closure, and one calculated without. Error
accumulates as expected when using SLAM without any GNSS or external map
hints. It can be seen that loop closure has no effect until the end of the first
full circle, which is also expectable since no previously mapped areas are present
until then. At the end of the sequence, SLAM accumulates a position error of
about 4 m with loop closure, and 14 m without. With a total path length of about
1300 m, this equals ≈1% error compared to the distance driven. The plots do
also show the typical problems of GNSS in the proximity of obstacles. There are
immediate jumps of up to 3 m, which is obviously not the true driving trajectory.

5.2 Selected Data Snapshots

Now, specific driving situations are of interest. Beginning with the sequence
start, and thus, the sometimes critical SLAM initialization phase, Fig. 7 com-
pares easting of GPS and SLAM over time. At this point, no special problems
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are detected, i.e. error accumulation is present but as expected, and no time
delays can be observed.

Next point of interest is the standing car after driving some meters. Fig-
ures 8 and 9 show easting and heading where the values should be truly constant
(vibrations are supposedly very low because of electrical engine). Here, some
differences are visible: The GPS/INS easting coordinate (and also northing not
shown) is affected by GPS-typical jumps and secondly updates, being even less
stationary than the SLAM coordinate which is only noisy. The visible 5 cm vari-
ation is about 1/5 of the grid resolution of 25 cm. In contrast to that, GPS/INS
heading tends to be very stable, while SLAM is downgraded by a 0.5◦ noise.

Fig. 4. SLAM results on drive within Düsseldorf city. Occupancy map, vehicle position
(+), LiDAR scans (colors as in Fig. 2): (a) starting position, (b) second corner, (c)
before and (d) after first loop closure, (e) re-finding corner example, (f) end of drive.
Background image: GeoBasis-DE/BKG (2009), Google.
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Fig. 5. Trajectories, local xy-view, Düsseldorf dataset.

Zooming out (Fig. 10) shows a wider view of this driving phase where the car
waits at an intersection. Although several moving cars are in the sensors’ field
of view, being mapped and replaced by free space again, suitable positioning is
achieved. The GPS position jump at 112 s might be the larger issue here.

At a later turn, the car does not have to stop at the intersection. As visible
in Figs. 11 and 12, the curvature is reconstructed within SLAM, however there
are already some absolute errors accumulated.
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Fig. 6. Time plots, Düsseldorf dataset.

Finally, this evaluation takes a closer look at two specific points. The first
is the point of first global correction (loop closure) at around 301 s from the
beginning. Figure 13 shows exemplary the easting coordinate correction towards
GPS/INS ground truth. Northing and heading are corrected in a similar way. A
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Fig. 7. Start of drive, east coordinate. (Before loop closure takes effect, SLAM with
loop closure on is equivalent to SLAM with loop closure off, thus this graph is not
shown in the particular figures.)

Fig. 8. Standstill, east coordinate.

Fig. 9. Standstill, heading coordinate.
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Fig. 10. Intersection waiting and curve, east coordinate.

Fig. 11. Driving curve, east coordinate.

Fig. 12. Driving curve, heading coordinate.

jump of around 10 m is however critical when being used for control algorithms.
Since the second lap begins now with driving within an already mapped area,
later global corrections apply, too. Since they do not mark a loop closure in such
a manner, the consequent position jumps are much smaller.
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Fig. 13. Loop closure point, east coordinate.

The last close view is again more in the beginning of the data sequence
where the car is standing while waiting at an intersection. The point of interest
is timing at a very detailed zoom shown in Fig. 14. Ground truth data is available
as specified: at 100 Hz without remarkable jitter. If the computer is fast enough,
this specific SLAM implementation provides updates as fast as possible (which
are also up to 100 Hz here). To provide meaningful information, only SLAM-
based positions with new LiDAR data included are plotted. The 25 Hz updates
are then visible in the plot, however some jitter is shown. Altogether, this seems
to be very good and suitable for control inputs when the raw local SLAM output
without loop closure is used.

Fig. 14. Single data frames, east coordinate.
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5.3 Different SLAM Settings

As listed in Table 3, all the above calculations are based on a grid resolution
of 25 cm. This is one major parameter to increase or decrease depending on
the available computation power. To test the effects, SLAM was run again with
grid resolutions of 10 cm and 50 cm. The main result is generally comparable
mapping and localization, as expected with increased or decreased accuracy.
Processing time correlates quadratic with grid resolution (i.e. linear with number
of grid cells). With the used hardware, real-time processing and loop closure are
achieved in all cases. Major difference seems to be local positioning uncertainty,
visible as noise at standstill. The plots in Figs. 15 and 16 extend the previous
plots (Figs. 8/9). They show an effect on translational and rotational noise with
somehow linear correlation to grid resolution. Further, total position and heading
error accumulation is also lower at higher grid resolutions.

Fig. 15. Standstill, east coordinate. Extension of Fig. 8 with different grid resolutions.

Fig. 16. Standstill, heading coordinate. Extension of Fig. 9 with different grid
resolutions.
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5.4 Other Datasets

To prove reproducibility, a different dataset is evaluated. Figure 17 shows the
SLAM trajectory estimation result from a ride with the same car and sensor
configuration around the Automotive Campus in Helmond, Netherlands. Param-
eters are equal as above, with a grid resolution of 25 cm.

Fig. 17. Trajectories, local xy-view, Helmond dataset.

6 Conclusion and Future Work

In situations where satellite positioning and also techniques as lane detection
and map matching are subject to fail, SLAM can be a reasonable complement
towards safe vehicle navigation. This paper has a special focus on noise to and
robustness in urban car driving, and it can be shown that up-to-date SLAM
software is capable of finding its way in dynamic road traffic situations. Future
work will investigate situations where SLAM is subject to fail without any opti-
mizations or intelligent switching between different techniques. For example,
stationary objects that start to move (e.g. congestion) might disturb the map
and thus localization if their amount is too high. Other work will focus on specific
applications, e.g. automated valet parking at very close distances when there is
no need to open doors anymore.
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